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This thesis describes experiments in which we use metallic quantum dots to explore a

wide range of physical phenomena at the nanometer scale. The discrete energy levels

within a metallic nanoparticle, which forms the quantum dot, reflect the interactions

within it. Tunneling via the individual energy levels also provides a new means to

study the physics of the electrodes.

We have studied in detail the current flow via both one and many energy levels

within a non-magnetic nanoparticle. The experiments, in combination with rate-

equation calculations, have allowed us to probe the role of non-equilibrium transport

and electron-electron interactions in a quantitative manner.

Having explored non-magnetic systems, we have extended the experiments to

magnetic systems where we measure the electron-tunneling level spectrum within

nanometer-scale cobalt particles as a function of magnetic field and gate voltage,

thus probing individual quantum many-body eigenstates inside ferromagnetic sam-

ples. Variations among the observed levels indicate that different quantum states



within one particle are subject to different magnetic anisotropy energies. Gate-

voltage studies demonstrate that the low-energy tunneling spectrum is affected dra-

matically by the presence of non-equilibrium spin excitations.

By making a device with an aluminum nanoparticle and one of the electrodes in

our device out of a ferromagnetic metal, we can examine spin-polarized tunneling

via discrete quantum states. We also observe magnetic-field-dependent shifts in the

magnetic electrode’s electrochemical potential relative to the energy levels of the

quantum dot. The shifts vary between samples and are generally smaller than those

expected due to the magnet’s spin-polarized density of states. We propose that this

variation is due to field-dependent charge redistribution at the magnetic interface.



Biographical Sketch

Mandar Deshmukh was born on October 20th, 1974, in Pune, India. He grew up in

military cantonments at different locations all over India, as his father worked for

the Border Security Force (BSF). One of his fondest activities as a child was horse-

riding for long hours during the summer. The privileged growing-up experience in

cantonments had an impact on him, and until his 8th grade his dream was to join the

Indian Air Force and fly the Mirages. This dream was to undergo a metamorphosis

during his high school years. There he was increasingly interested in mathematics

and the physical sciences. An excellent academic environment at his school Jñana
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Chapter 1

Introduction

Understanding the basic properties of solids requires a good understanding of their

electronic properties, and this has proved to be a challenging task because of the

complexity of electronic interactions. In the past 20 years, technological develop-

ments have led to the fabrication of electronic structures that allow us to confine

a fixed number of electrons and study their interactions, providing us with a new

way to probe and understand interacting electron systems in a systematic man-

ner [1, 2, 3]. The artificially confined electrons are very similar to the electrons in

atoms, and at the same time allow access to regimes that are difficult to realize

in atomic systems. These confined electronic structures are referred to by various

names: single-electron transistors, quantum dots (QDs), zero dimensional electron

gases, and Coulomb islands. The quantum dot, in many ways, has provided us with

a means to rediscover and explore – in unprecedented detail – the basic physics of

many electron systems, as was the case in atomic physics, but with a greater degree

of control and with many more experimental knobs. The quantum dot structure

has been used to study the effects of: spatial symmetries [4], superconductivity [5],

magnetism [6], Kondo interactions [7], and many other phenomena.

1
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Gate electrode

Drain/source  electrodes

Island

Figure 1.1: Schematic of a quantum dot showing various electrodes, and the central
island where the electrons are confined.
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1.1 Quantum dots

Figure 1.1 shows the schematic of a quantum dot (QD). A quantum dot consists

of an island, in which the electrons are confined, and three electrodes: the source,

drain and gate electrode. The island is isolated from the source and drain electrodes

by tunnel barriers. Electron transport occurs due to the tunneling of an electron

from the source onto the island and then onto the drain electrodes, whereas the gate

electrode affects the transport by changing the electrostatic potential of the island.

The central island of the QD can be thought of as a pool of electrons very weakly

coupled to the other electrodes. As one begins to make this island smaller there are

two energy scales that increasingly become important. The first one is the charging

energy – the energy required to charge the island with one excess electron, e. This

energy can be written as

EC =
e2

2C
, (1.1)

C is the total capacitance of the system. The microscopic origin of this charging

energy is the Coulomb interaction between the electrons. Simply speaking, as one

makes the island smaller this energy becomes larger, reflecting the importance of

electronic interactions in mesoscopic systems.1 The second energy scale that be-

comes relevant is the discreteness of the energy levels in this pool of electrons. This

confined puddle of electrons on the central island is similar to the electrons-in-a-box

problem. One of the effects of making the island smaller is that the electronic energy

levels can be resolved from each other. In the typical electrons-in-a-box problem,

the average spacing between energy levels, δ, is ∼ 1/d3, where d is the dimension of

the island. As a result, the smaller the “box” gets, the better resolved the energy

1It should be pointed out that this is a heuristic argument, and it is the capacitance of the
island relative to its environment (the electrodes), rather than the self-capacitance, that accurately
reflects the cost of the charging energy.
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levels become. This energy level spectrum, like the ones in atoms, reflects forces

at work in the puddle of electrons. We will use these well resolved energy levels to

probe an array of systems.

The central island forms the heart of a quantum dot, and its size dictates the

kind of physics that can be explored using that device. It is made by confining

the electrons by material boundaries, or in semiconductors by using electric field to

define the dot region. Both methods require using lithography tools on the 10- to

100-nanometer scale, and this is typically achieved by electron-beam lithography.

In the early 80’s, this tool became available to the experimental community, and

since then a variety of physics has been explored.

1.2 Metallic vs. semiconductor quantum dots

In this thesis I will describe experiments with quantum dots where electrons are

confined on a metallic island. It is interesting to note the differences between semi-

conductor and metallic quantum dots since this will allow me to put this work in a

broader context.

The main difference between the two types of quantum dots is the length scales.

In semiconductor quantum dots, the puddle of electron is created by applying an

electric field; this depletes the electrons in a two dimensional electron gas confined

in a semiconductor heterostructure. The Fermi wavelength in these heterostructures

is about 10 nm, and depends on the density of electrons. This is to be contrasted

with the metallic quantum dots where the electrons are confined by the physical

boundary of the metallic dot. The Fermi wavelength in metals is ∼ 5 Å, the typical

spacing between atoms in the lattice. As a result, the semiconductor quantum are

relatively insensitive to local atomic defects which get smoothed out; however, that
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is not the case for metallic quantum dots. They can be used to probe the effects of

impurities or disorder or both. The semiconductor QDs have the flexibility that the

geometry can be modified just by applying a voltage to an electrode, whereas this

cannot be done for metallic quantum dots since the electrons screen any external

potential quite effectively. The flexibility of changing the geometry in semiconductor

quantum dots allows the freedom to carry out ensemble measurements and make

statistical inferences. The metallic quantum dots are, however, ideal systems to

study the physics of confinement, since the tunnel barriers are not affected by the

voltages applied to various electrodes; this is not the case for semiconductor based

systems where the height of the tunnel barrier is modified by the applied voltages.

The biggest advantage of metallic quantum dots is that they allow the freedom to

fabricate various electrodes and quantum dots from a variety of different materials.

A number of metals have been studied: aluminum to probe the superconducting

correlations, noble metals with high atomic number like gold to understand the role

of spin-orbit interactions, and ferromagnets like cobalt to probe magnetism at the

nanometer scale. This versatility, of using “real world” metals, allows us to explore

the physics of electronic interactions and transport across interfaces.

1.3 Organization of this thesis

This thesis is written in logical order of the physics, and not in the chronological

order of the experiments I have worked on for the past five years. In Chapter 2, I

will introduce the basic technique of tunneling spectroscopy, which is common to

all the experiments I will be discussing later. It will mainly deal with the basic

idea of measuring the discrete energy levels in a metal nanoparticle by measuring

the current through it as electrons tunnel in a sequential manner. Chapter 3 con-
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Figure 1.2: Cartoons of various devices described in this thesis. Grey colored
electrodes indicate that the electrode is fabricated from a non-magnetic material,
whereas, a black colored electrode is magnetic. a) Device with all the electrodes
fabricated from non-magnetic material is described in Chapter 4. b) In Chapter 5,
we describe the device with one electrode, either drain or source, fabricated from
magnetic material. c) In Chapter 6, the central island is made from of a magnetic
material. d) Experimental results from a device with the island and one of the
electrodes fabricated from a magnetic material are described in Chapter 7.
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tains the basic rate equation formalism which describes the sequential tunneling

of electrons. This rate-equation framework allows us to simulate the experiments

and extract quantitative information from the experimental data. Chapters 4-7

describe four different experiments with increasing complexity. Figure 1.2 shows

cartoons of the devices that will discussed in these four chapters. Chapter 4 de-

scribes tunneling spectroscopy measurements on an aluminum nanoparticle, where

we can observe the effect of electron-electron interactions. The polarization of fer-

romagnets can be probed in two different ways by fabricating one of the electrodes

from a ferromagnetic material; the results from this experiment are described in

Chapter 5. In Chapter 6, experiments involving tunneling spectroscopy of quan-

tum states in ferromagnetic nanoparticles are described. Another step in increasing

complexity involves fabricating the metallic nanoparticle and one of the electrodes

with a ferromagnetic material. This experiment was motivated by the idea of study-

ing spin-polarized tunneling. Preliminary measurements from this experiment are

described in Chapter 7.

Finally, in Chapter 8, I will describe preliminary work on a stencil-based fab-

rication technique, and in Chapter 9, I will summarize the work described in this

thesis.
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Chapter 2

Introduction to nanoparticle

transistors

As mentioned in Chapter 1, single electron transistors have been used to probe a va-

riety of physical phenomena. In this chapter we introduce the nanoparticle transistor

and single electron tunneling spectroscopy; this technique is used to measure the

electronic spectra of a nanoparticle. The idea that electron tunneling could be used

to probe properties of nanometer scale metallic clusters is several decades old, and

was pioneered by Giaever and Zeller [1]. Their measurements involved measuring

the I-V characteristics of metallic clusters embedded in insulating films; this allowed

them to probe the charging properties. However, these measurements were ensemble

measurements since a large number of metallic clusters were involved in the current

transport. The nanoparticle transistor differs in that the single electron tunneling

occurs via a single nanoparticle. This enables us to make quantitative comparisons

to models and extract information that is not convolved with the statistics of size

and number distribution of nanoparticles.

The most difficult part of fabricating nanoparticle transistors is contacting a sin-

9
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gle nanoparticle with electrodes. Several techniques [2, 3, 4, 5] have been developed

to overcome this difficulty. However, the technique developed by Dan Ralph, Chuck

Black, and M. Tinkham [6] has been most successful for a variety of reasons, the

most important being the stability of the device at low temperatures. All the devices

studied in this thesis have been fabricated using this technique, and we will describe

the fabrication procedure later in this chapter. Before we consider the experimental

details, it is interesting to revisit various ideas that motivated the experiments.

2.1 Motivation for the experiments using nanopar-

ticle transistors

Nanofabrication allows the investigation of devices that operate by means of phys-

ical mechanisms completely different from the underlying principle behind most

electronic devices fabricated using the present technology (smallest feature size in

the Pentium processor developed by Intel is ∼130 nm). Nanometer-scale devices are

characterized by the fact that electron transport occurs via discrete “electrons-in-a-

box” states, instead of a continuum of states in much larger devices. Tunneling via

discrete energy levels is common to a variety of systems, and there is a need to un-

derstand all the processes that affect electron transport. In addition to the interest

in nanometer-scale devices for potential applications, it is essential to understand

the fundamental properties of nanometer scale systems.

Dan Ralph and co-workers have successfully used nanoparticle transistors [2, 6, 7]

to observe a variety of interesting physics at the nanometer scale. I will briefly

mention their main results since they emphasize that this is a versatile technique.

Ralph et. al. had originally used aluminum to fabricate the central island of the
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quantum dot. Their main results were:

• They could determine the parity of the number of electrons on the quantum

dot by observing the evolution of energy levels as a function of the magnetic

field [6].

• Since they used aluminum for making the quantum dot, they could probe

the superconductivity at nanometer scale for the first time, and correlate the

effects of size and parity of the superconductor with the superconducting gap

[7].

• Using the gate electrode, they could observe the effects of transport in the

nonequilibrium regime. They could observe, qualitatively, the signature of

electron-electron interactions in the energy level spectrum of a nanoparticle.

This indicated that the independent electron picture is not correct, and inter-

actions need to taken into account [2].

The common theme of these experiments was to investigate the physics by ob-

serving the energy level spectrum of nanoparticles. This technique opened up the

possibility of answering some other very interesting questions in mesoscopic physics.

The following questions have motivated the work in this thesis.

• What is the nature of relaxation between quantum states? Under appropri-

ate conditions, an electron can tunnel into a higher energy state in a metal

nanoparticle, followed by a tunneling out of an electron in a lower energy

state. This leaves the system in an excited state. Whether or not this excita-

tion relaxes before the next tunneling event affects the current-voltage curve.

It is essential to understand this process in order to understand the dephasing

mechanism in nanometer scale devices. Realization of systems where ideas of
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quantum computation could be applied crucially depends on our understand-

ing of dephasing in nanometer-scale devices.

• What is the nature of spin-polarized tunneling? Tunneling electrons from a

ferromagnet are known to be polarized; however, the amount of polarization

is dependent on the interfacial states in the tunnel barrier. Understanding the

physics of spin-polarized electron tunneling is crucial for potential applications

which harness the spin degree of freedom together with the electronic degree

of freedom.

• What is nature of electronic correlations in a nanometer scale magnet? Like

superconductivity, magnetism is a correlated state. However, it is mostly

understood in term of models which rarely capture the realistic behavior of

the materials. The electronic spectra of the nanomagnet will provide new

means to probe forces like exchange and anisotropy.

Having discussed the ideas behind our experiments I will next discuss the basics

of single electron transistors.

2.2 Single electron transistor

The single electron transistor (SET) derives its name from the principle on which it

is based – that the electronic charge is quantized [8]. A simple way of getting to the

basic physics of a SET is by asking the question: what is the energy required to place

an extra charge, e, on an isolated piece of metal? Using elementary electrostatics,

the charging energy, EC can be written as:

EC =
e2

2C
, (2.1)
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where e is the electronic charge, and C is the self capacitance of the isolated piece

of metal.

Now consider the schematic of a SET shown in Figure 2.1, where a metallic island

is weakly coupled to the electrodes via tunnel barriers. Each of the tunnel barriers is

characterized by a capacitance and resistance. The island is considered to be isolated

if the resistance is larger than the quantum of resistance, RQ = h/e2 ≈ 26 kΩ. Here

we will only consider devices where the island is well isolated. In this case the

charging energy is not simply the self capacitance of the island, but the sum of

various capacitances, (CΣ = C1 + C2 + Cg), that connect it to various electrodes.

The energy required to charge the island with a charge Q can be written as,

EC =
Q2

2CΣ

. (2.2)

Since the charge on the island varies only by multiples of e, the charge Q can be

rewritten it as Q = Q0 + Ne, where Q0 is the background charge and N is the

number of excess electrons on the island. This is minimized when N is the integer

closest to −Q0/e. Also, we will deal with devices where the Coulomb energy is much

larger than the level spacing, so that only the two lowest energy values for N are

permitted during the process of current flow. For devices that will be considered

here, the typical capacitances are the order of 1 aF. The charging energy associated

with a device having two junctions with ∼aF capacitance is 40 meV (400 K).

If a SET is now cooled down to a temperature where the thermal energy, kBT , is

less than the charging energy, EC , the device has non-ohmic characteristics. When

kBT > EC , the thermal fluctuations are able to transfer electrons and a non-zero

current can be observed while applying any small bias across the sample. However,

this is not the case when kBT < EC ; now a finite external bias has to be applied

to provide the extra charging energy required for an electron to tunnel onto the
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Figure 2.1: Schematic of a single electron transistor with various electrodes and
capacitance of the central island associated with each one of them.
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island. This produces a blockade of current at non-zero bias that is referred to as

Coulomb blockade, and it is an important characteristic of a SET. The Coulomb

blockade can be observed in two-terminal devices with an island weakly coupled to

two electrodes. However, it is the gate electrode that modulates this blockade and

makes the device a real “transistor.” We consider the role of the gate electrode next.

2.2.1 Effect of the gate electrode in a SET

The gate electrode affects the electron transport by modulating the electrostatic

potential of the island. This can be understood clearly if one examines the micro-

scopic origin of the parameter Q0 introduced earlier. Consider the electrochemical

potential of the island1 when no voltage is applied to any of the electrodes. Under

these conditions the chemical potential of the two leads will be aligned, however,

the chemical potential of the island is determined solely by the residual potential

that it feels because of its electrostatic environment. The magnitude of Q0 is related

to the mismatch of the chemical potential of the leads and that of the island. The

relation can be written simply as:

|Q0| = CΣ

|∆µisland|
e

, (2.3)

where ∆µisland is the mismatch in the chemical potential of the island relative to the

leads. Q0 is a continuous quantity and not quantized in units of e, and mathemati-

cally one can account for this mismatch of the chemical potential by assuming that

a continuous charge Q0 resides on the island. Now, if a non-zero gate voltage, Vg, is

applied, Q0 changes by −CgVg. This implies that a positive bias would increase the

number of electrons on the island. The effect of the gate voltage is summarized in

1Electrochemical potential is a measure of the energy required to change the electron number
by one. For the case of a quantum-dot, the energy required for addition and subtraction of an
electron are different, whereas, in the thermodynamic limit these two energies are the same.
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Figure 2.2: Energy of the SET as a function of Q0/e (proportional to −Vg) for
various values of n. The system occupies the local minima, consequently the number
of electrons on the island change by discrete units. The grey arrows indicate the
energy required for tunneling at a sequence of gate voltages. This variation is
continuous, unlike the variation in the electron number.
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Figure 2.2, which shows the energy of the island as function of Q0 for various values

of n (the number of excess electrons relative to the charge neutral state). So, as one

changes the gate voltage, the charge on the island changes by 1 electron at a time so

as to minimize the energy of the system. Between these discrete changes in n, the

threshold voltage required for an electron to tunnel into the island changes in a con-

tinuous manner as shown by the grey arrows marked in Figure 2.2. The threshold

voltage is defined as the bias voltage required to charge or discharge the island with

one electron, and is simply the voltage that provides for the excess energy required

for the transition. The gate electrode modulates the blockade and the current, and

as a result this three terminal device is referred to as a transistor [9]. The SET is

not a very useful source for providing gain as one would expect from a conventional

transistor,2 however, it is an extremely sensitive electrometer.

Coulomb blockade and transistor behavior can be observed in micron size islands,

but in order to observe the discrete energy levels the size of the island has to be about

10 nm or less. In the next section, we look at various requirements for measuring

the energy level spectra in nanometer-scale transistors.

2.3 Single electron tunneling spectroscopy

How small does an island of the single electron transistor have to be before one

starts observing the energy levels? In the free electron model of a metal, the spacing

between the electronic energy levels (measured at the Fermi energy) is given by:

δ =
4EF

3N
, (2.4)

2There are a couple of reasons that make it difficult for SETs to be used as a source of gain,
1) highly non-linear transconductance (dI/dVg), and 2) more importantly the variation in the
offset charge Q0 as a function of time. For a good discussion on comparison between field effect
transistors (FETs) and single electron transistors (SETs) see ref.[10].



18

where EF is the Fermi energy, and N is the number of electrons. In order to achieve

a level spacing δ = 1K = 0.086 meV, a spherical aluminum (EF = 11.7 meV) [11]

island has to have a diameter of ∼ 10 nm. In the later sections, we will discuss

how this seemingly arbitrary requirement of minimum level spacing arises. In the

next subsection, we discuss energy diagrams which allow visualization of various

tunneling events.

2.3.1 Energy diagrams

In order to extract information from the experimental data it is essential to visualize

various tunneling events, and energy diagrams are a great help in that respect. We

will discuss them briefly since they will used frequently in the later chapters.

Figure 2.3 shows an energy diagram with discrete energy levels within the nanopar-

ticle when a nonzero bias voltage is applied across the two electrodes. The two tunnel

barriers labelled as 1 and 2 are intentionally shown to be asymmetric (C1 6= C2).

The cost of charging the quantum dot is indicated by the position of the energy-

levels in the quantum dot relative to the Fermi energy of the electrodes at zero bias

(dotted line in Figure 2.3). A positive bias applied to the right electrode lowers

the chemical potential relative to the other electrode. In the diagram shown, the

Coulomb blockade has not been overcome and no current flows through the device.

The filled states, with electrons at energies below the Fermi energies of either leads,

do not contribute to the current flow. However, the situation changes when the bias

is increased further.

Figure 2.4 (a) shows one of the processes that allows the current to flow through

the device. In this case, the first step or the threshold transition is the charging of

the island with an extra electron after the Coulomb blockade has been overcome;
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Figure 2.3: Energy level diagram for a nanoparticle SET with a positive bias ap-
plied to the right electrode (V > 0). The two junctions, 1 and 2, have different
capacitances associated with them. The filled states are indicated by up and down
arrows corresponding to the spin of the electrons.



20

this is indicated by a black arrow. After the dot has been charged, the next event

that follows is the discharging across the second tunnel barrier. These two steps are

elastic, and cause a net current to flow across the two tunnel barriers. Figure 2.4 (b)

shows the other possibility for the two step process that can cause a current to flow

through the device at finite bias. Here, the first step involves discharging of the

nanoparticle, followed by a charging step. For the case of a symmetric quantum dot

(C1 = C2), it is simple to determine which of the transitions, either n0 → n0 + 1

or n0 → n0 − 1, is the threshold transition, depending on the magnitude of Q0. If

|Q0| < 1/2, the first step involves tunneling off of an electron, otherwise it involves

tunneling on. This can be easily visualized by looking at Figure 2.2, where the

threshold transition is decided by what is the charge state of the closest neighboring

parabola. In our devices where C1 6= C2 – in fact they can be quite asymmetric – it

is not possible to use the above mentioned heuristic argument.

2.3.2 Observing the energy levels

Having discussed various steps involved in tunneling of the electrons across the

two junctions, we will now consider qualitatively how the energy levels are probed

(this issue will be considered rigorously in the next chapter). Figure 2.5 shows

schematically how the energy levels can be detected by measuring the conductance

of the device. As shown in Figure 2.5 (a), when no bias voltage is applied there is

no current flowing through the device (Figure 2.5 (e)) since there is no energy level

available for resonant tunneling of electrons. However, as the bias is increased, the

current increases gradually (Figure 2.5 (b)) because the thermal smearing (∼ kBT )

of the Fermi energy of the lead allows some electrons in the lead to resonantly tunnel
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Figure 2.4: Energy level diagram depicting the two process by which the current can
flow from one electrode to another. a) The first step is the charging process (black
arrow), also indicated by the notation: n0 → n0 + 1, where n0 is the number of
electrons on the nanoparticle in the uncharged state. It is followed by a discharging
step as indicated by the grey arrow. b)The first step is the discharging process
(black arrow), also indicated by the notation: n0 → n0 − 1, where n0 is the number
of electrons on the nanoparticle in the uncharged state. The next step is the charging
step across tunnel barrier 1.
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via the energy level.3 The current saturates when the Fermi energy of the left lead

is completely past the first energy level; this causes the differential conductance of

the device to drop to zero. As the bias is increased further the current increases

because the electron can tunnel via the second empty energy level which has now

become accessible. Once the Fermi energy is past the second level, the current

saturates and the differential conductance drops to zero. The position of peaks

in the differential conductance corresponds to the position of the energy levels.4

Measuring the conductance in this way allows us to perform spectroscopy on the

nanoparticle.

In the simplistic picture described above, we do not consider the possibility where

more tunneling-out paths become available (or alternatively our cartoon shows peaks

in conductance with the threshold transition occurring across only one barrier).5

This picture, however, helps to emphasize the role of another energy scale in our

experimental system – the thermal energy of the electrons (kBTe), where Te is the

electron temperature. This can be measured by fitting the current steps to the Fermi

function.6 If the average level spacing between the energy levels, δ, is comparable

to the width of the conductance peak, ∼ 3kBTe, then the resolution between energy

levels is inadequate. In order to achieve optimum resolution, we need δ > 3kBTe.

We will revisit the issue of electron temperature in Section 2.5.2. The relationship

of various energy scales discussed in this section is:

EC À δ > kBTe. (2.5)

3In this simple analysis we are assuming that the resistance of the tunnel barriers is much larger
than the quantum of resistance, as a result cotunneling may be neglected.

4It will become clear in Chapter 3 that the observed position of the energy level also depends
on the temperature.

5In real data we can have conductance peaks which correspond to threshold transitions across
either of the two barriers, even for the same sign of the bias.

6The effective electron temperature, Te, is not the same as the lattice temperature because of
the weak electron-phonon coupling. This issue will be discussed further in Section 2.5.
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Figure 2.5: (a-d)Energy level diagrams as a positive bias voltage, Vbias, is gradually
applied across the device and current begins to flow through the device. The dotted
line indicates the position of the leads when Vbias = 0. a) Energy diagram with
Vbias = 0, no current flows through the device (as shown in (e)). b)Energy diagram
with Vbias 6= 0 and the electrons in the tail of the Fermi energy resonantly tunnel
through the first energy level giving rise to an increase in the current and conduc-
tance(as shown in (e)). c) As the Fermi energy sweeps past the first energy level, the
current saturates and the conductance drops, and d) Energy diagrams for successive
increases in the bias voltage leading to tunneling via the second energy level and
a second peak in conductance. e) Current and conductance measured through the
device as bias voltage is increased.
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Having discussed the basic principle behind our experiments, we are going to con-

sider the experimental aspects in the following section.

2.4 Fabrication Process

One the most challenging aspects of making a nanoparticle transistor is to fabri-

cate electrodes to contact a nanoparticle. The nanoparticle transistor that we have

used for our experiments is quite different from the planar devices that are most

commonly used, and from the schematic of a SET we have used for illustration.

Figure 2.6 shows the cross-sectional schematic of the device. The crucial step in the

fabrication process is making a 5− 10 nm hole in an insulating silicon nitride mem-

brane. The fabrication technique for this geometry was invented by Dan Ralph and

co-workers [6, 7, 2], by adapting a recipe invented by Kristin Ralls, Bob Buhrman,

and Richard Tiberio [12, 13]. We have used the recipe developed by Dan Ralph and

co-workers with slight modifications. One important piece of advice for anybody

trying to fabricate devices using the recipe discussed below is – be consistent. We

describe the complete fabrication next.

2.4.1 Making a nano-hole

The nano-holes are generally made in bulk (9 wafers, 81 samples on each wafer),

and then the wafers are cleaved to get the required number of samples for each set

of devices. In the first set of steps, a freely suspended silicon nitride membrane is

fabricated; this is followed by a set of steps to define and etch a single nano-hole on

each of the membranes. Figure 2.7 shows the pattern to be exposed on the wafer for

fabricating the silicon nitride membranes, and Figures 2.8 and 2.9 show the cartoons
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Figure 2.6: Cross-sectional device schematic of the nanoparticle transistor used in
our experiments.
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of the various processes. The recipe described here for making the nano-holes was

invented by Kristin Ralls [12, 13].

1. Start with double-side-polished 〈100〉 oriented silicon wafer (flip polished wafers

can be used). The 〈111〉 planes are at 54.74o from the plane of the wafer (35.26o

from the normal). It is essential to know the thickness of the wafer in order to

predict the final membrane sizes for a given mask. I have mostly used 20 mil

(∼ 500 µm) wafers since they are not as fragile as the 15 mil ones, however

folks in the Buhrman group mostly use 15 mil, so it should work as well. Note

that there is about 40 µm of undercut during the etch, so the mask opening

should be 40 µm smaller than the etch angle and wafer thickness suggest.

The amount of this undercut will depend on the temperature of the wet etch

(KOH) – the higher the temperature, the more undercut. Depending on the

availability one can get the wafers in a week to one month after ordering.

20 mil wafers are difficult to find and this may require more time.

2. Phil Infante, at CNF, has performed the MOS-area processing needed in this

work. The MOS process involves depositing 100 nm low pressure chemical

vapor deposition (LPCVD) low stress nitride. It is essential to deposit 100 nm

now – even though we eventually want 50 nm of silicon nitride – because there

is thinning of the membrane during the wet etch that follows. Phil Infante

needs one month‘s notice to grow silicon nitride, so that should be factored

in if one wants the wafers for making devices. The CNF staff can also train

people to do this step on their own.

3. The wafers are then cleaned with acetone and isopropanol, followed by blow-

drying. It is essential to clean the wafer with isopropanol after using acetone
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Figure 2.7: Pattern for the freely suspended nitride membranes on a 3 inch wafer.
Membranes are indicated in grey color and the etch lines are indicated in black.
(Not to scale)
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since acetone has a tendency to leave a residue.

4. Spin S-1813 photoresist on the front (membrane) side of the wafer. Bake on

clean aluminum foil at 90oC for 10 minutes. This layer is to protect the silicon

nitride from scratching.

5. Spin S-1813 photoresist on the back side for 1 min at 4000 rpm. Then bake at

90oC for 30 minutes. (Approximate time required for spinning resist on both

sides of nine wafers and various bakes – 2 hours.)

6. Align the long break lines on the mask so that they are perpendicular to the

primary wafer flat. Expose on the HTG contact aligner, 405 nm channel B

(the usual settings) for 6 sec (the pattern to exposed is shown in Figure 2.7).

Develop in MF312 diluted 1:1 with DI water, 60 s or until the pattern is clear

over the entire wafer. (Figure 2.7 shows the schematic of the pattern to be

exposed onto the wafer.) The folks at CNF frequently change the developers

in stock, and suggest alternate developing schemes. However, the minimum

feature size in our pattern is ∼ 100 µm so these changes do not affect this

process. From now on the fabrication steps will be shown for only one element

of the 9×9 array of freely suspended silicon nitride windows. (Approximate

time required for nine wafers to perform the exposure and the development –

1 hour. Schematic shown in Figure 2.8 (b).)

7. Use any photoresist and a Q-tip to patch any tweezer damage to the patterned

side, then hardbake the resist at 90oC for 20 minutes. (Approximate time

required for nine wafers – 45 min.)

8. Clean the Applied Materials reactive ion etcher (RIE) by running an O2 plasma

(30 sccm, 30 mTorr is fine) for 5 minutes. Load the wafers and etch the nitride
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Figure 2.8: (Not to scale) Cross-sectional device schematic of the device during
various stages of the fabrication of the freely suspended silicon nitride window: a)
shows the starting wafer (20 mil thick) with 100 nm of low-stress silicon nitride, b)
photolithography to define the square pattern on the wafer, c) RIE to remove the
silicon nitride and expose the silicon, and d) removal of the photoresist, followed by
an anisotropic wet etch using hot KOH, forms the freely suspended silicon nitride.
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in CHF3/O2 30/0.7 sccm, 30 mTorr, power = 100%. For one wafer, the etch

takes 12 minutes, for three, 15 minutes. Wafers must be supported on small

chips so that they do not slide off the electrode when the chamber is roughed

out. Without breaking vacuum, do an O2 etch at 40 sccm 40 mT, power

= 100% (10 minutes for three wafers) to remove the patterning photoresist.

(Schematic shown in Figure 2.8 (c). Approximate time required for nine wafers

– 1.5 hours.)

9. Clean off the remaining photoresist from both sides of the wafers with acetone,

isopropyl, and deionized (DI) water.

10. Mix KOH (potassium hydroxide) with DI water in the ratio of 125 gm of KOH

per 500 ml of solution. Make enough to comfortably cover the wafers. With

the current wafer holders, I use 1500 ml solution. Maintain the temperature

of the etching solution at 98oC. The higher the temperature, the faster the

etch, but higher temperatures will also degrade the degree of anisotropy, and

lead to larger window sizes. Place the wafers in the KOH solution and etch

approximately 15 minutes beyond the time that the windows are first visible

when looking through the wafer to a light source. The etching time takes about

3.25 hours for a 20 mil wafer in 95oC solution. When the etch is done, boil

the wafers in DI water for at least 10 minutes, and then boil them again in a

second (very clean) beaker of DI water in an effort to remove all residual KOH.

Then remove each wafer, one at a time, from the beaker, rinse thoroughly with

DI water spray (both sides), and drip dry the wafers being sure that runoff

from the tweezers does not flow across the window area. (Schematic shown

in Figure 2.8 (d). Approximate time required for nine wafers – 4.5 hours

including setup time and cleanup.)
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11. Inspect the wafers in the optical microscope, recording window size, cleanli-

ness, and any unplanned through holes. Scribe the wafer name on the back

side of the wafer.

12. Remove the back side nitride overhang using a physical mask in the reactive

ion etcher, CHF3/O2 30/0.7 sccm, 30 mTorr, power = 100 %, for 7 minutes.

(Approximate time required for nine wafers – 2.5 hours.)

13. Thin the front side nitride to a final thickness of 50 nm in the RIE, doing many

short etches and checking the thickness with the Leitz microscope equipped

with an interferometer. Note that initially the nitride is thick enough so

that the thick film algorithm must be used on the Leitz. The etch rate is

normally about 1 nm/s, so measure the initial thickness of the nitride, etch

about halfway to 50 nm, check the thickness to calibrate the etch rate, and

then etch to a final thickness of about 50± 1nm. (Approximate time required

for nine wafers – 4.0 hours.)

14. Spin 5.5% 495 PMMA, at 3500 rpm for 1 minute, using a mask chuck and the

spring-loaded wafer holder. Bake at 170 C for one hour. (Schematic shown in

Figure 2.9 (e). Approximate time required for nine wafers – 2.0 hours.)

15. Expose using the electron beam on the VB6. This is a very crucial step as

things can go horribly wrong if they are not done with due care. I recommend

doing a dose test on a wafer; one wafer sacrificed for this test is better than

wasting the whole lot of wafers. Follow the procedure for this one wafer and

see what distribution of hole sizes one gets. Then adjust the dose to get what

is needed. The other important thing to think about is: what size of holes

are needed for whatever you plan on doing? For the gated devices, I always
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Figure 2.9: Cross-sectional device schematic of the device at various stages of fab-
rication after the fabrication of the suspended silicon nitride window: e) e-beam
lithography and development, f) RIE using the Applied Materials etcher to form
the nano-hole, g) removal of the e-beam resist using the RIE, and h) close-up car-
toon view of the nano-hole to emphasize the bowl shaped cross-section of the hole.
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used the 4 pixel exposure since I needed slightly bigger holes to begin with

than for devices without gates. There are several executable files with suffix

gated.com that can be used for exposing wafers for making gated samples.7

(Approximate time required for e-beam exposure for two wafers – 1.0 hours.)

16. Develop in 1:1 MIBK:IPA for 90 seconds. Lately I have used 60 seconds,

and things have turned out OK. There is a need to look at this parameter

since people at CNF think that the 90 seconds developing time is sure to

overdevelop the features we expose. After developing, rinse in IPA ( Iso-propyl

alcohol/propanol) and then drip dry. (Figure 2.9 (e))

17. The final step is the nonlinear etch. This step is the crucial step, and sev-

eral man-hours have been sacrificed at the altar of this step. The keyword is

consistency for all the fabrication steps, but especially for this step. To get

any good results one has to be consistent. The first thing to do is to clean

the chamber thoroughly before using the Applied Materials reactive ion etcher

(RIE). This has become important since in the last 2 years people have been

etching all sorts of stuff in the Applied Materials etcher. My cleaning pro-

cedure is to O2 clean for 5 min, then a CHF3/O2 etch for 5 min, and then

follow it up with a O2 clean for 5 min. I believe these 15 minutes are well

spent, and I recommend them strongly. Now the chamber is ready for an etch.

RIE the developed wafers in the Applied Materials RIE; the non-linear con-

figuration is required for this step. The parameters of the etch are CHF3/O2:

30/0.7 sccm, 30 mTorr pressure, Power =100% for 1 min and 30 seconds, then

remove the sample and do an oxygen clean, replace the sample again, etch

7These files are located on the main computer controlling the VB6, and are located in the Ralph
group directory. The best way to reach these files is to ask CNF staff members, or ask someone
from Ralph group.
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for 1 min 30 sec. This total etch time is sensitive to a number of factors and

one wafer from a lot should be used to try things out. It is important that

the wafer be removed between intermediate O2 cleans since such a clean will

remove the e-beam resist before making the nano-hole in the silicon nitride

membrane. Also, check that the system is balanced by doing a “dummy” etch

after every O2 clean, and before actually putting the wafer in for the etch.

After the etching has been done, follow this with a 3 min O2 clean without

breaking the vacuum (40 mTorr and 40 sccm of O2). This step removes the

e-beam resist. (Approximate time required for etching a set of holes is – 1.5

hours including the conditioning of the chamber; this does not scale with the

number of samples.)

These steps allow fabrication of a nano-hole (Figure 2.9 (h)). Figure 2.10 [14] shows

a nano-hole imaged using a scanning transmission electron microscope (STEM). As

mentioned earlier, the final size is a function of various parameters, and they can be

adjusted to achieve the required hole size. For making the nanoparticle transistors

the hole size required is ∼ 10 nm. Next we consider how the nano-hole is used to

fabricate a nanoparticle transistor.

2.4.2 Making a transistor using a nano-hole

Once the holes are fabricated at the CNF all the remaining steps are carried out

in the Ralph group’s Sharon evaporator. One requires an overnight pump-down for

every step described below; which means that one needs to use the evaporator for

4 continuous nights if one is making the gated devices. For two terminal devices

(devices with no gate), it only takes one night to fabricate the samples. The first

step is to fabricate the gate. I include the recipe that I have used.
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5nm

Figure 2.10: Nano-hole imaged using a scanning transmission electron microscope
(STEM). The dark areas correspond to the electron opaque region of the silicon
nitride membrane, whereas lighter regions correspond to thinner regions. The nano-
hole is completely electron transparent.
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Figure 2.11: a) Schematic of the sample loading arrangement for the deposition of
the gate electrode. b) Sample loading arrangement for anodization and deposition
of SiOx.
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1. The samples are cleaved along the etch lines and loaded one-by-one in the gated

sample holder (schematic shown in Figure 2.11 (a)). The samples are screwed

onto the fixed stage. Two pellets of aluminum are used in a thermal boat

to deposit the gate electrode. After loading the samples and the evaporation

source, the chamber is pumped down; the stage is baked at 100oC for an hour.

Towards the end of this hour, when the stage is hot, a dummy evaporation of

the aluminum is done to get rid of the water vapor adsorbed on the evaporation

source. The shutter is closed during this part, to avoid depositing aluminum

onto the samples. After an overnight pump-down, 180 Å of aluminum is

deposited at 3−4 Å/s to define the gate electrode (Figure 2.12 (i)). Following

the cooling of the source, the chamber is vented. The next step is anodizing,

which forms the oxide layer to isolate the gate from the drain [15, 16].

2. The physical mask used for defining the gate is removed and a clip is used

to contact the gate electrode and to hold the chip down (schematic shown in

Figure 2.11 (b)). The sample holder is then attached to the fixed stage using

teflon screws and a spacer, which are used to ensure that the gate electrode is

floating with respect to the evaporation-chamber ground. Once the samples

are loaded, an aluminum wire is used to contact the stage and is connected

to a feed-through so that a bias voltage can be applied to the gate electrode.

Following this, the chamber is pumped down, and the stage is baked, using

a stage heater, for an hour. After an overnight pump-down, the samples are

ready to be anodized. Before the anodization is started it is important to close

the shutter to avoid occasional sputtering from the high voltage source. The

first step in the anodization process is to let in O2 gas into the chamber and

to start a plasma using the high voltage source. The voltage setting for the
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high voltage source is 1000 V. It is essential to let the samples first float with

respect to the plasma to form good oxide layer without pinholes [15, 16]; this

is done for 15 minutes. After that the O2 gas is pumped out and replenished.

The samples are anodized in a floating state for another 15 minutes after which

they are connected in a circuit where the samples can be biased relative to

the chamber ground. An ammeter is used to monitor the current flowing in

the circuit, and a voltmeter measures the voltage drop between the samples

and ground. At 0 V bias voltage the anodization is carried out for 15 minutes.

After this the bias voltage is increased in steps of 0.5 V until it reaches 3.5 V,

and at each step the bias voltage is maintained for 15 minutes. The O2 gas

is replenished every 30 minutes. When the bias voltage reaches 3.5 V the gas

is replenished, and the anodization is continued for 2 hours. At the end of

that period, the anodization is complete and the samples can be vented. This

forms the first layer of oxide. This step is followed by deposition of silicon

oxide (SiOx) to make sure there are no pinholes that will short the gate and

the drain electrode.

3. After the chamber is vented following anodization, the sample holder is now

reattached to the fixed stage without the teflon screws and spacers. The SiOx

evaporation boat is loaded and the chamber is pumped down. The stage is

baked for an hour and a dummy evaporation is done. The dummy evaporation

is quite important before the SiOx deposition since it is porous and adsorbs

a large quantity of moisture and outgasses a lot. After the overnight pump-

down, the stage is cooled to liquid nitrogen temperature, and the temperature

of the stage is monitored during the cooldown. It takes about 30 minutes

of flowing liquid nitrogen to cool the sample to a temperature of ∼100 K.
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The evaporation is conducted at a rate of 3 − 4 Å/s, and a total of 80 Å

is deposited. After the deposition, the stage is allowed to warm up without

heating the stage; the warmup time can be shortened significantly by flowing

warm air (from the utility outlets) through the space where liquid nitrogen

was introduced. The amount of oxide deposited here is not enough to clog the

holes if one starts with holes ∼ 10 nm diameter. A cartoon view of the device

after the deposition of the oxide is shown in Figure 2.12 (j).

4. Following the deposition of the oxide over the gate electrode, the last step

in the fabrication process can be carried out. This involves deposition of the

electrodes and the nanoparticles. The clips attached for anodization, as shown

in Figure 2.11 (b), are removed, and the chips are rotated by 180o. Then

the physical masks used in the gate process are attached again, as shown

in Figure 2.13. In this way the gate electrode and the drain electrode are

diagonally located on the chip, and can be contacted individually during the

measurement. After the samples are loaded in the sample holder, they are

attached to the rotating stage. Metals to be used for deposition are placed

in an e-beam hearth, or in the thermal boats. I have mostly used e-beam

evaporation for this last step. The first electrode of all the devices I have

fabricated is made of aluminum; as a result, the first tunnel barrier is easily

formed by oxidizing the aluminum by letting in oxygen into the chamber. For

this reason it is important to pump-out the lines connecting the chamber and

the oxygen gas bottle while the chamber is pumping down. Once the lines and

the chamber are pumped-out using the roughing pump, the cryo-pump can be

engaged. As is the case for all the previous depositions – the stage is baked,

however, for the rotating stage the bake time is 1 hour 40 min since it takes
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Figure 2.12: These diagrams show the final steps of deposition to form the elec-
trodes and the nanoparticle; i) deposition of the gate electrode, j) formation of gate
oxide from anodization, and deposition of SiOx at liquid nitrogen temperature, k)
deposition of the first electrode in the bowl shaped hole; followed by oxidation to
fabricate the first tunnel barrier, l) deposition of nanoparticles and fabrication of
the second tunnel barrier, and m) deposition of the second electrode.
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longer for stage temperature to reach 100oC. The purpose behind a stage

bake is to get rid of any water vapor that may be adhering to substrate, and

clogging the nano-hole. When the stage is hot, dummy evaporation of all the

metals is done (taking care to remember that the shutter should be closed).

After an overnight pump-down, the samples are ready for evaporation. The

first electrode to be deposited is the one on the flat side of the wafer, also

referred to as the bowl-shaped hole side, with 1500 Å of aluminum at a rate

of 7 − 10 Å/s. Al is deposited on the bottom side8 of the schematic shown

in Figure 2.13. Once this is done, the stage is rotated so that the side with

pit, formed due to the KOH etch, faces the evaporation sources. The gate

valve is then closed, and O2 gas is introduced in the chamber to a pressure

of 50 mTorr for 3 minutes. This forms the first tunnel barrier. After this,

the chamber is pumped out and particles are deposited. If the particles are

being made out of aluminum then 22 Å of metal is deposited at a rate of

2 Å/s, or if they are being made out of cobalt 5 Å of cobalt is deposited at

1 Å/s. Evaporated metal tends to ball-up due to surface tension, and form

discrete islands. Following this evaporation, if the nanoparticle is made of

aluminum then the second tunnel barrier is formed in same way as the first

one – by oxidizing in O2 at 50 mTorr for 3 minutes. However, if it is a cobalt

nanoparticle, then oxidation is not a viable option,9 and in that case 11 Å

of aluminum oxide (AlOx) is deposited using e-beam evaporation at a rate of

1.5 Å/s. After the formation of the oxide the second electrode is deposited. If

it is to be made of aluminum, then 1500 Å is deposited at 7− 10 Å/s; in case
8Backside of the plane of the paper on which the schematic is drawn.
9Oxidation of cobalt forms cobalt-oxide, an antiferromagnet. In general oxidation of ferro-

magnetic materials is not desirable since the magnetic oxide can cause spin-flip scattering. The
mechanism for such scattering events is not well understood as of now.
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the second electrode is to be made of either cobalt, or nickel, then 800 Å of

the metal is deposited at 3− 4 Å/s. This deposition completes the fabrication

process.

The samples are removed from the chamber and unloaded carefully to avoid scratch-

ing the top electrodes. Care should also be taken to store these samples since the

samples are extremely susceptible to electrostatic damage. I have normally not

measured the samples for a week after fabrication. There is empirical evidence to

suggest that the resistance between the top two electrodes, drain and gate, improves

substantially during this time; this increases the isolation and reduces the leakage

between the electrodes.

2.5 Measurement procedure

The measurements of the devices are carried out in two stages: the first one is called

“dipping”, and the second one is cooling down the “good samples” in a dilution

refrigerator.

2.5.1 Dipping samples in liquid helium

During this step the samples are checked quickly to see if they worth cooling down

in the refrigerator. Since a significant fraction of samples, around 75%, are not

worth investigating further – for a variety of reasons described later – it is quite

essential to do the dipping carefully. The circuit used for the dipping is shown in

Figure 2.14. The schematic of the dipping setup is shown in Figure 2.15, with the

slight modification that the magnetic field is not used at this stage. As mentioned

earlier, the samples are extremely sensitive to electrostatic discharge, so it is crucial
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Figure 2.13: This cartoon shows the sample loading arrangement for the final step
of depositing the electrodes and the nanoparticles.
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that one grounds oneself with a grounding strap, and the sample-holder’s terminals

are shorted to each other. This ensures that some voltage is not accidently applied

across the device. Once the samples are loaded onto a dipstick they are pre-cooled

to liquid nitrogen temperature. As soon as the boiling stops, the dipstick can be

removed and inserted into a helium dewar; this cools the samples immediately to

4 K. Once the samples have cooled they can be connected into the circuit using

the make-before-break switch. The computer acquisition program will acquire an

I-V curve as the bias is swept at a frequency 10 mHz. It is also useful to look at

the current through the device on an oscilloscope since bad devices can be detected

quickly. A good device will exhibit a Coulomb blockade, and display sharp features

in the I-V curve. We will define a good device by eliminating the devices which have

“bad” characteristics. A device can be “bad” in a couple of different ways:

Capacitive device

It is easy to detect a device that is purely a capacitor, without a nanoparticle

present in the junction, if one observes the current on the oscilloscope. In this case

the trace will indicate either a positive or a negative displacement current most of

the time. If one increases the frequency at which the voltage is swept the amplitude

of the current will increase. A similar increase in current amplitude is seen if the

amplitude of the bias voltage sweep is increased. These two characteristics uniquely

identify this device as a capacitive device. Note that the displacement current is

proportional to the rate of change of the bias voltage; consequently the current has

a linear dependence on the frequency, and the amplitude. This device does not

have any nanoparticle between the two electrodes; this is quite likely in a significant

number of our devices considering that require on a nanoparticle to form directly
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Figure 2.14: Circuit diagram for the measurement setup used for tunneling spec-
troscopy.
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Figure 2.15: Schematic diagram of the measurement setup with the data acquisition
system. Black lines indicate electrical connections, whereas grey lines indicate lines
of communication between the data-acquisition computer and various equipments.
QD is the quantum dot with three electrodes drain (D), source (S), and gate (G).
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on a nano-hole. A large number of such devices in one set of samples indicates that

the hole may be very small, and may be getting clogged during the gate process.

Resistive device

In this case the I-V curve looks like that for a resistor. The resistance varies quite

a bit depending on the size of the hole. A large number of such samples in a set of

samples may suggest that the holes are too large.

Incomplete Coulomb blockade

This category of bad devices is closely related to the devices of the resistive kind.

In this case the blockade is smooth and the I-V curve lacks sharp features. This

occurs mostly due to multiple particles in parallel connecting the two electrodes.

Figure 2.16 (a) shows a device with these features.

A good device will exhibit none of the abovementioned characteristics, and have

complete Coulomb blockade, together with sharp features in the I-V curve. Fig-

ure 2.16 (b) shows an example of a good device. When a good device is found a

gate voltage should be applied to check if the blockade is modified. After a good

device is identified, it is warmed up gradually to room temperature and is ready to

be cooled in the dilution refrigerator.

2.5.2 Measurement in a dilution refrigerator

Measuring the device in the dilution refrigerator is very similar to the measurement

during the dipping stage, and the experimental setup is as shown in Figure 2.15.

After cooling down the sample to the base temperature of the dilution refrigerator

(20 mK), the computer-controlled acquisition system allows measurement as a func-
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Figure 2.16: (a) I-V curve from a “bad” device, measured at 4 K, with multiple
particles in parallel connected to the two electrodes. Trace of several Coulomb
blockades in parallel is reflected in the non-linearity of the device. (b) I-V curve
from a “good” device, at 4 K, shows a sharp Coulomb blockade.
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tion of bias voltage, magnetic field, and gate voltage. The bias and gate voltage

generator is controlled by the computer via the GPIB protocol, and the magnet

power-supply is controlled via the RS-232 protocol. The current amplifier and the

voltage amplifier operate on an internal battery, and the output of the amplifiers

is connected via coaxial cables into a National Instruments DAQ card. Before the

measurements are started, it is important to measure the noise in the setup, and

to minimize it since it can affect the quality of the acquired data. The best way

to measure the noise is to connect a triax splitter instead of a device; then turn

the gain of the current amplifier to highest setting (10−11 A/V), and turn off the

filtering on the current amplifier. Observing the output of the current amplifier on

an oscilloscope allows monitoring of the noise. In the best case scenario, the noise

level is 0.5 pA in the absence of any filtering. If this is not the case then there is a

problem, and it has to be fixed before the measurements can be started. I will go

over the various sources of noise briefly, and the procedure for minimizing them:

Noise reduction

The following sources of noise should be checked before connecting the samples in

the dilution refrigerator to the external circuit.

Ground loops

Ground loops are a prominent source of noise, and are caused by the presence of

two grounds in the circuit [17]. The best way to check for them is by looking over

the circuit and ensuring that the only ground that you use to connect to the outer

shields of a coaxial, or a triaxial, cable is the one connected to the refrigerator’s

support structure – the only ground used in the measurement setup.
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Amplifiers and the voltage generators

The amplifiers used in the measurement have internal batteries (which last up to 17

hours), and I strongly recommend using this feature since connecting them to the

mains causes the output to be more noisy. The signal generators used should be

floating, and this can be checked by using an ohmmeter; if they are not floating then

one is sure to run into problems with the ground loops. One way to make doubly

sure that there are no ground loops is to connect the signal generators to the mains

via isolation transformers.

Bad cables

Bad triaxial cables can create extra noise in the system by inadequately shielding

the cables. This should be the last resort in terms of minimizing the noise and

requires replacing the cables one at a time to find the bad one.

Once the noise is reduced to a level of 0.5 pA the setup is ready for acquisition.

Note that the sources of noise that have been addressed above are mainly due to the

external circuit. However, there is always the high frequency noise that travels from

the equipment down to the samples. Reducing this noise is important for achieving

lower electron temperatures, which in turn improves the resolution in energy (as

discussed in Section 2.3.2). In order to achieve lower electronic temperatures I

have fabricated a cryogenic filter; I will briefly discuss the construction of this filter

in Appendix A. Once the noise in the circuit is minimized, the samples can be

measured.

Example of data acquired from a dilution refrigerator

Figure 2.17 shows the conductance plot as a function of applied bias voltage. Dis-

crete states in the nanoparticle can be observed at bias voltages immediately after
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Figure 2.17: Plot of differential conductance vs. bias voltage and current vs. bias
voltage for a device for high bias voltages. The data shown here was acquired at
20 mK, and is from a device with all the electrodes and the nanoparticle fabricated
using aluminum. Here we clearly see the periodicity of the Coulomb charging energy
in the plot of conductance. Peaks other than those closest to the Coulomb blockade
region correspond to simultaneous tunneling of more than one electron. The gray
bars mark the charging energy for this device. We measure the discrete energy
levels in our device close to the blockade region, where only sequential tunneling of
electrons can take place.
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Figure 2.18: Plot of differential conductance vs. bias voltage and current vs. bias
voltage for a device. The data shown here was acquired at a refrigerator temperature
of 20 mK, and is from a device with all the electrodes and the nanoparticle fabricated
using aluminum. Here only sequential single electron tunneling events take place.
Discrete states give rise to steps in the measured current, and peaks in differential
conductance. The region of Coulomb blockade near 0 mV is clearly seen.
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the Coulomb blockade is overcome. Higher order peaks correspond to charging

events where multiple electrons tunnel onto the island, and we do not measure our

devices at such bias voltages. Figure 2.18 shows the I-V and dI/dV-V plot for a

smaller bias voltage range. The steps in current correspond to threshold transitions,

where one more energy level becomes available for current transport. The peaks in

conductance correspond to the position of the energy levels within the nanoparticle.

Measuring similar spectrum for a series of magnetic fields or gate voltage or both

allows us to probe a variety of phenomena.

In the next chapter, we discuss the formalism of rate-equation which will allow

us to extract quantitative information from the experimental data to be discussed

in Chapter 4-8.
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Chapter 3

Rate equations calculations for a

nanometer scale transistor

As described in the previous chapter, nanometer-scale single-electron transistors

can now be fabricated in which electron flow occurs through a discrete spectrum of

well-resolved quantum states on a metallic island [1]. A discrete energy spectrum

has also been observed in devices incorporating semiconducting quantum dots and

molecules [2, 3, 4]. In a transistor geometry, the source-drain voltage V and the gate

voltage Vg, can be adjusted to achieve the simplest case that electron flow occurs

just through a single quantum state. As V and Vg are changed, additional excited

electronic states may also become energetically accessible for tunneling, providing

alternative channels for current flow. In this regime, the tunneling processes can

become quite complicated, due to the many combinations of non-equilibrium states

that may be excited during tunneling, and the possibility of relaxation between

these states.

As long as the tunnel-barrier resistances are much greater than h/e2 and inter-

nal relaxation is negligible, the currents travelling via any number of energetically-
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accessible states can be analyzed in a sequential-tunneling picture using a rate-

equation approach. The general procedure for completing this type of analysis has

been outlined previously, for example in Ref. [5, 6, 7]. This chapter is a revised

version of a paper [8]. Edgar Bonet and I [8, 9] were motivated to model simple

cases of sequential tunneling to explain and understand some of experimental re-

sults that I will discuss in the later chapters. We developed a way to implement the

rate-equation approach together, and eventually used different platforms for imple-

mentation. Edgar wrote a C code to solve the problem numerically, whereas I used

MATHEMATICA to solve the model analytically. Both these methods have their

advantages and disadvantages, and I will point them out during the course of this

chapter.

In the following section we consider the basic formalism of the rate-equation

approach used to model sequential tunneling in a general manner. Later in the

chapter we consider specific examples.

3.1 Rate-equation calculations of current flow

We are interested in calculating the tunneling current via a non-magnetic single-

electron transistor in the regime where the discrete quantum states in the transistor

island are well resolved. The circuit under consideration is shown in Fig. 3.1, which

illustrates the definitions of the bias voltage V and the gate voltage Vg. We will limit

our discussion to the conditions under which the energy levels are best resolved: (a)

kBT is smaller than the level spacing, (b) the level spacing is much smaller than

the Coulomb charging energy of the transistor island e2/(2CΣ), where CΣ is the

total capacitance of the island, (c) the tunnel barriers have resistances À h/e2, so

that cotunneling processes may be neglected and the tunneling current is accurately
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described by lowest-order perturbation theory [10], and (d) kBT is larger than the

intrinsic lifetime broadening of the quantum states. In parts of the discussion,

in order to simplify the notation, we will also assume that electron interactions are

sufficiently weak that many-body eigenstates are well-approximated as single Slater-

determinants specified by the occupation of a set of single-electron states. We neglect

many-body effects associated with Fermi-edge singularities in electrodes with low-

electron densities [11] and effects of coupling to phonons or local degrees of freedom,

which can produce additional features in tunneling characteristics [12, 13, 14]. Under

these approximations, the temperature enters our calculation only through the Fermi

functions in the electrodes.

Our primary goals are to study the effects on current flow of non-equilibrium elec-

tronic excitations and electron-electron interactions. Non-equilibrium excitations

can be suppressed when excited electronic states return back to the ground state at

a rate that is fast compared to the electron tunneling rate. However, measurements

on metal nanoparticles indicate that the relaxation rate is usually comparable to,

or slower than, the tunneling rate in realistic samples [15, 9]. Therefore we will

generally neglect internal relaxation effects entirely, limiting ourselves to noting the

ways in which internal relaxation will produce qualitative changes to the results.

3.1.1 Energy of the eigenstates

In general, the quantum-mechanical electronic states within the transistor island

can be complicated correlated many-electron eigenstates. The energy of any state

can be written as a sum of three terms:

E = EC + EK + EJ , (3.1)
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Figure 3.1: Circuit schematic defining the bias voltage V , the gate voltage Vg and
the capacitances Cl, Cr and Cg. QD indicates the quantum dot.
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the terms being respectively the electrostatic or “Coulomb” energy, the kinetic en-

ergy, and the fluctuations in the electron-electron interactions which vary as the

many body state of the quantum dot changes. Notice that the mean-field contribu-

tion of the electron-electron interactions is the same as the electrostatic energy EC

[10]. Therefore EJ accounts only for the level-to-level fluctuations in these interac-

tions.

Electrostatic energy

As discussed in section 2.2, the electrostatic energy is the largest energy-scale asso-

ciated with nanoparticle transistor, and its microscopic origin lies in the mean-field

approximation of the electron-electron interactions. The electrostatic energy of an

island with N electrons can be written as

EC =
1

2CΣ

(Q0 +Ne)2, (3.2)

where CΣ is the total capacitance associated with the system and Q0 is the back-

ground charge (related to the chemical potential of the system as discussed in sec-

tion 2.2.1). Depending on the value of Q0, the number of electrons in the system

can either increase or decrease by one during tunneling. These two charge states

allow sequential transfer of charge from one electrode to another, once the threshold

energy is provided by the applied bias. For the purpose of the discussion in this

chapter we will consider the two charge states as N0 and N1 = N0 + 1.

Kinetic energy

The kinetic energy of the electrons in the island can be written

EK =
∑

i

εKi ni (3.3)

where εKi is the energy, relative to the Fermi level, of spin-degenerate single-electron

quantum state i, and ni is the occupancy of this level (either 0, 1, or 2).
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In the absence of variations in electron-electron interactions between electrons

in different energy levels, the energy of the island is just EC + EK . With our

conventions, the threshold voltages required for the onset of a tunneling process can

be pictured with simple energy diagrams, as illustrated in Fig. 3.2. For example, at

T = 0, electrons can tunnel from lead k into the island if the island is a N0-electron

state and Fermi energy EF
k of lead k is above the energy εi of a non-fully occupied

level. In the same way, electrons can tunnel out of the island into lead k if the

island is in a N1-electron state and EF
k is below the energy of a non-empty state.

The onset of the current is associated with the first level available for tunneling,

i.e. the lowest-energy non-full level in the N0-electrons ground state or the highest-

energy non-empty level in the N1-electrons ground state. As V is ramped for a fixed

value of Vg, the Fermi energy in a lead can sweep past the energy required to initiate

tunneling via an eigenstate, producing a stepwise change in current.

The voltage-position, width, and current-amplitude of this step are the quantities

that we will analyze. It is important to note that as V is increased, more than one

spin-degenerate quantum level can contribute to tunneling even at the initial onset

of current flow. One example of this case is illustrated by Fig. 3.2(b). The first

allowed tunneling transition is for an electron to enter the level with energy εd from

the right electrode. However, after this electron has tunneled in to give a total of

N1 electrons on the island, transitions to the left electrode can occur either from the

state with energy εd, or from the lower-energy occupied state depicted in Fig. 3.2(b).

If an electron tunnels out of the lower-energy state, subsequent tunneling transitions

from the right electrode can involve either quantum level. Therefore, calculations of

current for this situation must include tunneling processes occurring via both levels.
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Figure 3.2: Energy diagrams for the single electron transistor. The island is repre-
sented by a set of discrete energy levels and the leads by continua of levels. Filled
dots in the island stand for electrons present in an N0-electron ground state. The
transition marked with a black arrow is the one which determines the initial thresh-
old for starting current flow. The transitions marked by grey arrows then also
contribute to the total current. (a) When the Fermi energy of the right lead is
swept past the first level available for tunneling at energy εd, current can tunnel
through this level. (b) For a slightly lower gate voltage and higher bias voltage, two
levels contribute to tunneling even at the initial onset of current flow. The onset of
current can occur as a function of the gate voltage or bias voltage or both.
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It is possible to have current flow at vanishing V if the Fermi energy of both

leads is aligned with the first level available for tunneling. The gate voltage that

realizes this condition is called degeneracy point and is defined by

V 0
g = −

CΣ

eCg

εd (3.4)

where εd is the energy of this particular level.

Variations in electron-electron interactions

In the presence of variations in electron-electron interactions between electrons in

different energy levels [15], the energy of the island has the extra term

EJ = J({ni}) (3.5)

Eq. (3.1) can be interpreted as an expansion of the energy of the system around

the ground state: the second term is the part of E that is linear in {ni}, the first

term is the mean-field contribution of the quadratic part and J({ni}) is defined to

be the rest. The net effect of the J({ni}) term is to produce shifts in the energy

thresholds for tunneling that depend on the actual state of the particle. For instance,

the effective energy level ε′i for adding an election to level i starting with the N0-

electron state {nj} is

ε′i = εi + J({nj + δij})− J({nj}). (3.6)

Notice that this is only defined if ni < 2. In the same way, the energy of a non-empty

energy level in a N1 state can be defined as minus the energy required to remove

an electron from that level.

3.1.2 Steady-state occupation probabilities

Because of the influence of the Coulomb charging energy, even in the simplest cases

that we will consider, the occupation probability for a given many-body state |α〉 =
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{ni} of the particle cannot be factorized as the product of occupancy probabilities

for each single-electron level. Therefore we have to solve the full rate-equation

problem where the occupation probability of each many-body state is treated as an

independent variable.

The evolution of the occupation probability of state |α〉 is given by[5, 6]

dPα
dt

=
∑

β

(Γβ→αPβ − Γα→βPα) (3.7)

where Γα→β is the transition rate from state |α〉 to state |β〉.

This can be written in matrix form as

dP

dt
= Γ ·P (3.8)

with the following coefficients for the matrix Γ:

Γαβ = Γβ→α if α 6= β (3.9a)

Γαα = −
∑

β 6=α

Γα→β. (3.9b)

We do not consider cotunneling or internal relaxation in the particle. Therefore,

the possible transitions are those that have the same occupancy for all the levels,

except one electron difference in one level. Let’s assume that states |α〉 and |β〉

differ only by |β〉 having one extra electron in level i. Then

Γα→β = γlif(ε
′
i − EF

l )(2− ni)

+ γri f(ε
′
i − EF

r )(2− ni)

(3.10a)

Γβ→α = γli
(

1− f(ε′i − EF
l )
)

ni

+ γri
(

1− f(ε′i − EF
r )
)

ni

(3.10b)

where

f(x) = 1/(1 + exp(x/kBT )) (3.11)
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is the Fermi function corresponding to the temperature in the leads and γ li and γri

are the bare tunneling rates between level i and each of the leads. Here ε′i is the

energy needed to add an electron to state |α〉 in level i. It includes the contribution

of the interaction term.

The steady-state occupation probabilities can be found by finding the eigenvector

P0 of Γ associated with the eigenvalue zero.

3.1.3 Current

Once the occupation probabilities for each state |α〉 are determined at given values

of V and Vg, then the current can be calculated either through the right tunnel

barrier or through the left barrier. In the steady state these two currents are equal.

The current through the left barrier is [5, 6]

Il = |e|
∑

α

∑

β

Γlα→βPα (3.12)

where Γlα→β is the contribution of the left lead to Γα→β, multiplied by +1 or −1

depending on whether the α→ β transition gives a positive or negative contribution

to the current.

In order to get a feeling of the physics that will come out of this rate-equation

model, in the rest of the chapter we will consider selected examples that are simple

enough to be solved by hand, yet have the basic ingredients of the complete problem.
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Figure 3.3: a) The figure shows the energy level diagram for calculating the current
when only one energy level is involved in the transport. The uncharged state has
0 electron, and the charged state has 1 electron. b) Possible steps for the charging
and discharging of the dot; this allows the current to be transported from one lead
to another.
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3.2 One spin-degenerate energy level accessible

3.2.1 General formula

Consider the situation represented in Fig. 3.3(a) where only one spin-degenerate

energy level, with energy ε1, is accessible for tunneling and (on account of the large

Coulomb energy) it can be occupied by either zero or one electron, but not two. If

we call

fr = f(ε1 − EF
r ) (3.13a)

fl = f(ε1 − EF
l ) (3.13b)

and the various states being 0, ↑, ↓, as shown in Figure 3.3(b), the transition rates

are

Γ0→↑ = γrfr + γlfl (3.14a)

Γ0→↓ = γrfr + γlfl (3.14b)

Γ↑→0 = γr(1− fr) + γl(1− fl) (3.14c)

Γ↑→0 = γr(1− fr) + γl(1− fl) (3.14d)

for the tunneling-in and tunneling-out transitions. Then, the occupation probabili-

ties can be calculated in using the method described in the previous section. They

can be written as

P↑ =
γrfr + γlfl

γr(1 + fr) + γl(1 + fl)
(3.15a)

P↓ =
γrfr + γlfl

γr(1 + fr) + γl(1 + fl)
(3.15b)

P0 =
γr(1− fr) + γl(1− fl)

γr(1 + fr) + γl(1 + fl)
(3.15c)
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and the current through the left lead in the steady state is

I = |e| (γl(1− fl)(P↑ + P↓)− 2γlflP0)

= 2|e| γrγl(fr − fl)

γr(1 + fr) + γl(1 + fl)
. (3.16)

This expression differs from an approximate form used in Ref. [16] to analyze tun-

neling data.

We can plot the current as a function of the applied voltages by replacing fk by

their definitions in Eqs. (3.13). Figure 3.4(a) and (b) shows the current steps, and

the conductance peaks respectively, as a function of the bias voltage when the gate

voltage is first equal to the degeneracy point, then is tuned away from it.

The case in which one spin-degenerate level is accessible for tunneling, and the

Coulomb energy permits an occupation of either 1 or 2 electrons (rather than 0 or

1) can be solved by exactly the same methods:1

I = 2e
γrγl(fl − fr)

γr(2− fr) + γl(2− fl)
. (3.17)

3.2.2 High bias limit

If the level spacing is very large compared to kBT , there is an interesting regime in

which V is substantially bigger than kBT/|e| yet only one level is involved in the

current transport. The limiting current, in this case, is bias-independent and can

be obtained from Eq. (3.16) by setting fr = 1 and fl = 0 (positive bias) or fl = 1

and fr = 0 (negative bias). For these two cases we have respectively:[17]

I+ = 2|e|
γrγl

2γr + γl
(3.18a)

I− = −2|e|
γrγl

γr + 2γl
. (3.18b)

1Note that the results in Equations 3.16 and 3.17 are very natural, in that current must be zero
if any of the three factors in the numerator are zero.
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Figure 3.4: a) Current profiles as a function of the bias voltage for the case of a
single spin-degenerate level accessible for tunneling, for three different gate voltages.
We assume Cr = Cl and γl = 4γr. The bias voltage is plotted in units of kBT/|e|.
The current is in units of |e|γ0 where γ0 = γlγr/(γl + γr). The reduced gate voltage
vg = |e|Cg(Vg − V 0

g )/CΣkBT is 0, -3 or -6. b) Differential conductance plot shown
as a function of the gate voltage Vg for the device with Cr = Cl and γl = 4γr.
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These expressions give different heights for the positive and negative current steps.

Measuring these heights can, therefore, allow an experimental determination of both

γr and γl. Note that this is in contrast with the case in which tunneling occurs

through a single level that is not spin degenerate. In that case,the currents at high

bias are

I±1 = ±|e|
γrγl

γr + γl
(3.19)

for both bias direction [17], so that γr and γl cannot be determined separately.

In the limit of two barriers with very different tunneling rates for the same device

(which can be experimentally relevant if the barrier thickness is not well controlled),

the current depends only on the smaller γ. For example, if γl À γr, then I+ = 2|e|γr

and I− = −|e|γr. The factor of 2 in I+/I− arises from the difference in the number

of spin states accessible for tunneling during the rate-limiting transition across the

right barrier.

3.2.3 Position and width of the current step

Next, we consider the case depicted in Fig. 3.5, in which Vg is adjusted away from

the degeneracy point, so that at the threshold V for tunneling only the effective

Fermi energy in the right electrode is close to ε1, while the Fermi energy of the left

electrode is at a much lower energy. That is, we will assume fl = 0. Using this

assumption, after some algebra Equation (3.16) becomes

I = I+f

(

ε1 − EF
r − kBT ln

2γr + γl
γr + γl

)

. (3.20)

Even though both spin-states of the quantum level contribute to tunneling, we can

see in this expression that the current step has the shape of a simple Fermi function

whose width is given by the electron temperature of the leads. However, at non-

zero temperature, the center of the step is shifted relative to its position at zero
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Figure 3.5: Energy diagram with one level available for tunneling and Vg < V 0
G.

Since EF
l is substantially below ε1, electrons can tunnel into the island only from

the right lead.
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temperature. The shift is proportional to the temperature, vanishes if γl À γr, and

has a maximum value of kBT ln 2 when γr À γl. Fig. 3.6(a) shows the shape of the

conductance peak dI/dV in the latter limit for three different temperatures, and

Fig. 3.6(b) shows the greyscale plot of TdI/dV as a function of the temperature.

The plot of TdI/dV compensates for the decrease in the peak conductance as a

function of temperature. Linear dependence of the peak position on the temperature

is evident from this graph, where the position of the peak is indicated by white color.

3.2.4 Zeeman splitting of the energy level

In the presence of an applied magnetic field, the two spin states associated with

a given orbital level are no longer degenerate, but split to give the energies ε↓,↑ =

ε1 ± gµBµ0H/2. We use the notation f
↓,↑
k ≡ f(ε↓,↑1 − EF

k ), then the transition rates

are

Γ0→↓,↑ = γrf
↓,↑
r + γlf

↓,↑
l (3.21a)

Γ↓,↑→0 = γr(1− f ↓,↑
r ) + γl(1− f ↓,↑

l ). (3.21b)

The occupation probabilities are

P0 =
1

1 +
Γ0→↓

Γ↓→0
+

Γ0→↑

Γ↑→0

(3.22a)

P↓,↑ =
Γ0→↓,↑

Γ↓,↑→0

P0 (3.22b)

and the current through the left lead is

I = |e|γl
(

(1− f ↓
l )P↓ + (1− f ↑

l )P↑ − (f ↓
l + f ↑

l )P0
)

(3.23)

Figure 3.7 shows the effect of the magnetic field on the conductance peak at positive

bias for a gate voltage below the degeneracy point. The peak – that was observed
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Figure 3.6: (a) Conductance peak at positive bias and negative gate voltage for three
different temperatures. We assume Cr = Cl, γl = 50 MHz[9] and γr À γl. The peak
occurs at V0 = 2Cg(Vg−V 0

g )/CΣ at zero temperature and shifts from this position by
an amount 2kBT ln 2/|e| at non-zero temperature. b) The effect of temperature on
the position of this peak can be seen here. Shown here is greyscale plot of TdI/dV as
a function of temperature (peak conductance ∝ 1/T , therefore by plotting TdI/dV
we compensate for the loss of peak amplitude). The peak in conductance is indicated
by the white colored region while regions of zero conductance are indicated by
the black areas. The broadening of the peaks can also be seen as a function of
temperature.
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before any magnetic field was applied – splits into two subpeaks of different weight.

This asymmetry can be understood by noticing that the first subpeak2 carries a

current given by Eq. (3.19) and the two peaks together give a total current given

by Eq. (3.18). Then the fraction of the total current carried by the first subpeak is

just

I+1
I+
=
2γr + γl
2γr + 2γl

. (3.24)

If the resistance of the right barrier is much smaller than that of the left barrier we

have γr À γl, and this ratio of current steps (
I+1
I+
)is one and the second peak vanishes

[17].3 On the other hand, if γl À γr, the peak splits into two subpeaks carrying the

same current. These two cases of asymmetry can be clearly seen in Figure 3.8 .4

3.3 Two levels accessible

Next consider the situation pictured in Fig. 3.9 where two spin-degenerate levels

are accessible for tunneling and the number of electrons in these levels is N = 2 or

3. Because of Coulomb blockade, no current flow is possible until an electron can

tunnel from the right electrode to state 2; however after this happens both states 1

and 2 can contribute to the current even at the initial current onset. Any particular

charge state of the two energy level system is indicated by showing the occupation,

with appropriate spins, in level 1 followed by those in level 2; this convention is

clearly noted in Figures 3.9 and 3.10. For example the state with two electrons in

2The first subpeak corresponds to the one that contributes to the current at lower bias voltage.
In this particular case where N0 → N0 + 1 is the threshold transition; the first subpeak is due
to tunneling via energy level with “spin-up” character. Here “up” is the direction of the applied
magnetic field. The second subpeak – which occurs at higher bias – is due to tunneling via energy
level with “spin-down” character.

3In the energy diagrams used in this thesis we indicate the higher resistance barrier by drawing
it to be thicker than the other.

4I think that many people mistakenly attribute absence of Zeeman splitting to the more exotic
case of higher spin states of a quantum dot without ruling out this simple scenario [20].
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Figure 3.9: Energy diagram for a case with two levels available for tunneling. Also
indicated at all the possible paths for the electron to tunnel-in and tunnel-out.
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Figure 3.10: Available transitions for a quantum dot with two energy levels available
with 2 electrons in the uncharged states. There are 6 = (42) possible uncharged states,
and 4 = (43) charged states. These transitions represent all the possible states as the
bias voltage is gradually increased to the eventual position shown in Figure 3.9.



78

level 1 and a spin-up electron in level 2 is represented by (↑↓, ↑), and let P (↑↓, ↑)

be the steady state probability of finding the system in the state (↑↓, ↑). γki denotes

the bare tunneling rate of level i across barrier k. Figure 3.10 shows the available

transitions together with the corresponding transition rates.

3.3.1 Rate equation

The rate equation, in this case, has to describe twelve possible transitions be-

tween ten different states. It is, therefore, convenient to use the matrix notation of

Eq. (3.8), which gives

d

dt


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with

Γ =














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


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0 0 0 0 0 −2c1 0 0 d1 d1
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,

where ci = γlif
l
i + γri f

r
i , and di = γli(1 − f li ) + γri (1 − f ri ). This matrix has the

structure

Γ =







Γuu Γuc

Γcu Γcc






(3.26)

where Γuu and Γcc are diagonal blocks associated respectively with the N0-electron

(uncharged) and N1-electron (charged) states. The cross-diagonal blocks are asso-

ciated with the tunneling-out (Γuc) and tunneling-in (Γcu) events. This structure is

preserved for whatever number of levels are available for tunneling.

MATHEMATICA can then be used to find the analytical form for the steady

state probabilities in terms of the tunneling rates for the barriers (γki ; k = l, r;

i = 1, 2), and the Fermi functions in the leads evaluated at the energy of each of the

levels (f ki ; k = l, r; i = 1, 2). Solving for the steady state probabilities essentially

means solving for the eigenvectors corresponding to the eigenvalue 0 for the matrix

Γ.5

5This works quite well for matrices with dimension up to 35. The advantage of this method
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3.3.2 Current

Once the steady state probabilities are evaluated, the current can be calculated by

evaluating the net tunneling rate across one barrier as described by Equation 3.12.

In Fig. 3.11 we compare this current expression to the current we would have in the

presence of infinitely fast relaxation in the island (states (↑ 0, ↑ 0),(↑ 0, 0 ↓), (0 ↓

, 0 ↓), and (↑ 0, ↑ 0) relaxing instantaneously to (↑↓, 00)). In such a case, electrons

can only tunnel into the higher energy level in the island. Since the tunneling-in

of electrons is the rate-limiting process, this situation is equivalent to the case of

Eq. (3.16) when only one level is accessible for tunneling, and the current would just

be

Iequilibrium = 2|e|γr2f(ε2 − EF
r ). (3.27)

The main effect of non-equilibrium states as illustrated in Fig. 3.11 is therefore to

shift the current step to lower voltage. Although not exactly a Fermi function, the

shape of the current step is very close to a Fermi function, shifted by −1.79kBT and

widened by 8.5%. The shift can be understood as follows: When EF
r = ε2, electrons

tunneling to the upper level come from half-full states in the right lead. If the island

is in a non-equilibrium state ((↑ 0, ↑ 0) or (00, ↑↓)), electrons can also tunnel to the

lower level. Since these electrons come from full states in the lead, the current at

EF
r = ε2 is higher when these states are allowed, hence the shift.

The shift in the position of the peak due to non-equilibrium can be examined from

another perspective. As shown in Figure 3.12(a) equilibrium and non-equilibrium

scenarios can be seen in the same device with different gate and bias voltages. As

one sweeps the gate voltage, the threshold bias voltage required for initiating the

over the C program written by Edgar Bonet, is that one can find analytical expressions for various
quantities. For example, analytical expressions for a sub-space of parameters helps to understand
the role of a particular parameter. Also, once the expression for current is found for the largest bias
condition, the current for all the intermediate conditions does not need to be calculated separately.



81

-10 -5 0 5 10
eHV-V0L�kB T

0

0.5

1

1.5

2

I�eΓ r

N

E

Figure 3.11: Two curves indicated are: E - equilibrium curve, and N - non-
equilibrium curve; they show the shift of the current step by non-equilibrium in the
2-levels-accessible case. We assume γ l1 = γl2 = γl and γr1 = γr2 = γr, with γl À γr.
The step occurs at V0 = 2Cg(Vg − V 0

g )/CΣ at zero temperature. The “equilibrium”
curve assumes infinitely fast relaxation in the island. The “non-equilibrium” curve
assumes no relaxation.
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current transport changes, as a result one can go from having a single energy level

to having two levels involved in current transport. The transition from these two

situations results in a “kink” in the linear evolution of the energy level. A simple

way to visualize this is to look at differential conductance as a function of bias

voltage and gate voltage. This “kink” in the position of the peak can be clearly

seen for positive bias voltage in the Figure 3.12(b), where another level becomes

available for tunneling out. Although having another energy level does not cause

any substantial increase in the current, it changes the position of the peak in a

noticeable manner. We will look at the experimental observation of such a feature

in the next chapter. The T -dependent shift for the case of current flowing via two

levels looks very similar to the result for one level displayed in Fig. 3.6, however it

is of a different nature since it originates from non-equilibrium states. This shift

is proportional to kBT , but depends on the exact relative magnitudes of all the

tunneling-in and tunneling-out rates.

The discussion until this point assumes that the electrostatic contribution to

the energy of all the energy levels is the same irrespective of the occupancy of

energy levels. This mean-field picture of the interaction between the electrons is not

accurate, and it is essential to take into account the variation in interaction between

electrons depending on the occupancy of various energy levels. Next we consider

how these interactions change the position of various energy levels for a simple case

with two energy levels involved in the transport. We will consider only variation in

the electrostatic energy, ignoring the contribution of the exchange interactions.
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Figure 3.12: a) These energy level diagrams show the position of the two energy lev-
els relative to the Fermi energy of the leads for the two cases: equilibrium tunneling
and non-equilibrium tunneling. b) Greyscale conductance plot as a function of bias
and gate voltage. We assume γ l1 = γl2 = γl and γr1 ≈ γr2 = γr, with γl À γr. For
Vdeg < Vg < 0 and V > 0, the current flows via only one energy level. However, for
Vg > 0, the current starts flowing with a second energy level available for discharg-
ing. Since this new channel for discharging is not the rate limiting step there is no
increase in current, consequently no increase in conductance height. The “kink” in
the evolution of the conductance peak, as a function of Vg, can be clearly seen at
Vg ≈ 0 and eV/kBT ≈ 4.
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3.4 Two levels accessible with variations in the

interactions

In the presence of variations in electron-electron interactions, the energy thresholds

for tunneling are different depending on whether the island is initially in a ground

state or in an excited state. For example, in the case described in the previous

section, this effect can make the energy required for the (↑ 0, ↑ 0) → (↑ 0, ↑↓)

transition different than the (↑↓, 00) → (↑↓, ↑ 0) transition. We can account for

such variations by assigning a different energy to the upper level in the presence

or absence of an excitation in the island. Namely, the energy of the upper level

will be ε2 for the (↑↓, 00) → (↑↓, ↑ 0) and (↑↓, 00) → (↑↓, 0 ↓) transition and

ε′2 = ε2 + δ for the (↑ 0, ↑ 0)→ (↑ 0, ↑↓), (0 ↓, ↑ 0)→ (0 ↓, ↑↓),(0 ↓, 0 ↓)→ (0 ↓, ↑↓),

and (↑ 0, 0 ↓) → (↑ 0, ↑↓) transitions. Here δ is a measure of the strength of

the variations. The possible transitions are still described by Fig. 3.10 and the

corresponding rate equations are the same as Eqs. (3.25). We can solve for the rate

equation problem analytically to solve for the current as a function of the interaction

parameter δ.

Figure 3.13 shows the differential conductance (dI/dV ) for a range of the in-

teraction strength δ. For δ < 0 the energy required for the tunneling transition

is decreased by non-equilibrium in the presence of electron-electron interactions.

The result of this is to produce an additional shift in the voltage-position of the

current step, on top of the shift already described due to non-equilibrium states

in the absence of electron-electron interactions (see Section 3.3.2). This additional

shift is proportional to |δ| if |δ| ¿ kBT and becomes a constant on the order of

kBT if |δ| À kBT . We will discuss, in the next chapter, how this is experimentally
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observed. For positive δ, the effect of non-equilibrium is to produce an extra step

in the I-V curve at voltages larger than the position of the δ = 0 current step.

This analysis indicates that the position of the conductance peak is affected by the

presence of electron-electron interactions as well as non-equilibrium occupation of

energy levels.

As V is increased so that more than two levels become energetically-accessible

for tunneling, the ensemble of possible non-equilibrium excitations grows combina-

torially, and each combination of excitations can produce a different shift for the

tunneling resonance energies. Interactions which depend on the spin state of the

island (neglected thus far) can produce further complications. The non-equilibrium

excitations can produce a variety of effects depending on the ratio γl/γr and on

the magnitude of variations in electron-electron interactions. When the interaction-

induced shifts are comparable to kBT , they have been observed to produce an ef-

fective broadening of the observed conductance peaks; we will consider this again

in the context of the experiments during the next chapter. For larger interactions,

shifts due to non-equilibrium excitations have been resolved individually [15, 19].

3.5 Conclusions

We have solved the rate equations describing electron tunneling via discrete quantum

states on a nanoscale island, for selected simple cases, under the assumption that the

rate for internal relaxation of excited electronic states is slower than the electron

tunneling rate. Even the simplest case of tunneling via a single spin-degenerate

energy level has some initially-surprising features. The magnitude of the maximum

tunneling current can depend on the sign of the applied bias V , and the voltage-

position of the resonance is temperature-dependent. When two spin-degenerate
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Figure 3.13: (color)a) Colorscale differential conductance plot (in units of kBT/γe
2)

for a range of interaction strengths. We assume Cl = Cr, γ
l
1 = γl2 = γl, and

γr1 = γr2 = γr, with γl À γr. For positive δ we notice that another energy level
appears at higher bias voltages for δ > kBT .
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quantum levels are accessible for tunneling, the behavior is even richer because of

the influence of non-equilibrium excitations on the island. The voltage-position

of the resonance can undergo strong temperature-dependent shifts even in regimes

(e.g., positive bias and γl À γr noted above) where the one-level resonance positions

do not depend on temperature. Understanding the variations in the strength of

electron-electron interactions is critical in the non-equilibrium regime with two or

more levels accessible. Such variations can produce additional shifts of resonance

curves on top of the shifts noted previously, and they can also introduce extra steps

into the current-voltage curves.

In the next chapter, we will see how the results of these rate equation calculations

can be applied to experiments to extract useful parameters, like the various tunneling

rates associated with energy levels.
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Chapter 4

Tunneling via discrete quantum

states in an aluminum

nanoparticle

In nanometer-scale devices, electron tunneling can be used to probe the spectrum

of discrete quantum states. By varying gate and source-drain voltages (Vg,V ) in a

transistor geometry, energy levels have been measured inside semiconductor quan-

tum dots [1], metal nanoparticles [2], and molecules [3]. Despite the popularity of

this technique, little attention has been paid to the detailed quantitative form of the

tunneling resonances, particularly when measured as a function of increasing source-

drain bias. Here we analyze the energies, conductance amplitudes, and widths of

the individual tunneling resonances for an Al nanoparticle. By varying Vg and V ,

we can manipulate electron flow controllably through one state, or through many,

and we can extract tunneling rates for each level. When only one state participates

in tunneling, the resonance properties are in accord with expectations for simple

sequential tunneling. However, for larger voltages, the resonance energies, widths,

90
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and currents can all be modified by the population of excited quantum states. For

an understanding of the high-V regime, non-equilibrium transitions must be taken

into account. Although there are many experiments that have probed the equilib-

rium transport, there are few that have looked at non-equilibrium transport [4, 5].

Here, we consider a detailed quantitative analysis.

The discussion in this chapter is along the lines of a paper [6] we wrote. The

fabrication procedure and the measurement procedure is the same as described in

Chapter 2. However, I briefly describe the experimental procedure in the next

section.

4.1 Experimental details

A cross-sectional device schematic is shown in Figure 4.1. The use of an aluminum

particle with aluminum oxide tunnel barriers provides mechanical and charge sta-

bility, and allows V and Vg to be varied without significantly altering barrier re-

sistances. Fabrication [4] is done using electron-beam lithography and reactive ion

etching to create a bowl-shaped hole in a silicon-nitride membrane, with a minimum

diameter ∼ 10 nm. A gate electrode is formed by depositing 18.5 nm Al, followed

by anodization to 3.5 V in an oxygen plasma, and then deposition of 8.5 nm of

SiOx. The rest of the device is made by depositing a thick Al electrode onto the

bowl-shaped side of the membrane, oxidizing for 3 min in 50 mTorr of O2, deposit-

ing 1.5 nm Al onto the other side of the device to make a layer of Al nanoparticles,

oxidizing, and then depositing the lower Al electrode.

Device parameters are determined from the large-V structure of the 4.2 K

Coulomb staircase curve [7]. The capacitance associated with the barrier with higher
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Figure 4.1: Schematic of an aluminum nanoparticle transistor.
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Figure 4.2: High bias current vs. voltage and dI/dV as a function of bias voltage
for the device considered in this chapter. The periodicity of the Coulomb staircase
is clearly seen in the differential conductance plot. The periodicity is due to the
capacitance associated with the rate limiting tunnel barrier.
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Figure 4.3: Plots showing the current measured as a function of the applied bias
voltage (I − V ), at a fixed gate voltage (Vg = −663 mV), and magnetic field
(µ0H = 1 T). Also shown is the differential conductance (dI/dV ) plot, which is
calculated by evaluating the numerical derivative of the current as a function of the
bias voltage. The peaks in conductance coincide with the steps in the current. An
electron temperature of ∼ 90mK is estimated from the width of the peaks in the
conductance plot. The threshold for tunneling-in has decreased to zero due to the
applied gate-voltage and magnetic field, and as a result the Coulomb blockade is
not seen at zero bias.
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resistance,1 CR>, is associated with the periodicity in the I−V and dI/dV −I plots.

CR> is the smaller of the two capacitances due to each of the tunnel barriers. The

ratio of the capacitances of the two tunnel barriers can be calculated from the ratio

of the voltages required for tunneling via the same state for different signs of the

bias. This allows us to calculate the capacitance for the two tunnel barriers. The

gate capacitance Cg is calculated from the slope of the states as a function of gate

voltage (as shown in Figure 4.4). The capacitance of nanoparticle to the top elec-

trode is CL = 7.9± 0.9 aF, to the bottom electrode CR = 2.7± 0.3 aF, and the gate

capacitance is Cg = 0.06 ± 0.009 aF. The sum of the resistances of the two tunnel

junctions is RΣ ≈ 3MΩ, with individual resistances sufficiently large so that the

intrinsic widths of the quantum states are smaller than kBT . Assuming a roughly

hemispherical particle shape [7], and a capacitance per unit area of 0.05 aF/nm2 [8],

we estimate a nanoparticle diameter ∼ 10 nm.2

4.1.1 Tunneling spectroscopy as a function of gate voltage

We saw in Chapters 2 and 3 how tunneling spectroscopy allows us to probe the

discrete energy-levels in a nanoparticle. Now, we will consider experimental data

where tunneling spectroscopy is carried out as a function of gate voltage, Vg; this

allows us to probe transport in regimes where we can controllably tune the number

of energy levels involved in the transport.

Figure 4.3 shows the current and conductance of the device as a function of the

1The higher resistance tunnel barrier is the rate limiting barrier among the two barriers. We
discuss later in this section how this barrier can be identified from the conductance plot as a
function of gate voltage. Ralph et al. [4] used orthodox Coulomb-blockade theory to fit an I − V
curve to extract the parameters – like resistance and capacitance – for a device. Details of their
fitting procedure are available in Chuck Black’s thesis [7].

2The junction capacitance of the nanoparticle with the different electrodes is relevant for the
calculation rather than the self-capacitance of the nanoparticle which is much smaller.
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bias voltage. The steps in current correspond to the availability of another energy

level for the electrons to tunnel on, or off the nanoparticle; these steps are observed

after the Coulomb blockade threshold is overcome by the applied bias. The differen-

tial conductance plot shows peaks corresponding to the steps in current. In Figure

4.4, we plot the differential conductance dI/dV as a function of Vg and V , when the

sample is cooled in a dilution refrigerator with copper-powder filters on the electrical

leads. The lines in the figure are due to tunneling resonances through discrete quan-

tum states in the nanoparticle. Lines having a positive slope correspond to tunneling

thresholds across the lower-resistance junction L, and negative slopes are thresholds

across junction R [2]. The discontinuity evident in the figure, near Vg = −557 mV,

is due to a Vg-driven change in the charge on another nanoparticle adjacent to the

one through which tunneling occurs. This merely shifts the electrostatic potential

of the current-carrying particle. The intrinsic energies, current levels, and widths

of the resonances are not otherwise altered, so that the full dI/dV -spectrum can be

constructed.

From the absence of spin-Zeeman splitting in a magnetic field for resonance lines

I and II, we can identify these transitions with tunneling from an odd number of

electrons n0 on the particle to an even number [7, 9]. Since these resonances require

increased |V | as a function of Vg, they are n0→n0−1 transitions (see Figure 4.6).

Resonances III and IV correspond to even (n0−1)→ odd n0 transitions. The large

gaps in V between each of resonances I and II and the next parallel lines are due to

the energy difference ∼ 2∆ between a fully paired superconducting state in the Al

particle and the next lowest-energy tunneling state with 2 quasiparticles [4].

Having discussed the basic features of the data we next consider how it can be

used to understand the physics in two different regimes: tunneling via one energy
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Figure 4.4: Colorscale differential conductance as a function of gate voltage, Vg, and
bias voltage, V . A 0.06 Tesla field is applied to drive the Al leads normal. The
conductance scale maximum is 3× 10−7Ω−1.
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level and tunneling via many energy levels.

4.2 Tunneling via one energy level

We first consider the region of Vg near −650 mV, where Vg and V can be adjusted so

that a single spin-degenerate quantum state (state 0) is accessible for tunneling (in

Figure 4.5 we show both a zoomed-in view of Figure 4.4 and selected I-V curves).

For the case under consideration, in which the quantum level is either empty or

singly occupied, the current predicted for sequential tunneling is (as discussed in

Section 3.2) [10, 11]

I = e
2γ0Lγ0R(fL − fR)

(1 + fL)γ0L + (1 + fR)γ0R
(4.1)

where γ0L (γ0R) is the bare rate for an electron to tunnel from the quantum state

0 to an unoccupied density of states in electrode L (R) and fi is the occupation

probability for states in electrode i with energy equal to the resonance state (for a

thermal distribution fi = [1+exp[(ε0−µi)/kT ]]−1, with ε0 the energy to occupy the

quantum state, and µi the chemical potential in electrode i).
3 Our observations are

in excellent accord with this model. For instance, the tunneling current through the

quantum state is not the same for both bias directions, being I+ = 16.6 ± 0.1 pA

for V > 0 (i.e. crossing lines II or III) and I− = −8.4 ± 0.1 pA for V < 0 (crossing

lines I or IV). This has been observed previously [3, 12] and is a consequence of

spin-degeneracy. For V >0, electrons tunnel across the high-resistance rate-limiting

tunnel barrier into an empty state, so that either spin-up or spin-down electrons

can tunnel. For V < 0, the rate-limiting step is for an electron of a given spin on

the particle to tunnel through the high-resistance barrier, and the current level is

3Equation 4.1 differs from an incorrect analysis done by Deshpande et al. in ref. [12, 13].
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Figure 4.5: a) Zoomed in view of the colorscale conductance plot shown in Fig-
ure 4.4. This shows the region where only one energy level is involved in the current
transport. The two lines (marked III-IV in Figure 4.4) correspond to the conduc-
tance peaks from tunneling via the same level for two different directions of current
transport. b) I-V plots for a sequence of gate voltages around the dotted-line marked
in a). The line scans are from Vg -650 mV to -658 mV in 2 mV steps. The two steps
in current correspond to the two lines III-IV. The inset shows the energy diagram
corresponding to the two current steps.
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approximately cut in half.4 By equating the measured currents to Equation 4.1,

we determine γ0R = (5.3± 0.1)× 107s−1 for the high-resistance junction and γ0L ∼

7×109s−1. In addition, for resonances (e.g., III, IV) in which the spin-degeneracy of

the state is split by a magnetic field, the currents through the two Zeeman states for

a given bias direction are not equal [9, 13], in agreement with the simple tunneling

theory (see Section 3.2.4). The maximum current through the lower-energy Zeeman

state is eγ0Lγ0R/(γ0L+γ0R) for either bias direction, and the second state then adds

current to produce the maximum allowed by Equation 4.1. This asymmetry in the

splitting of the Zeeman split levels was discussed in the Section 3.2.4.

As the gate voltage is increased or decreased, many energy levels are involved in

the transport and we will consider that next.

4.3 Tunneling via many energy levels

We can controllably tune the device so that more than one quantum state can

participate in tunneling. This is illustrated by following line II in Figure 4.4. This

line corresponds to processes which are initiated by an electron tunneling off the

nanoparticle from the quantum state 0 to electrode L. However, as one follows line

II to higher V, past negative-sloping resonance lines which intersect line II, these

lines indicate that the subsequent tunneling of an electron from electrode R back

onto the nanoparticle can proceed via many different energy levels other than state

0. The total current under these conditions can be modelled by a master equation

which takes into account all allowed transitions between the energetically-accessible

n0- and (n0−1)-electron states [11]. In Figure 4.6, we show tunneling diagrams

4In the limit when the tunneling rates are very asymmetric (γ0L À γ0R) the ratio of the currents
is exactly 1

2 .
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depicting representative accessible states for resonances I-IV in a non-equilibrium

regime.

There are several aspects of the measured data that we will analyze, namely, the

amplitude of the current, width of the conductance peaks, and the position of the

peaks. In the next subsection, we consider the amplitude of the current which will

allow us to calculate tunneling rates associated with different energy levels.

4.3.1 Current amplitudes

In Figure 4.7(a) we plot the step height in current associated with resonance lines

I-IV, as Vg and V are tuned to follow the lines in the |V |-Vg plane. Peaks I and III

have approximately constant amplitude, while the currents for peaks II and IV grow

quickly as |V | enters the non-equilibrium regime. This can be understood trivially.

For peaks I and III, the tunneling threshold is across the higher-resistance tunnel

junction R. This junction is always rate-limiting and it matters little how many

transport channels are available across junction L. For peaks II and IV, the tunneling

threshold is across the low-resistance barrier L, but the rate-limiting process occurs

across the other barrier R. As |V | is increased, more quantum levels contribute to

this process, and the current grows. The amplitude of the tunneling current along

line II can be used extract the tunneling rates of the two tunnel barriers. First,

we calculate the average tunneling rates for the left (γ̄L), and right (γ̄R).
5 If we

assume that the tunneling rates associated with each of the levels is the same for

the same side (γiR = γ̄R and γiL = γ̄L), and the number of energy levels involved in

the transport is n, then the current for each of the steps along line II can be written

5This way of calculating the average tunneling rates is due to Edgar Bonet.



102

LINE I LINE II

LINE IIILINE IV

-1

0
1
2

-1

0
1
2

-1

0

-2
-1

0

-2

Figure 4.6: Tunneling diagrams depicting tunneling transitions active for resonance
lines I-IV in a non-equilibrium regime. Black spins represent the ground-state elec-
tron configuration. Black arrows indicate the threshold tunneling transition, and
gray arrows denote other transitions that contribute to the current for the value of
V depicted.
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line III, and 0.64 mV for line IV. (a) Magnitude of tunneling current. (b) Width of
the dI/dV peak as a function of V , expressed as an effective temperature.
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as:6

III = e
2nγ̄Rγ̄L
2nγ̄R + γ̄L

. (4.2)

Figure 4.8(a) shows the measured current steps along line II as a function of the

bias voltage. Each of the steps in the current corresponds to one of ten energy levels

(i = 0 to 10) that are involved in the current transport as the bias and the gate

voltage are changed. The current will asymptotically saturate (as a function of n)

when n ≈ γ̄L/γ̄R; using this rule of thumb, an order of magnitude estimate of ratio

of tunneling rates for the two barriers indicates that γ̄L/γ̄R ∼ 10. A better way

to estimate average tunneling rates is shown in Figure 4.8(b). Here, we essentially

fit the plot of inverse of current steps vs. the inverse of step number, using the

inverse of Equation 4.2. From the slope and intercept of this fit we get γ̄R =

(0.11± 0.01)× 109s−1 and γ̄L = (2.9± 0.3)× 109s−1.

By measuring the current along peaks II and IV as levels are added one by one,

and then fitting to the master-equation results described in the previous chapter, we

can measure rate-limiting tunneling rates for each quantum state in a more rigorous

way: the γiR, for i = 0 to 5, are (5.3, 15.7, 8.0, 16, 15, 9) × 107s−1, γ̄L ≈ 3× 109s−1,

and (assuming relaxation effects are negligible) γ−1R ≈ 17 × 107s−1. The result of

fitting is shown in Figure 4.9.

Having discussed the amplitude of the current as a function of bias voltage, and

the procedure of calculating the tunneling rates, we next consider the width of the

conductance peaks.

6For line II: when n doubly degenerate levels are available, the number of ways for an electron
to tunnel in from the left tunnel barrier is 2n, and the number of ways for it to tunnel out of the
right barrier is just 1.
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Figure 4.8: a) Shows the current along line II (marked in Figure 4.4)as a function
of the bias voltage. The dotted lines indicate various current steps corresponding
to the ten levels (i = 0 to 9). The dotted lines are guides to the eye which indicate
the different current steps. b) Plot of inverse of current steps marked in (a), vs. the
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The fit parameters: slope and intercept, are used to calculate γ̄R and γ̄L.
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4.3.2 Width of conductance peaks

Figure 4.7(b) shows the widths of the tunneling resonance lines I-IV. These were

determined by fitting the V dependence of each conductance peak to the derivative of

a Fermi function, and then converting the voltage width to an effective temperature

by multiplying by the capacitance ratio (e/kB)CL/(CL + CR) for peaks I and III

or (e/kB)CR/(CL + CR) for peaks II and IV [7, 9]. In either the equilibrium or

non-equilibrium regimes, the prediction of the simplest master equation, discussed

in Chapter 3, is that the peak shape should be a derivative of the Fermi function

with a width approximately equal to the electronic temperature in the electrodes.

Our measurements agree with this model within the equilibrium regime, with a

constant electron temperature T ≈ 90 mK.7 Line III is broader than the others at

low V because the magnetic field of 60 mT applied to drive the Al electrodes normal

produces an unresolved Zeeman splitting (∆E/kB = 2µBH/kB = 80 mK).

As |V | is increased into the non-equilibrium regime, peaks I and III undergo large

increases in width and peak IV broadens slightly, while peak II shows no measurable

change. The differences are not merely an effect of heating in the electrodes, because

peaks II and IV have the largest magnitudes of current and power. We suggest that

these measurements can be explained as a consequence of electronic interactions in

the non-equilibrium regime, by a mechanism due to Agam et al. [5]. Consider reso-

nance line III, for which the tunneling threshold corresponds to an electron entering

quantum state 0. For V > 0.50 mV the next tunneling event, which discharges the

particle, may occur out of different, lower energy states (see Figure 4.6), leaving an

electron-hole excitation on the nanoparticle. Agam et al. suggested that if this non-

7This experiment was done before the addition of the micofabricated stripline filters to our
setup. The electron temperature is higher than for devices without, most likely due to some
leakage current. With the stripline filters, the electron temperature was reduced to ∼ 40 mK
(Appendix A).
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equilibrium state does not relax before the next electron tunnels onto the particle,

it can shift the energy of the tunneling resonances on account of an alteration of

the electron-electron interaction energy.8 In past work on smaller aluminum parti-

cles, shifted transitions were resolved individually [5]; however the relative shift is

expected to decrease with increasing nanoparticle size [5], so it is reasonable that

the shifts would produce only broadened resonances for the 10 nm particle under

investigation here. Because a growing ensemble of different non-equilibrium states

can be excited with increasing |V |, this mechanism can explain the increase in width

of line III as a function of |V |. The same non-equilibrium mechanisms should also

come into play for line IV, for V < −0.64 mV, but the broadening there is reduced

because the threshold tunneling event is across the lower-resistance junction, L.

Barrier R quickly becomes rate limiting as line IV is crossed, so that higher-energy

non-equilibrium resonances do not add significant additional current. In order for

the non-equilibrium mechanism to apply for line III, the relaxation rate of some

non-equilibrium excitations to the ground state must be comparable to or slower

than γ0R = 5.3 × 107s−1. The rate predicted by Agam et al. for spin-preserving

energy relaxation in aluminum particles is ∼ 108s−1 [5].

Resonances I and II are a different case, because the tunneling threshold cor-

responds to an electron leaving quantum state 0. The subsequent tunneling event,

adding an electron back to the nanoparticle, may for large V occur into higher-

energy states (see Figure 4.6), but nevertheless this excitation alone cannot produce

a non-equilibrium shift in the energy of subsequent discharging transitions. The

reason is that only this electron is free to tunnel off the nanoparticle; there is no

electron in quantum state 0 whose transition energy might be shifted. Therefore

8A statement in ref.[5] that the first tunneling resonance should be unaffected by non-
equilibrium is incorrect in some cases when spin is taken into account.
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within the picture of Agam et al. [5], no non-equilibrium broadening should be ex-

pected for levels I and II, in conflict with the data for level I. This discrepancy can

be explained if non-equilibrium excitations on the nanoparticle can be generated not

only by the tunneling transitions on or off the particle that have been considered

previously [5], but also by transitions in which a high-energy electron relaxes within

the nanoparticle and produces an electron-hole excitation. Broadening would then

be generated by the Agam mechanism. Within this scenario, the difference between

the broadening visible for resonance line I and the lack of broadening of line II

would follow from the fact that for peak II a high-energy electron on the parti-

cle can quickly exit through the low-resistance tunnel junction L, while for peak I

the high-energy particle must exit through the high-resistance junction R, giving a

much longer residence time during which relaxation transitions can occur. In order

for line I to be broadened, the fastest relaxation rates must become comparable to

γ0R = 5.3× 107s−1 as |V | increases.

In this section we have argued that the widths of the conductance peaks are

affected by the non-equilibrium states that are involved in the current transport,

together with electron-electron interactions. In the next section we consider how

the position of peaks can also be modified as a result of these two factors – non-

equilibrium and electron-electron interactions.

4.3.3 Position of conductance peaks

By tuning Vg and V into the non-equilibrium regime, the apparent energies of the

dI/dV peaks can also be changed. This is clearest for line III (Figure 4.11), which

undergoes a shift of 33 µV to lower voltage when the threshold for non-equilibrium

tunneling via state -1 (line V in Figures 4.4 and 4.11(a)) is crossed. Because we
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have measured rate-limiting tunneling rates for the energetically-accessible states

from the current amplitudes, we can test whether this shift can be explained by

the simplest master equation approach discussed in Chapter 3, which assumes that

the underlying energies of the quantum states are not changed by non-equilibrium

interactions. Figure 4.10(a) and (b) show the energy diagrams corresponding to

situations before and after the kink respectively. Using the rate equation approach

described in Chapter 3 we can calculate the current through the device after the

kink. The current can then be written in a simplified form with an assumption

(γ̄R ¿ γ̄L) as,

Ikink = e
2fRγ0Rγ−1R((fR + 2fRx)γ0R + x(x+ 2)γ−1R)

f 2Rγ
2
0R + 4fRxγ0Rγ−1R + x2γ2−1R

, (4.3)

where fR – a function of bias voltage V – is the Fermi function of right lead,

and x = γ0L/γ−1L. Only one relevant parameter was not determined previously: x.

The reason this parameter was difficult to determine is that the left side is never

the rate-limiting side, and hence one can only determine the average tunneling

rate associated with this barrier – not individual tunneling rates. This solution of

the master equation does predict a voltage shift (∝ T ) for the conductance peak

compared to the equilibrium case, and for x < 0.15 it can explain the full value of

the experimental shift in the position of the conductance peak corresponding to line

III. However, we judge x < 0.15 to be improbable, because the measured values of

γiR fall within a more narrow distribution, and one would expect the distribution of

γiL to fall within the similar range. For x∼1 in Equation 4.3, the predicted shift is

15 µV – much smaller than we measure.

We can more naturally explain the full value of the shift in the position of line

III by again taking into account that the presence of a non-equilibrium excita-

tion can change the energy of a tunneling transition. In the equilibrium regime,
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the occupation of quantum state 0 corresponds to a transition from a fully-paired

superconducting state on the aluminum particle to a state with one high-energy

quasiparticle; in the non-equilibrium case, the transition can be from a state with

two quasiparticles to one, with a transition energy lowered by ∼2∆≈0.35 meV [14].

This is much bigger than kBT ∼ 10 µeV, and in this case, the observed resonance

is shifted to lower |V | by an amount ∝T because electrons in the tail of the Fermi

distribution, of the leads, can excite the non-equilibrium state and open the lower-

energy current channel. This is clearly seen in Figure 3.13, where the interactions

were included during the rate-equation calculation.9 For x=1 and T ∼ 90 mK the

master-equation result is that the measured shift, in the position of the conductance

peak corresponding to line III, can be produced by a non-equilibrium lowering of

the transition energy by any amount greater than 20 µeV∼2kBT .

4.4 Conclusions

In this chapter we used the rate equation approach described in Chapter 3 to ex-

tract tunneling rates for different energy levels. When transport occurs through a

single quantum level, our results are in agreement with the expectations of sequen-

tial tunneling. At large values of |V |, the non-equilibrium population of excited

electronic states, together with electron-electron interactions, modifies the widths

of the tunneling resonances and causes their apparent energies to shift as a function

of temperature. This is the first detailed study where rate equation approach has

been used extensively to extract the tunneling parameters of a quantum dot.

I want to emphasize that these experimental results are very generic, in the

9This would correspond to the case of δ/kBT < −10 shown in Figure 3.13. In this case the
shift saturates, and is proportional to the temperature.
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sense that they can be observed in a variety of systems where a sequential tunneling

picture is valid. In the next chapter we consider how the physics of spin dependent

tunneling can be explored by fabricating one of the electrodes out of a magnetic

material.
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Chapter 5

Polarization measurements of a

bulk ferromagnet using discrete

electronic states in an aluminum

nanoparticle

There has been an increasing interest in manipulating the spin of electrons, with

the primary motivation being to use this degree of freedom for potential device

applications [1, 2]. In order to use the spin degree of freedom it is required that

a unequal number of spin-up and spin-down electrons be created in a controllable

manner. There are several strategies being pursued to create an unequal number

of spins, with two prominent approaches being the use of circularly polarized light

to generate spin-polarization [3] in a non-magnetic semiconductor, and the use of

a ferromagnet as a source of spin-polarized currents [4]. As of now the use of

ferromagnet as a source of spins seems to be most promising for devices from a

practical standpoint [2]. This makes it imperative to understand the polarization of

116
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electrons – the asymmetry in the number of spin-up and spin-down electrons – in

a ferromagnet and the nature of spin polarized current flow. Spin polarization in a

ferromagnet has been probed in a number of ways: by using electron tunneling from

a ferromagnet into a spin-split quasiparticle states in a superconductor [5], by using

a ferromagnetic scanning tunneling microscope (STM) tip [6], by using Andreev

reflection from a ferromagnet-superconductor interface [7], and by using a SET with

ferromagnetic leads [8]. In many ways the experiments we describe in this chapter

will combine the ideas used in some of the experiments [5, 8] mentioned above.

In the previous chapter we saw how the discrete electronic states can be probed

using the flow of electrons. This flow of electrons also revealed information about

the nature of electronic interactions on the metallic nanoparticle. However, in this

chapter, we will see how the discrete electronic states can be used to probe one of

the electrodes of the device. More specifically, we will probe the magnetic polariza-

tion of the ferromagnet, and the polarization of the electrons that tunnel from the

ferromagnet. Before we dive into the details of polarization we will briefly discuss

the ideas behind some previous polarization measurements in the next section. This

will also help to provide a broader context for our measurements, and bring out the

differences between our measurements and those carried out by others.

5.1 Polarization of electrons in ferromagnets

The asymmetry in the number of spin-up and spin-down electrons in a ferromagnet is

a result of the competition between the exchange energy, which tends to align spins of

electrons, and the kinetic energy of electrons. A material is a ferromagnet when the
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Figure 5.1: Calculated density of states of Ni (from Ref [9]).
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exchange energy dominates the kinetic energy.1 As mentioned earlier, polarization

simply measures asymmetry in the number of spins in a ferromagnet. Figure 5.1

shows the density of states plot for nickel, here one can observe the asymmetry

in the total number of spins, and the asymmetry in the density of states at the

Fermi energy. Note that although the total number of spins for spin-up (majority

spins) is larger than that of spin-down (minority spins), the density of states at

the Fermi energy has the opposite distribution – more states of the minority-spin

than the majority spin. As far as the transport properties are concerned, the states

near the Fermi energy are the only relevant states. This simple picture exemplifies

the complicated band structure of ferromagnets. For simplicity, the bands of a

ferromagnet are often approximated with parabolic, free electron-like, bands. This

free-electron like approximation together with the Stoner model is used in most

descriptions of a ferromagnet and captures some of the qualitative features.

5.1.1 Stoner model with parabolic bands

In order to capture some of the features of ferromagnetism in a simple model, one

can assume free-electron like bands together with a constant exchange interaction.2

The Hamiltonian for this simple model can be written as

HStoner =
∑

i

~pi
2

2m
− ~σi · ~∆Stoner, (5.1)

where ~pi is the momentum of the ith electron, m is the effective mass, ~σi is the

spin of the electron, and ~∆Stoner is the exchange field. This says that the energy of

electrons with the same momentum and opposite spin differs by 2∆Stoner.
3 The in-

1We will come back to the basics of ferromagnetism in the next chapter (Chapter 6) where we
consider this in greater detail.

2We will consider in greater detail, during the next chapter, how this description is inadequate
for realistic ferromagnets.

3The exact magnitude of ∆Stoner is not important for the discussion in this chapter.
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herent assumptions are that the detailed structure of the bands is irrelevant and the

exchange can be described using a mean-field description. It should be emphasized

that these assumptions are very crude, but they do make the problem tractable.

The density of states for a ferromagnet within such a model is shown in Figure 5.2.

Next we discuss previous experiments probing the polarization of ferromagnets.

5.1.2 Previous experiments to probe polarization

The pioneering experiments of Meservey and Tedrow [5, 9] used a ferromagnetic-

insulator-superconductor (FIS) junction to probe the polarization of the ferromag-

net. The basic idea was to use the spin-split quasiparticle states of a BCS super-

conductor as a way of measuring the relative proportion of the spins tunneling from

the ferromagnet. The differential conductance of the FIS device, as a function of

bias voltage, reflects the convolution of the spin-split quasiparticle states of the su-

perconductor and the density of states of the ferromagnet. Meservey and Tedrow

measured minimal spin-flip scattering during the tunneling; this allowed them to

deconvolve the tunneling density of states for the spin-up and spin down electrons

in the ferromagnet. The polarization of the electrons tunneling from the ferro-

magnet was found it to be positive, implying that more spin-up electrons tunnel

compared to spin-down. Meservey and Tedrow measured the polarization of nickel

to be + 23 ± 3%. The positive sign of the measured polarization was something that

was difficult to reconcile with the realistic density of states (shown in Figure 5.1)

since there are more states of the spin-down character at the Fermi energy. This was

explained by considering that although the density of states is dominated by d -like

electrons, it is primarily the s-like, itinerant, electrons that dominate the tunneling.

This picture of having mostly itinerant electrons tunneling from a Stoner ferromag-
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net (shown in Figure 5.2) is commonly used to explain the results from tunneling

measurements of polarization. According to a model developed by Stearns [10],

the quantity that Meservey and Tedrow [5, 9] measured was the polarization of the

itinerant electrons

Ptunnel =
k↑F − k↓F
k↑F + k↓F

, (5.2)

where |k↑F |2 = (2m/h̄2)EF and |k↓F |2 = (2m/h̄2)(EF −∆Stoner) are the wave-vectors

at the Fermi energy for the spin-up and spin-down itinerant electrons, respectively.

Another set of experiments, based on the tunnel magnetoresistance (TMR) effect,

measure the magnitude – but not the sign – of the tunneling polarization using the

ferromagnet-insulator-ferromagnet (FIF) geometry [11, 12, 13]. One can make the

two ferromagnetic electrodes so that they have different switching fields, and as a

result one can measure the resistance of such a device both when the two magnetic

layers are parallel and antiparallel. The relative change in the resistance between

the parallel and antiparallel states (∆R/R) is related to the two polarizations via a

simple model due to Julliere [11],

∆R

R
=

2P1P2
1 + P1P2

, (5.3)

where P1 and P2 are the polarizations associated with the two ferromagnetic layers,

and depend on the materials used to fabricating the device. These measurements

also measure the polarization of the s-like electrons in the ferromagnets, like the

measurement of Meservey and Tedrow [5, 9].

Upadhyay et al. and Soulen et al. [7] used Andreev reflection from a ferro-

magnet [14] to probe the magnitude of the polarization of the transmitted current.

The idea of these experiments is to measure the conductance of a ferromagnet-

superconductor interface formed at a point contact. The conductance below the
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gap of the superconductor is enhanced to a degree that depends on the polariza-

tion of the ferromagnet [14]. These experiments probe the polarization of the spin

current in the limit of complete transparency; this is in contrast to the tunneling

polarization measurements, which rely on the opaqueness of the tunnel barrier. A

polarization measurement using Andreev reflection cannot determine the sign of po-

larization, only the magnitude. Using the Stoner model with parabolic bands for the

ferromagnet the current polarization measured in Andreev reflection can be written

as

Pcurrent =

∣

∣

∣

∣

∣

(k↑F )
2 − (k↓F )2

(k↑F )
2 + (k↓F )

2

∣

∣

∣

∣

∣

, (5.4)

where |k↑F |2 = (2m/h̄2)EF and |k↓F |2 = (2m/h̄2)(EF −∆Stoner) are the Fermi wave-

vectors at the Fermi energy for the spin-up and spin-down electrons [15]. Physically

this quantity measures the excess number of channels available for one spin over

the other, where the number of channels is ∼ (dkF )
2; d is diameter of the point-

contact and kF is the Fermi wavevector. As a result, the polarization measured using

Andreev reflection is quite a different quantity, both numerically and physically from

the tunneling polarization.

Ono et al. [8] used a single electron transistor (SET) with a magnetic island

or magnetic leads or both, and they fabricated their devices so that the charging

energy, EC = e2/2CΣ, was of the same order of magnitude as the change in the

chemical potential for a magnetic system in an applied magnetic field(∆µ ∝ PDOS),

where ∆µ is the change in the chemical potential and PDOS is the density of states

polarization.4 As a result, they observed Coulomb-blockade oscillations as a func-

tion of magnetic field as well as gate voltage. Knowing the device parameters, they

argued that they could estimate the density of states polarization (PDOS). The sign

4This concept will be considered in greater detail in Section 5.3.2.
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of the polarization measured in the experiments of Ono et al. [8] was negative –

more density of states of spin down character at the Fermi energy – a result that was

different from the measurements of Meservey and Tedrow [5, 9], who measured pos-

itive tunneling polarization. We will discuss this measurement later in the context

of our experiments.

The four techniques discussed above measure different aspects of polarization.

The measurements that we will discuss in this chapter borrow on the ideas from

some of the experiments discussed above, in particular the experiments of Meservey

and Tedrow [5], and Ono et al. [8]. I want to emphasize that our experiments are

different since they allow the determination of two different measures of polarization

in the same device, and with greater accuracy than the work by Ono et al. [8]. Next

we consider briefly the device fabrication and the experimental details.

5.2 Device fabrication and measurement

The fabrication procedure for the devices is the same as described in Section 2.4.

However, we will describe it here briefly for the sake of completeness. Figure 5.3

shows the schematic of the device used in these experiments. All the devices mea-

sured in this project are two terminal devices (without a gate electrode). The

fabrication process starts with a series of steps to create a freely suspended silicon

nitride membrane, followed by e-beam lithography and reactive ion etching to create

a 5-10 nm hole in the nitride membrane (this is described in detail in Section 2.4.1).

Fabrication of the nano-hole is followed by deposition of electrodes in an evaporator

with a base pressure of low 10−7 Torr. The samples are attached to a stage which

can be rotated in situ. The first electrode is fabricated by depositing 1500 Å of

aluminum at a rate of 5− 9 Å/s on the side with the bowl shaped hole. Following
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Figure 5.3: Device schematic with the non-magnetic electrode (indicated by N), and
the ferromagnetic electrode (indicated by F).
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this, the first tunnel barrier for the two terminal device is fabricated by oxidizing

the sample with 50 mTorr of O2 for 3 minutes. The next step is to deposit the

nanoparticles by evaporating 20 Å of aluminum, and oxidizing it – in the same way

as described for the first tunnel barrier – to form the second barrier. The last step

involves fabrication of the ferromagnetic electrode by depositing 800 Å of either

cobalt or nickel. After the completion of the fabrication, the devices are measured

at 4.2 K to select the good ones (as described in Section 2.5.1), following which, the

good devices are cooled in the dilution refrigerator.

The samples are measured using a similar setup as described in Section 2.5.1.

Figure 5.4(a) shows the schematic of the circuit used for the four probe measure-

ments. The stripline filters described in Appendix A are used for all the measure-

ments and the difference in the electronic temperature is seen in the narrow width

of the Fermi function (as shown in Figure 5.4(b)). This reduced width, and con-

sequently reduced electronic temperature (∼ 40 mK), is to be compared with the

data shown in the previous chapter (∼ 90 mK).

5.3 Density of states polarization

One of the consequences of applying a magnetic field to a magnet is that its chemical

potential changes due to the unequal density of states for spin-up and spin-down

electrons. Measuring this chemical potential shift can ideally provide information

about the density of states at the Fermi energy [8]. In this section we will see how

this change in the chemical potential affects our experiments.
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Figure 5.4: a) Circuit used for the four probe measurements. b) Current vs. volt-
age plot together with the differential conductance vs. voltage. The peak width
corresponds to an electron temperature of ∼ 40 mK.
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5.3.1 Background

The origin of the change in the chemical potential of the system as a function of

magnetic field can be understood by asking the question: what happens to the

distribution of spins as a function of magnetic field? For starters, let us consider a

very simple model [8], and later we will see how this model is improved by Allan

MacDonald [16]. The inherent assumption, in the simple model, is that there are

two collinear spin bands. At zero magnetic field the Fermi energy of the spin-up

band (majority spins) and spin-down band (minority spins) are aligned since the

two bands are in thermodynamic equilibrium (as shown in Figure 5.5(a)). However,

as a magnetic field is applied, the energy of states in the two bands will shift in

opposite directions on account of the Zeeman energy, as shown in Figure 5.5(b).

Eventually the electrons will equilibrate by having some spin-down electrons flip to

spin-up. Because of the different densities of states at the Fermi level for spin-up and

spin-down electrons, the chemical potential of the system changes by an amount,

∆µ = −1
2
gµBH

(D↑(EF )−D↓(EF ))

(D↑(EF ) +D↓(EF ))
, (5.5)

where ∆µ is the change in the chemical potential, g the g-factor for the ferromagnet,

µB is the Bohr magneton,H is the applied magnetic field, andD↑,↓(EF ) is the density

of states for the spin-up, ↑, and spin-down, ↓, bands respectively. This change in

chemical potential can be rewritten in terms of the polarization of the density of

states (PDOS) as,

∆µ = −1
2
gµBHPDOS, (5.6)

where,

PDOS =
D↑(EF )−D↓(EF )

D↑(EF ) +D↓(EF )
. (5.7)
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Figure 5.5: a) Cartoon showing the density of states for a ferromagnet using the
two spin bands. b) Shift in the energy of the states due to a non-zero magnetic
field assuming that the electrons are momentarily frozen in their previous states.
The black dotted line indicates the position of the Fermi energy before the magnetic
field is applied. c) Thermalization of the electrons leads to transfer of spins from
the spin-down band to the spin-up band. A “thinner” slice of spin-down states is
needed to fill up a “thicker” slice of spin-up states due to unequal density of states at
the Fermi energy. The black dashed line indicates the position of the Fermi energy
after the application of the magnetic field and the white dashed line indicates the
position of the Fermi energy before the magnetic field is applied.
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It should be pointed out that this change in chemical potential does not take ex-

change into account. A different and more rigorous approach to defining the chemical

potential change has been followed by Allan MacDonald [16]. In his approach the

exchange interaction has been taken into account. He calculates,

∆µ =
1

2
gµBH

(D↑(EF ))
−1 − (D↓(EF ))

−1

(D↑(EF ))−1 + (D↓(EF ))−1 − 4I
. (5.8)

We can rewrite this equation in a form similar to Equation 5.6 as

∆µ = −1
2
gµBHPµ, (5.9)

where,

Pµ =
(D↑(EF )−D↓(EF ))

(D↑(EF ) +D↓(EF )− 4 I D↑(EF ) D↓(EF ))
. (5.10)

Here the only new parameter is the exchange integral I, a phenomenological material

property which is characteristic of the ferromagnet. We can now rewrite Pµ in terms

of PDOS in the following manner

Pµ =
PDOS

1− 2IDHM
, (5.11)

where (DHM )−1 = (D−1
↓ + D−1

↑ )/2. The denominator in the above expression has

the form of a Stoner factor. The effect of this factor is that |PDOS| < |Pµ| when I

is positive. As a result ideally measuring the change in chemical potential allows us

to probe thermodynamic quantities related to the magnetic system.

Now consider the case that a single electron transistor (SET) has a ferromag-

netic lead and the SET is part of a measurement circuit, like the one shown in

Figure 5.4(a). The net result of the presence of a magnetic electrode is that the

electrochemical potential of the ferromagnetic electrode (µF ) will depend linearly

as a function of both the bias voltage (Vbias) and the magnetic field. Figure 5.6(a)

shows the position of the Fermi levels of the right and the left lead together with
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Figure 5.6: a) Schematic diagram showing the position of Fermi energies for the
two leads and the position of the first threshold for tunneling to begin. CN and CF

are the capacitances associated with the two tunnel barriers; with CΣ = CN + CF .
All the energies are measured with respect to the position of Fermi energy of the
lead at zero bias (Vbias = 0). b) Linear superposition of two energy level diagrams
equivalent to the diagram shown in (a). c) The net effect of ∆µ is to shift the energy
level spectrum within the nanoparticle, just like the effect of a gate voltage. Here
V is the voltage measured by the voltage amplifier in the four probe setup.
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the first level for the threshold tunneling step. It should be emphasized that the

voltage measured by the voltage amplifier is not Vbias, but V = Vbias +
∆µ

e
.5 Fig-

ure 5.6(b) shows the position of various levels as a linear combination of the two

positions shown. This can be done since all the effects are linear to the leading

order. The advantage of this linear superposition being that now all the energies

are shown as a function of an experimentally measured quantities, V and ∆µ. It is

only the relative shift between the Fermi energy of the leads and the energy level

within the nanoparticle that is important. It is immaterial whether the energy levels

move towards the Fermi levels or vice versa. Consequently, one can view the result

of the shift of the chemical potential in the magnet as effectively shifting of the

energy levels within the dot by an amount −∆µCF

CN+CF
; this can be schematically seen in

Figure 5.6(c). The advantage of this approach is that we can now view the change

in chemical potential of the ferromagnetic lead as a function of the magnetic field as

an “effective” gate voltage proportional to ∆µ.6 Using such an approach allows us

to account consistently for the effect of the magnetic field in a variety of scenarios.

In addition to the change in chemical potential due to the magnetic field there

is another effect of the magnetic field – Zeeman splitting of the energy levels within

the nanoparticle – which is due to the lifting of the degeneracy between the spin-up

and spin-down states in the quantum dot. Now we have two linear effects of the

magnetic field: the Zeeman effect, and the shifting of the all energy levels due to the

magnetic lead (this is illustrated in the energy diagram shown in Figure 5.7(a)). The

net effect is that the splitting of the spin-up and spin-down states, as a function of

the magnetic field, is asymmetric, as can be seen clearly in Figure 5.7(b). The degree

5Note the symbol V used in this chapter has a different meaning. In this chapter it takes
into account the effect of the bias voltage, as well as the change in the chemical potential of the
electrode due to the magnetic field. In experiments with non-magnetic electrodes it has the same
connotation as bias voltage.

6This effective gate-like effect does not need a physical gate to be present.
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Figure 5.7: a) Energy-level diagram showing two effects of magnetic field: Zeeman
splitting and the effect of the chemical potential shift for the ferromagnetic lead. F
and N indicate the ferromagnetic and normal electrodes respectively. CN and CF

are the capacitances associated with the normal and ferromagnetic electrode, and
CΣ is the sum of the two capacitances. The Zeeman energy is EZ = −gdµB~s · ~H,
where ~s is the spin of the electron and ~H is the magnetic field, and gd is the g-factor
associated with an energy level in the quantum dot. b) Cartoon for the evolution of
the spin-split energy levels as a function of magnetic field. The asymmetric splitting
is a consequence of the magnetic lead.
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of the asymmetry is directly proportional to the electrochemical potential shift of

the ferromagnet. It is important to note that there is an inherent assumption in

taking the algebraic difference of the energies of the spin-up and spin-down levels,

namely that the g-factors (gd) for the spin-up and spin-down states are the same. I

think that this assumption is justified since the g-factor is same for one orbital state.

We find that the apparent g-factors of the spin states can change in the ranges of

magnetic field where one state undergoes an avoided crossing with a neighboring

state. In regions away from the avoided crossings we can calculate ∆µ reliably.

Until this point our analysis assumes that the change in the chemical potential

is the only effect that leads to the observed asymmetry. However, as it will become

clear in the next section, there are other effects that contribute to the observed

asymmetry in the splitting of spin-up and spin-down levels. As a result, the quantity

we measure is not PDOS. In order to compare the experiments with Equation 5.6,

we express the experimentally determined change in chemical potential as,

∆µ = −1
2
gµBHΠ. (5.12)

Here Π reflects the experimentally measured shift in the chemical potential of the

ferromagnetic lead relative to the energy levels in the nanoparticle. We will discuss

the experimental results in terms of the quantity Π which is a dimensionless measure

of the asymmetric Zeeman splitting of the energy levels. So far Π does not have a

physical significance, and it has been used to parameterize experiments.

Having discussed the physics behind our experimental measurements we consider

the data next.
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5.3.2 Measuring the change in chemical potential

Figure 5.8(a) shows the evolution of energy levels as a function of the magnetic field

for a device with an aluminum nanoparticle contacted by one aluminum lead and one

cobalt lead. The asymmetry in the spin-split states is evident. From the differential

conductance plot near zero field we can find out that the threshold transition is

a tunneling in transition, meaning that the electron tunnels onto the nanoparticle

before it tunnels off. Determining the exact type of transition is impossible to

determine in a two terminal device with drain-source electrodes fabricated from the

same material. However we can determine the type of transition in this case, where

we have one lead fabricated using aluminum (a superconductor) and the other using

cobalt. This can be done either by looking for shifts in the position of peaks due to

the superconducting gap, or by looking at the shape of the conductance peaks for

either sign of bias voltage, or both. Details regarding this can be found in Chuck

Black’s thesis [17].

Once the type of transition is determined we can easily visualize various transi-

tions using the energy diagram shown in Figure 5.8(b) and (c). Using these diagrams

we can write down the following equation for the slope of lines tracing the position

of peaks for positive V ,

dV±
dH

=
CΣ

CN

(

−± 1
2
gdµBH −

CF

CΣ

∆µ

)

,

= ∓1
2
gdµBH

CΣ

CN

− CF

CN

∆µ, (5.13)

where ± corresponds to spin-up and spin-down states respectively, gd is the g-factor

associated with a particular energy level, H is the magnitude of the magnetic field,

and µB is the Bohr magneton. Using a similar idea we can write down the expected
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Figure 5.8: a) Colorscale conductance plot of a device – with one lead fabricated
from cobalt– as a function of the magnetic field. Conductance peaks marked P1, P2,
P3 and P4 split into two peaks corresponding to spin-up and spin-down states. The
asymmetry in the splitting is clearly seen. The dashed line marks the position of the
spin-split pair in P4. Conductance peaks P2 (P1) and P3 (P4) are due to tunneling
via the same orbital level, but for different signs of V = Vbias + ∆µ. The sample
shown here has some glitches because of the charging of a neighboring island. This,
however, does not affect the physics under discussion. b) Energy level diagram
for the first threshold for negative V . The threshold event being the tunneling

in of an electron (n0 → n0 + 1, n0 is even), marked by a black arrow, followed by
various transitions marked by grey arrows which indicate all the subsequent possible
transitions. This set of transitions gives rise to the spin-split peaks P2. c) Energy
level diagram for the threshold event for positive V . This gives rise to the spin-split
peaks P3.
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slopes for negative V ,

dV±
dH

= −CΣ

CF

(

−± 1
2
gdµBH −

CF

CΣ

∆µ

)

,

= ±1
2
gdµBH

CΣ

CF

+∆µ. (5.14)

In Equation 5.14 we see that the average of the slopes directly gives bare ∆µ –

with no device specific parameters – together with the appropriate sign.7 Using

Equations 5.13 and 5.14 we can calculate ∆µ for this particular sample by using

the slopes of pairs of energy levels as a function of the magnetic field. Table 5.1

shows the calculated values of ∆µ/H, Π and gd, as defined by Equations 5.13, 5.14

and 5.12, for the pairs of energy levels indicated in Figure 5.8(a). The average

value of Π for this sample is -0.37± 0.05, where the standard deviation is the same

as the typical error associated with the measurement of Π from each of the levels.

We performed similar measurements on two more devices with one cobalt electrode

where we measure the Π to be −0.7± 0.1 and −0.1± 0.1.

Similar experiments were done for devices with one of the leads fabricated using

nickel. The results of tunneling spectroscopy as a function of magnetic field are

shown in Figures 5.9(a) and 5.10(a). One can notice clearly the asymmetry due

to the chemical potential shift. For this particular device, the threshold transitions

are associated with the tunneling off of an electron from the nanoparticle(n0 →

n0−1, where n0 is even8). The energy level diagram for such transitions is shown in

Figures 5.9(b) and 5.10(b). Using the ideas discussed earlier we can write down the

expected slopes of energy levels as a function of magnetic field for this case. For a

7I want to emphasize that the sign of ∆µ is not imposed but is calculated from the measurement.
We do not make any a priori assumption about the band-structure of the ferromagnet.

8The parity of the quantum dot can be determined by checking if the first energy level – after
the Coulomb blockade is overcome – splits into two energy levels or not. If a splitting is observed,
then the quantum dot has even parity, and if the energy level just shifts to higher bias voltages
without exhibiting any Zeeman splitting, then in that case the parity is odd [17].
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Table 5.1: ∆µ/H, Π, and gd calculated for cobalt using four different pairs of energy
levels shown in Figure 5.8(a).

Pair number ∆µ

H
(eV T−1) Π gd

P1 (2.14± 0.06) × 10−5 −0.37± 0.01 2.05± 0.06

P2 (1.97± 0.06) × 10−5 −0.34± 0.01 1.99± 0.06

P3 (2.13± 0.13) × 10−5 −0.37± 0.02 1.98± 0.07

P4 (2.30± 0.14) × 10−5 −0.40± 0.02 2.04± 0.07
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positive bias we can write the expression for the slopes of energy levels as a function

of magnetic field as

dV±
dH

= −CΣ

CF

(

−± 1
2
gdµBH −

CF

CΣ

∆µ

)

,

= ±1
2
gdµBH

CΣ

CF

+∆µ. (5.15)

Similarly the slopes for the negative bias can be written as

dV±
dH

=
CΣ

CN

(

−± 1
2
gdµBH −

CF

CΣ

∆µ

)

,

= ∓1
2
gdµBH

CΣ

CN

− CF

CN

∆µ. (5.16)

Using these equations together with Equations 5.12, 5.15 and 5.16 we can calculate Π

for Ni using the seven energy levels marked in Figures 5.9(a) and 5.10(a). Calculated

values are tabulated in Table 5.2. Using the slopes of pairs of Zeeman-split energy

levels we calculate Π = −0.45 ± 0.05 for this nickel sample. We also measured

two more samples with nickel electrode, and calculated Π to be −0.15 ± 0.1 and

−0.2± 0.1.

Notice that the sign of Π is negative; the same sign for Π was also measured by

Ono et al. [8] using a SET9 with ferromagnetic leads. A negative sign implies that

there are more states corresponding to the minority spins at the Fermi energy, as

one would expect for a typical ferromagnet as shown in Figure 5.1.

The observation of differences in the magnitude of Π between samples made from

the same material is surprising since, from all the arguments we have discussed so

far [8, 16], one would expect the value of Π to be a bulk property of a ferromag-

netic material, so that it would not change from sample to sample. We think that

9In their measurements Ono et al. used the charging energy of the SET instead of the discrete
energy levels of the quantum dot. The charging energy of their devices was comparable to the
change in chemical potential of the ferromagnetic lead as a function of the magnetic field. As a
result they could observe Coulomb oscillations as a function of magnetic field; this allowed them
to measure the quantity we refer to as Π.
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Figure 5.9: a) Colorscale conductance plot of a device – with one lead fabricated
from nickel– as a function of the magnetic field. The dashed line marks the position
of a spin-split pair. b) Energy level diagram for the first threshold for negative V .
The threshold event being the tunneling off of an electron (n0 → n0 − 1, where n0
is even), marked by black arrow, followed by various transitions marked by grey
arrows.
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this sample to sample variation is due to the rearrangement of the charges at the

ferromagnet-tunnel barrier interface. Ono et al. had also measured similar variation

in their measurements, however, they attributed this to the uncertainty in measuring

the charging energy for their SETs. We will consider the possible consequences of

charge rearrangements a little later in greater detail (Section 5.3.3). The rearrange-

ment of charges as a function of magnetic field has not been considered previously,

and has important consequences for understanding operation of magnetic devices

with multiple tunnel junctions.

In the next section we compare the values of Π that we measure and the numbers

we would expect from the theory.

5.3.3 Comparison of measurements and theory

There are two aspects of the our measured values of Π – for both Ni and Co – that

need a closer look: 1) the magnitude of Π, and 2) the variation in magnitude from

sample-to sample.

Let us first consider the magnitude of Π. Our measured numbers Π = −0.37 ±

0.05, −0.7±0.1, −0.1±0.1 for Co and Π = −0.45±0.05,−0.15±0.1,−0.2±0.1 for Ni

are generally lower in magnitude than the numbers from band structure calculations

[21], which find PDOS = −0.60 for Co and PDOS = −0.80 for Ni. This difference

between the measured values of Π and PDOS is further enlarged if one takes into

account the exchange interactions in the ferromagnet – an approach followed by

Allan MacDonald [16].

Dan Ralph proposed that the explanation for both the sample-to-sample varia-

tion in the measured values of Π and also the smaller than expected values is that a

magnetic field may produce rearrangements in the charge distribution inside a mag-
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Figure 5.10: a) Colorscale conductance plot of a device – with one lead fabricated
from nickel– as a function of the magnetic field. b) Energy level diagram for the first
threshold for positive V . The threshold event being the tunneling off of an electron,
marked by black arrow, followed by various transitions marked by grey arrows.
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Table 5.2: ∆µ/H, Π and gd calculated for nickel using seven different pairs of energy
levels shown in Figures 5.9(a) and 5.10(a).

Pair number ∆µ

H
(eV T−1) Π gd

P1 (2.64± 0.08) × 10−5 −0.46± 0.01 1.87± 0.06

P2 (2.85± 0.16) × 10−5 −0.49± 0.03 1.83± 0.05

P3 (2.36± 0.14) × 10−5 −0.41± 0.02 1.84± 0.05

P4 (2.21± 0.14) × 10−5 −0.38± 0.02 1.83± 0.05

P5 (2.80± 0.20) × 10−5 −0.48± 0.04 1.86± 0.06

P6 (2.66± 0.10) × 10−5 −0.46± 0.02 1.89± 0.06

P7 (2.64± 0.10) × 10−5 −0.46± 0.02 1.90± 0.07
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netic tunnel junction that will produce an additional change in the energy levels of

the nanoparticle as a function of H, with different strengths in each device. Such

an effect is reasonable within the same picture of wavefunctions that explains why

the tunneling polarization is positive while the overall density-of-states polarization

at the Fermi level is negative. The predominantly d-band character of the minority

electrons in Co or Ni causes their wavefunctions to decay over a short distance as

they penetrate into the tunnel barrier. The majority electrons, with predominantly

sp-band character, will have longer decay lengths [24, 25]. Therefore, as an applied

magnetic field transfers electrons from minority to majority states, some charge

density at the surface of the magnet may shift slightly into the barrier region [20].

Spin-dependent surface states could produce the same effect. This charge move-

ment has the right sign to explain our results, in that it will generally increase the

measured values of Π for Ni and Co electrodes.10 We can estimate the magnitude

of the effect of surface charge by calculating the work that the moving charge den-

sity does on an electron in the nanoparticle. Within a simple picture that ignores

the contribution of exchange interactions to the electrochemical potential shift in

the ferromagnet [16], and making a rough approximation that the spin-dependent

densities at the magnet’s surface are similar to the bulk, the charge density per unit

area – which changes spin – at the last monolayer of the magnet is

σ ≈ eagµBµ0H
ρ↑ρ↓

(ρ↑ + ρ↓)
, (5.17)

where a is the lattice constant, ρ↑ and ρ↓ are the densities of state at Fermi energy for

spin-up and spin-down electrons. If the average position for charges in the minority

and majority states differs by ∆x at the surface layer of the magnet, then the work

done by charge movement should lead to a change in the value of the measured

10The rearrangement of charges due magnetic field will tend to decrease the magnitude of |Π|.
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electrochemical shift

∆Π ≈ −e2
ε0

ga(∆x)
ρ↑ρ↓

ρ↑ + ρ↓
(5.18)

≈ −12∆x/Å (5.19)

for either a Co or Ni electrode. Variations in the average value of ∆x by less than

0.05 Å are, therefore, sufficient to explain the sample-to-sample differences that we

observe.

Next we consider how we can probe the polarization of tunneling electrons in

our experiments.

5.4 Tunneling polarization

Tunneling polarization measures the relative spin asymmetry in the electrons that

tunnel from a ferromagnet, and it is the relevant quantity for all devices based

on tunnel magnetoresistance (TMR) effect [11]. The tunneling polarization can be

defined as

Ptunnel =
γ↑ − γ↓
γ↑ + γ↓

. (5.20)

Here γ↑ and γ↓ are the tunneling rates for the spin-up and spin-down electrons

respectively. We can measure tunneling polarization when our devices are in the

regime where only one spin degenerate energy level is involved in the current trans-

port.11 This could be done easily if one has the transistor geometry with one lead

fabricated from a ferromagnet.12 However, even after several attempts, I was unable

to measure such a device with a working gate. Fortunately, I was able to measure

11Theoretically one could measure this quantity with many energy levels involved in the current
transport. However, solving the rate equations for these situations is very difficult.
12In Section 4.2 we discuss the data where the gate electrode is used to tune current flow via

one energy level. Those devices were fabricated using aluminum for all the electrodes and the
nanoparticle.
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a device with a very small blockade voltage where the current flows via only one

energy level. I will discuss the measurements done with that one sample.

5.4.1 Measuring the current via a single spin-degenerate en-

ergy level

Figure 5.8 shows the colorscale conductance plot for a device with one lead fabricated

using cobalt. We have already analyzed the asymmetric splitting of the spin-up and

spin-down levels in this device. One aspect of data that we have not used yet is

the magnitude of the current, and this allows us to measure the polarization of the

tunnel current.Figure 5.4(b) shows the current steps and the conductance peaks

corresponding to the pairs of spin-split levels P2 and P3. Measuring the height of

current steps allows us to calculate all the tunneling rates, and the tunneling rates

can then be used to calculate Ptunnel.

Note that the rate of tunneling onto a discrete energy level can be estimated

using Fermi’s Golden rule [22, 23] and is simply

γ =
4π

h̄
ρl|T |2, (5.21)

where ρl is the density of states for the leads from which the electron is tunneling,

and T is the tunneling matrix element for the lead-energy level system. So, the

quantity we measure is not simply the density of states polarization but the tunneling

polarization which takes into account the relevant matrix elements.

Figure 5.11 shows the current through the device as a function of V (the voltage

measured across the device). Consider first the current for positive bias. As V is

gradually increased, the first energy level that allows current to flow is the spin-up

level, followed by the spin-down level. For positive V electrons tunnel from the



147

-0.5 0.0 0.5

-100

-50

0

50

100

150

C
ur

re
nt

 (p
A

)

Voltage (mV)

I++

I+

I- I--

Figure 5.11: Plot of current as a function of the voltage V . The four different steps
(I++, I+, I− and I−−) corresponds to the threshold of tunneling via the spin-split
energy levels.



148

I+ I++

I-I--

N

F F

F F

N N

N
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sequent transitions.
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ferromagnet onto the nanoparticle and then onto the aluminum electrode. The two

steps, I+ and I++, in the current for positive V correspond to these two thresholds.

This can be seen in the energy diagrams shown in Figure 5.12. Similar steps in the

current can be seen for negative V , but now the electrons tunnel from the aluminum

electrode onto the nanoparticle and then off it.

Using the rate equation approach developed in Chapter 3, we can calculate

the current for these four current steps in terms of three tunneling rates: γ↑, the

tunneling rate for spin-up electrons into or from the ferromagnetic lead, γ↓, the

tunneling rate for spin-down electron into or from the ferromagnet, and γ0 the

tunneling rate for electrons, of either kind, into or from the non-magnetic electrode.

The tunneling rates associated with spin-split levels are shown in Figure 5.13. We

can then write down the current for the four steps:

I++ = e
γ0(γ↑ + γ↓)

γ0 + γ↑ + γ↓
,

I+ = e
γ0γ↑

γ0 + γ↑
,

I− = −e γ0γ↑
γ0 + γ↑

, (5.22)

I−− = −e 2γ0γ↑γ↓
γ↑γ↓ + γ0γ↑ + γ0γ↓

.

Note that the magnitude of the current for the current steps I− and I+ is the same,

because single electron tunneling occurs via the same single non-spin-degenerate

level in these cases. As a result, the system of Equations 5.22 reduces to a system

with three unknowns and three equations which can be solved to get the values of

three variables γ0, γ↑ and γ↓ from the measured values of I+, I++, and I−−. We

then calculate the tunneling polarization using Equation 5.20. We have calculated

the tunnel polarization as a function of magnetic field, and for that we used I-V

curves, like the one shown in Figure 5.11, at different strengths of magnetic field.



150

F N
γ↑


γ↓

γ0

γ0

Figure 5.13: Energy level diagram showing the spin-split levels and the tunneling
rates associated with each of them. F denotes the ferromagnetic electrode and N
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Figure 5.14(a) shows tunneling rates associated with our device, and Figure 5.14(b)

shows the polarization as a function of the magnetic field. The first notable aspect

of this measurement is that we can determine the sign of polarization as well as the

magnitude, and we find the polarization to be positive, which means that the rate of

tunneling for spin-up electrons is larger than that of spin-down electrons. Meservey

and Tedrow measured the tunnel polarization of cobalt to be positive as well. Π

measured for this sample (as discussed in Section 5.3.2) is found to be negative.

The tunnel-polarization and Π are different quantities. As mentioned earlier,

the tunneling polarization measures the asymmetry in the tunneling rates for the

two spins. Equation 5.21 points to the crucial role played by the matrix element for

tunneling between the nanoparticle and the lead. Theoretical calculations indicate

that s-electrons are primarily involved in the tunneling [10], whereas it is the d -

electrons, which contribute predominantly to the density of states at the Fermi

energy, whose probability density decays rapidly [24, 25]. The s-electrons have a

density of states very similar to that shown in the cartoon in Figure 5.2, and the

majority spin electrons have larger density of states at the Fermi energy, which

results in a positive polarization.

Now we turn to the magnitude and magnetic field dependence of Ptunnel. The

magnitude we measure is smaller than measurements done by Meservey and Tedrow,

who found Ptunnel for cobalt to be +35± 3%. This is, however, not very surprising

since the conditions for the fabrication of the tunnel barrier are very crucial in

determining what Ptunnel is measured. In their initial measurements Meservey and

Tedrow also observed lower values of polarization which they attributed to the “bad”

quality tunnel barriers. It is evident from the definition of tunnel polarization that

the role of tunnel barrier is a crucial one. The difference between our measurement
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and other measurements is probably due to the different properties (for example

oxidation conditions [26] or the thickness) of the tunnel barrier. The magnetic field

dependence that we observe is something that others have not observed in the past.

The exact mechanism for the increase in the polarization is not clear, but its origin

must be related to the modification of the magnetic properties at the surface of

the electrode rather than the bulk. The magnetic properties of a bulk ferromagnet

should not vary over the energy range corresponding to the magnetic field within

which we observe the variation in tunnel polarization.

5.4.2 Current flow via excited states

We can also measure the tunnel polarization using the excited states of the device. It

becomes increasingly complicated to calculate tunnel polarization from the excited

states, however, in this case we can use the rate-equation approach to calculate

polarization using the first excited state. The asymmetry of the tunneling rates

can be observed qualitatively by looking at the conductance plot. Figure 5.8(a)

shows the colorscale conductance plot for the device with cobalt leads. We have

discussed the physics associated with the spin-split levels P2 and P3. Note that the

peak P1 also undergoes Zeeman splitting, but with one resonance giving positive

conductance and the other negative. This can be clearly seen in Figure 5.15, where

the peak corresponding to spin-down level in P1 has a negative dip. In itself a

negative differential conductance is not surprising. It can arise from a variation

in the tunneling rates for different energy levels. For instance, if an excited-state

tunneling threshold has a smaller rate of tunneling compared to the low-energy

tunneling states, the current through the device may decrease since the system may

get stuck in the excited state. This is a qualitative picture, but it depends on the
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Figure 5.15: Differential conductance plotted as a function of the measured voltage.
The inset shows a zoomed in view of peak P1 with the spin-split peaks having
positive and negative amplitudes.
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tunneling-in and tunneling-out rates. What is noteworthy about the data shown in

Figure 5.15 is that the spin-split peak corresponding to the spin-down level has a

negative weight. We saw in Section 3.2.4 how the weight of spin-split peaks can vary

depending on the ratio of tunneling rates, but the negative peak for just the spin-

down states is not possible within a model where the tunneling rates are the same

for both spins. A negative conductance peak for a spin-split peak can occur only

when the tunneling rates for the two types of spins are different, as is the case for

this device geometry. This is a clear signature of polarized current flowing through

the device. We have used the rate-equation formalism again for this second level to

calculate the tunneling polarization. We find the polarization to be ∼ +0.15± 0.05.

5.5 Conclusions

The experiments in this chapter emphasize that tunneling spectroscopy can be used

not only to probe energy level spectrum of a nanoparticle, but it can also be used

to probe the bulk electrode. The measurement of the electrochemical potential, as

a function of the magnetic field, suggest that the density of states at the Fermi

energy for the minority spin (spin-down) is greater than that of majority spin. At

the same time, the sample-to-sample variation suggests that charge rearrangement

as a function of magnetic field should be taken into account, especially since Ono

et al. [8] also observed such a variation, but they attributed it to the uncertainty

in the charging energy. As far as the tunneling polarization measurements are

concerned, the positive sign of polarization is in agreement with the measurements

of Meservey and Tedrow [5]. What is different is the magnitude, and its variation

with magnetic field. The origin of the variation in the magnitude of the tunnel
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polarization is unclear. It should be emphasized that our measurements differ from

other tunneling polarization measurements in that our measurements probe the

polarization very locally, whereas other measurements are over a larger area.
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Chapter 6

Tunneling spectroscopy of

ferromagnetic nanoparticles

We saw in the previous chapter (Chapter 5) that several experiments have been

used to characterize the spin polarization near the Fermi level in bulk ferromagnets

[1, 2, 3, 4, 5], but different techniques give different results. Part of the difficulty is

that these experiments measure different physical quantities; in essence they average

over large numbers of states in determining the spin polarization, and different

types of experiments effectively take differently weighted averages. As a result, it

has been difficult to reach an adequate understanding of electronic states within

ferromagnetic devices. In this chapter we follow a different approach to probing

ferromagnets compared to the one followed in the previous chapter. Here, we will

probe the electrons-in-a-box states within a ferromagnetic nanoparticle. This is in

contrast to measurements in the previous chapter, where we used the well resolved

electrons-in-a-box states, in a non-magnetic nanoparticle, to probe the properties of

a bulk ferromagnet. The primary motivation for the current experiments is to better

understand interactions within a ferromagnet. We saw in Chapter 4 how tunneling

159
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spectroscopy allows us to probe the electronic interactions within the aluminum

nanoparticle, in a unique way. In the present experiment we use this technique to

probe magnetism at the nanometer scale. Most of the contents of this chapter have

been adapted from a paper we wrote based on our experimental results [6].

Sophie Guéron started the measurements [7] involving the tunneling spectroscopy

of ferromagnetic nanoparticles. These measurements helped motivate new descrip-

tions of ferromagnetism that go beyond mean-field Stoner models [8, 9]. However,

the first experiments left many open questions, particularly concerning the proper

description of anisotropy energies, and whether the tunneling spectrum reflects the

true electronic density of states or whether it is modified by non-equilibrium effects.

The experiments described in this chapter improve upon earlier measurements done

by Sophie Guéron. Prominent improvements being: fabrication of low noise tunnel

barriers, a better data acquisition system,1 and fabrication of devices with a gate

electrode. These improvements have allowed observation of the energy levels with

greater detail, allowing us to make comparisons with the existing models [8, 9].

The experimental procedure is similar to that discussed in previous chapters,

but with significant modifications. In the next section we describe the fabrication

procedure.

6.1 Sample fabrication

Devices measured in the current experiment contain a Co nanoparticle, separated

from aluminum electrodes by aluminum oxide tunnel barriers, inside a tunnel junc-

tion with a nano-scale area small enough to allow individual particles to be con-

tacted. (See device schematic, Figure 6.1.) The fabrication starts by making a

1Thanks to the efforts of Abhay Pasupathy and Edgar Bonet.
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nano-hole in a silicon nitride membrane using a series of steps including e-beam

lithography and reactive ion etching (details described in Chapter 2). The gated

device is fabricated by depositing 18.5 nm of Al to make the gate electrode on the

lower side of the device as shown in Figure 6.1, and then isolating this gate by

anodizing in an oxygen plasma to 3.5 V bias and depositing 8.5 nm of SiOx. This

is followed by depositing the first electrode by evaporating 150 nm of aluminum

in the bowl-shaped hole, and oxidizing it at 50 mTorr for 3 minutes to form the

first tunnel barrier. Nanoparticles are fabricated by depositing 0.5 nm of Co at

room temperature, which makes particles – due to surface tension – in the range

of 1−4 nm diameter. After this, 1.1 nm of aluminum oxide is deposited using e-

beam evaporation to form the second tunnel barrier. The final step involves the

deposition of a second aluminum electrode. For the case of non-gated devices, the

procedure is similar to the one described here, with the omission of the gate fab-

rication steps. Details of the fabrication process are described in Chapter 2. The

important difference between the fabrication of devices that will be discussed in

this chapter and the ones described in Chapters 4 and 5 is that the second tunnel

barrier is fabricated differently. In the two previous chapters the nanoparticles were

made of aluminum, allowing us to fabricate the second tunnel barrier by oxidizing

the surface of nanoparticles. However, for the case of the cobalt nanoparticle this is

not feasible since oxidation leads to formation of cobalt oxide, an antiferromagnet,

which causes spin-flip scattering during the tunneling process. We would like to

avoid forming this for our experiments; since it is quite difficult to carry out the

analysis with the spin of the tunneling electron being an ill-defined quantity. As

a result, the second tunnel barrier is fabricated by depositing aluminum oxide di-
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Figure 6.1: Device schematic showing a device with a cobalt nanoparticle and two
non-magnetic leads.
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rectly.2 Following the fabrication, these devices are measured at 4.2 K to determine

if they exhibit Coulomb blockade, and if they do, they are cooled down in a dilution

refrigerator for detailed measurements (details described in Chapter 2).

6.2 Tunneling spectroscopy of a cobalt nanopar-

ticle

When cooled to dilution refrigerator temperatures, the tunneling conductance dI/dV

as a function of source-drain voltage V consists of individual peaks, as shown in

Figure 6.2, associated with transitions between discrete electronic states in the

nanoparticle. The V -spacings of resonances can be converted to energy, ∆E =

e∆V C2/(C1+C2), in this way correcting for capacitive division across the two junc-

tions. The capacitance ratio can be determined by comparing peak positions at

positive and negative V (see Chapter 2 and ref. [10]). Performing tunneling spec-

troscopy as a function of magnetic field allows us to probe a magnetic system in

a unique way. Features in different ranges of magnetic field allows us to isolate

the effect of different interactions within a magnetic system. First, we look at the

tunneling spectroscopy carried out in the low magnetic field range (∼ 1 T). Here,

magnetic anisotropy plays the dominant role.

6.2.1 Low-field magnetic field data

In Figure 6.3 (a) and (b), we plot the energies of tunneling resonances for a Co

nanoparticle in a non-gated device as a function of magnetic field, H. The ca-

2Sophie Guéron tried fabricating the second tunnel barrier by depositing aluminum over the
cobalt nanoparticle, and oxidizing it to form aluminum oxide. This method is risky since one can
end up partially oxidizing the aluminum, leaving multiple nanoparticles electrically connected to
each other.
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pacitance ratios used to convert the bias voltage into energy are C1/(C1 + C2) =

0.70± 0.04 and 0.57± 0.03 respectively for the data shown in Figure 6.3(a) and (b)

respectively. As H is swept from positive values toward zero, the levels first undergo

significant continuous shifts. The discontinuity near H =0 is an artifact of the Al

leads going superconducting and then being driven normal by a negative field. This

causes the resonance energies to jump by ∆, the superconducting gap [16], but the

energies of the states within the nanoparticle evolve continuously.

Near µ0Hsw = −0.120 T, for data shown in Figure 6.3(a), all the levels exhibit

another large discontinuity, which can be identified with magnetic switching of the

nanoparticle. If H is swept from negative to positive values, the field value for this

transition is hysteretic, and the conductance spectrum is identical to that shown, but

reflected about H=0. Similar hysteretic features were observed by Sophie Guéron

as well [7]. So, by measuring the differential conductance of the device as a function

of magnetic field we can probe the switching of a nanometer-scale magnet. This

technique is complementary to switching measurements done by Wernsdorfer et al.

using the SQUID microbridge techniques [17].3 The magnitude of the switching

field (Hsw) we measure is in good agreement with measurements of Wernsdorfer et

al. [17].

For the data shown in Figure 6.3(b), we observe continuous evolution of energy

levels as the magnetic field is swept from positive to negative values. The energy

levels in this device also exhibit the shift near 0 T due to the superconductivity of

the leads. However, as the field is increased to more negative values, we observe two

3Measurements performed by Wernsdorfer et al. [17] look at the ground state properties of a
magnetic system, whereas, in our experiments we can look at properties of a nanomagnet when it is
not necessarily in the ground state – this is likely to happen in systems when electrons are flowing
through it. The biggest advantage of their technique is the ability to characterize the switching
properties of a nanomagnet – made from insulating or itinerant ferromagnets – in unprecedented
detail. Our technique, in turn, allows to probe the magnetism of itinerant ferromagnets by changing
the number of electrons on the nanomagnet.
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Figure 6.2: Differential conductance plot for a device with cobalt nanoparticle and
non-magnetic leads.
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Figure 6.3: Colorscale differential conductance plot for two devices with a cobalt
nanoparticle and aluminum electrodes. (a) The maximum conductance is 3 × 10−9
Ω−1. The field is being swept from positive to negative direction. (b) The maximum
conductance is 1 × 10−7 Ω−1. The field is being swept from positive to negative
direction.
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tance is 8 × 10−8 Ω−1. The field is being swept from negative field direction to
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jumps in the energy levels at −0.14 T and −0.24 T – a behavior quite different from

the data shown in Figure 6.3(a) – followed by continuous evolution of energy levels.

We attribute one of the jumps to the magnetic switching of the nanoparticle via

which the current flows. The second jump could be due to the magnetic switching

of a neighboring nanoparticle which is coupled – via dipolar interactions – with

the nanoparticle that participates in current transport. We have also observed

complicated hysteretic features in other devices which suggest that the effect of

neighboring particles is not negligible near the switching field. One example of the

complex hysteretic features that we have measured is shown in Figure 6.4, which is

likely to be due to dipolar coupling between neighboring nanoparticles.4 As a result,

the jump seen in Figure 6.3(b) at −0.24 T could occur when the effective field felt

by the nanoparticle being probed changes as a result of a magnetic switching event

in a neighboring nanoparticle. Recently, there was a suggestion by Carlo Canali

and Allan MacDonald that these multiple switching events may be characteristic

features of switching in a single nanoparticle [18] subject to complex anisotropy

forces. This is an issue that needs further investigation.

Two other features that I want to point out are, firstly, the non-monotonic

evolution of energy levels as a function of magnetic field, and secondly, that all

energy levels evolve quite differently from each other, at times crossing each other

instead of exhibiting an avoided crossing. We will discuss these features again,

once we have developed a framework for a semiclassical model to understand the

experimental results.

At higher magnetic fields, the dominant contribution to the energy of the system

4The presence of neighboring nanoparticles is an undesirable feature of this technique. In our
group Jason Petta has lead the efforts to fabricate devices so that only one nanoparticle could be
attached to the leads using chemical means.
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is from the Zeeman energy, and this can be seen easily at magnetic fields greater

than ∼1 T. Next we consider the data from the higher magnetic field range.

6.2.2 High-field magnetic field data

As the magnetic field is increased beyond ∼ 1 T the energy levels eventually shift

in a monotonic manner. The high magnetic field data in these samples differs

significantly from the data for non-magnetic samples. Here we observe an absence

of Zeeman splitting between the spin-up and spin-down electronic states, which was

observed for non-magnetic samples, and we observe that all the energy levels have

almost the same sign of slope. The absence of Zeeman splitting is something that

is expected since there is no degeneracy between the spin-up and spin-down states

for a ferromagnet. However, the similar sign of slopes for most of the energy levels,5

is difficult to reconcile with the simple picture of a ferromagnet which has both up

and down spins near the Fermi level, albeit in different numbers. At larger values

of |H| (Figure 6.5(a) and (b)), all energy levels in a device move up (Figure 6.5(a)),

or move down (Figure 6.5(b)) in energy, with slopes that correspond to effective

g-factors ranging from 0.06 to 1.1. The fact that the g-factors are reduced below 2

indicates that the resonances are not purely spin-up or spin-down, but are mixed

by spin-orbit scattering [19].

Another interesting aspect of the data is the observed density of states. We find

the average level spacing to be about 0.2 meV in all of our samples.6 The range

of particle sizes in a typical device can be estimated by imaging7 (using a scanning

5One energy level in each of the two samples for which we show data in Figure 6.5 seems to
have almost zero slope.

6We measured 9 devices from which we could determine level spacing. This number includes
measurements done by Sophie Guéron.

7Measuring the size of the nanoparticle in a particular device is impossible, at least for this
technique. In the case of aluminum nanoparticles, it was possible to estimate the size of nanopar-
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Figure 6.5: Colorscale differential conductance plot for two devices for higher field
compared to the data shown in Figure 6.3(a) and (b). (a) The maximum conduc-
tance is 3 × 10−9 Ω−1. The data shown here is for the same device as the data
shown in Figure 6.3(a). (b) The maximum conductance is 1 × 10−7 Ω−1. The data
shown here is for the same device as the data shown in Figure 6.3(b).
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transmission electron microscope (STEM)) particles formed by evaporating the same

quantity of cobalt (5 Å) on a thin oxidized aluminum film [7]. The distribution of

particle size is found to be 1-4 nm (diameter). The average level spacing predicted

for simple noninteracting electrons should be between 0.75 and 40 meV, if one uses

the calculated density of states in Co of 0.88 eV−1 atom−1 [12]. This estimate

includes all the states with both sp and d bands.8 This discrepancy between the

measured and expected level spacing is an important characteristic of this system,

and we will see later in the chapter how this might be explained.

Having discussed the experimental data, we list the main observations, and then

in the later sections we try to understand how each of the features can be explained.

Summary of the prominent features of our experimental data

1. In the small field range (µ0H < 0.25 T ), discontinuous hysteretic switching

in the energies of the discrete states occurs at a certain switching field µ0Hsw

(typically 0.1-0.2 T), due to a sudden change in the direction of the magnetic

moment. This indicates a strong coupling between the energy levels and the

direction of magnetic moment. Resonances jump either up or down in energy

at the switching fields, and both kinds of jumps can be seen in the same sample.

At higher magnetic fields (µ0H < 1 T ), we notice that there is pronounced

non-monotonic behavior of the energy levels as a function of the magnetic

field, with each energy level evolving quite differently from the others.

2. In the large-field regime (|H| À |Hsw|), the evolution of the energy levels is
ticle from the junction capacitance, by assuming a hemispherical geometry and a known dielectric
constant (Chapter 4). However, for deposited aluminum oxide, as is the case here, it is difficult to
estimate the size.

8One other possibility, although unlikely, is that somehow our fabrication process is selective,
and automatically selects particles of larger size. There is no obvious reason for this selection to
occur.
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linear, with the sign of the slope being the same for almost all levels in a given

sample. This is in marked contrast with the Zeeman-splitting of the spin-up

and spin-down energy levels seen for non-magnetic nanoparticles.

3. We observe many more energy levels than expected. The expected density

of states was based on the band-structure calculations that do not take into

account the spin excitations [12].

Having listed the main features of our data, we next consider a semiclassical model

to understand some of the experimental features.

6.3 Understanding the low-field data

The experimental data discussed in the previous section points to the richness of

physics in this system. How does one begin to understand all the observed features?

There are four minimal ingredients that one needs to model a magnetic system; they

are orbital energy, exchange energy, Zeeman energy, and magnetic anisotropy energy

(this is shown in a cartoon in Figure 6.6). Detailed theoretical descriptions using

these four contributions to the energy are well described in the literature [8, 9, 11, 18].

Here, we will restrict the discussion to a simple semiclassical model to understand

the behavior of the system at low magnetic fields. Of the four contributions to the

energy of a magnetic system shown in Figure 6.6, the contributions that are relevant

for modelling the response to a magnetic field are Zeeman energy and anisotropy

energy. The inherent assumption in considering only anisotropy energy and the

Zeeman energy is that they are sufficiently weak compared to the exchange energy

splitting between different spin multiplets; this ensures that we can perform our



173

S
θ

α H

Easy Axis

Orbital energy Exchange energy

Zeeman energy Anisotropy energy

Figure 6.6: Minimal ingredients for describing a magnetic system. This is only
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calculations in one spin multiplet.9 This allows us to assume that the exchange

energy does not vary as a function of the magnetic field.

6.3.1 Phenomenological model to understand how magnetic

switching affects the energy levels

Magnetic switching is due to the competition between the Zeeman energy, the ten-

dency of the magnetic moment of the system to align along the direction of the

magnetic field, and the anisotropy energy, which tends to align the moment along

a direction preferred by the magnetic system. The magnetic moment occupies the

local minima of the complex energy landscape described by the sum of Zeeman en-

ergy and anisotropy energy. As the magnetic field is swept past the switching field,

one of the local minima in which the magnetic moment resides disappears, and the

magnetic moment jumps to a new local minima. Among the two contributions –

Zeeman energy and the anisotropy energy – the anisotropy energy is more complex

in origin.

Anisotropy energy

Anisotropy energy, as the name suggests, varies over different spatial directions,

and suggests a coupling between the spatial and spin degrees of freedom for a mag-

netic system. Prominent among the sources of anisotropy is magnetocrystalline

anisotropy, which originates from spin-orbit interaction. The symmetry of the crys-

tal lattice dictates the exact form of magnetocrystalline anisotropy. For instance,

bulk cobalt has a hexagonal crystal structure, but in small clusters it is sometimes

9Simple toy-model calculations done by Canali et al. [8] and Kleff et al. [9] indicate that this
is a valid assumption, and the energy separation between different spin-multiplets is much higher
than the energy scales that we experimentally probe.
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found to be in FCC orientation [13], consequently the form of the anisotropy is

different. Shape anisotropy and surface anisotropy are two other contributions to

the anisotropy energy. Shape anisotropy energy arises from magnetic dipole in-

teractions, and depends on the particular shape of the ferromagnetic particle. In

our experiments, the shape of nanoparticles is irregular [7], and estimates indi-

cate that shape anisotropy’s contribution is of the same order of magnitude as the

magnetocrystalline anisotropy [14]. In their measurements, Jamet et al. [13] find

that in cobalt clusters, ∼ 3 nm diameter, the contribution of surface anisotropy is

significant. Surface anisotropy arises due to the lack of spatial symmetry for the

atoms at the surface. In our devices, a determination of the exact contributions

of different sources of anisotropy is difficult. Extensive three dimensional switch-

ing measurements are needed to find out the contributions of various anisotropies

[13]. Therefore, to begin, we will assume the simplest form of anisotropy – uniaxial

anisotropy – to model our experiments. We have performed calculations using more

complex forms of anisotropy, but we do not observe significant differences in the

qualitative physics of the addition energy, the quantity we measure experimentally.

Calculating addition energy

Now, using a simple model consisting of the Zeeman and anisotropy energies allows

us to calculate the quantities that we experimentally measure. The energy that we

measure in our experiments is the addition energy (∆Efi) – the energy required to

change the electron number on the nanoparticle by one. We begin by writing the

Hamiltonian for a magnetic system as,

H = −geffµBµ0 ~H · ~S − kN(~S · n̂)2/S0 . (6.1)

Here h̄~S is the total spin with ground-state magnitude h̄S0 for N electrons, n̂ is a
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Figure 6.7: (a) Plot of magnetization projected along the direction of the magnetic
field for the model with uniaxial anisotropy. (b) Plot of the addition energy as a
function of the applied magnetic field for the case of spin-increasing transition due
to the tunneling of an electron onto the nanoparticle. The relative angle between
the easy axis and magnetic field is 45o. Here we assume that kN and kN+1 are the
same.
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unit vector in an easy-axis direction, and the (uniaxial) anisotropy energy prefactor

kN is an intensive quantity and sets the energy scale in the system.10 Initially we

will assume that kN takes the same value for all electron numbers N. Later we will

extend the model to the more general case. First, we solve for the ground state

energy of the system for the case of N electrons and N+1 electrons semiclassically

(corresponding to the situations before and after the tunneling of electron onto the

nanoparticle).11 Figure 6.7(a) shows that the model produces hysteretic switching in

the magnitude of the moment projected along the direction of the magnetic field for

two directions of the field sweep. Figure 6.7(b) shows the plot of addition energy as a

function of the magnetic field for the case when the spin of the system increases. The

jump in energy occurs at the value of magnetic field where the magnetic moment

switches direction. A similar, but quantum-mechanical calculation – using exact

digonalization – was done by Sophie Guéron [7]. The semiclassical and quantum-

mechanical calculations give similar results in the case of large spin, as expected.

There are a couple of aspects of this calculation that are noteworthy: 1) the

addition energy does not depend on the total spin of the system, as one would

expect, because the Hamiltonian scales with the total spin; consequently the addition

energy just depends on the change in the spin of the system, 2) the exact magnitude

of the switching field depends on the relative angle between the applied magnetic

field and easy axis of the system [15], and 3) every transition should have identical

addition energy, as a function of magnetic field, in a given nanoparticle. A similar

calculation can be done for the case of spin-decreasing transition; in that case the

addition energy is of a similar form. However, the energy scale is inverted. Now, we

10kN is the anisotropy energy per unit spin for the system, and sets the scale for the switching
field.
11~S is treated as a classical number in our calculations.
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compare the results of this simple model and the experimentally observed spectra

shown in Figure 6.3. We notice that the main difference between the results of the

model and the data is that the data exhibit non-monotonic evolution of energy levels

after magnetic switching; this is absent in the results of our model. Another related

feature is that in the experimental data, the energy levels jump up and down, but

their eventual evolution at high fields is similar; this is not the case for the calculated

addition energy, where the direction of the jump is the same as the evolution at

higher fields (for e.g. in Figure 6.7(b) ∆Efi undergoes a jump to lower energy

(decreases) at the switching field, and at higher magnetic field ∆Efi decreases). In

many ways the qualitative features of our calculated data differ significantly from

the experimental data. However, one feature that the model captures is the abrupt

jump in addition energy at the switching field. This brings us to one more puzzling

aspect of the data – the magnitude of the switching field. The switching field in our

measurements is ∼ 0.2 T, and this corresponds to kN ∼ 0.01 meV, whereas if one

were to use values of bulk anisotropy energy density of 105 J/m3 [14] and the typical

volume estimated for our particles, we would expect this energy scale ∼ 0.1 meV.

This discrepancy is still an open question, and has also been observed in experiments

done by other techniques [13]. The possible answers lie in understanding the role of

different sources of anisotropy.12

The model described above assumed a uniaxial anisotropy, but we have confirmed

that the same behaviors hold for more complicated forms which include terms of 2nd

and 4th-order in the spin-components [15], as long as one assumes that the same

anisotropy function applies to all electronic states.

12At nanometer length-scale the number of atoms at the surface becomes increasingly comparable
to the atoms in the bulk, and as a result extrapolating the energy-scale of magnetic switching from
the bulk values may no longer be valid.
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The difference between the data and results of our simple model, together with

the fact that all the energy levels in one sample evolve differently as a function of

magnetic field suggest that our initial assumption regarding the anisotropy energy

might not be accurate: is it correct to assume that kN is independent of N?13 We

now modify this simple model to include variations in the anisotropy due the change

in the electron number.

Addition energy with variation of anisotropy

The fact that all the tunneling resonances undergo different energy variations, as a

function of H, in the low-H range where the magnetic moment is being reoriented

indicates directly that all the electronic states of the particle cannot be described

by the same anisotropy-energy function. We have explored whether such variations

in anisotropy energy may also affect the form for the H-dependence of the energies

as described above, and we find that they provide a natural explanation for the

complicated non-monotonic behavior as a function of H. We start by considering a

single resonance associated with a transition between two states with N and N+1

electrons. We extend the N -electron Hamiltonian described in Equation 6.1 in the

simplest way to incorporate variations in anisotropy energy. Now, the (uniaxial)

anisotropy energy prefactor kN is allowed to vary between theN - and (N+1)-electron

states. For simplicity, we assume that the easy axis is the same for all states. We

have solved for the ground state energies for N and N + 1 electrons semiclassically

as a function of H by finding the spin orientation that gives the local minimum in

Equation 6.1, assuming that S0 does not vary with H,14 and then we calculate the

13An equivalent approach is to allow variation in the orientation of the easy axis. Here, we just
model the variation in the magnitude.
14The analysis done by Carlo Canali and Allan MacDonald [8] indicates the energy scale for

change in the ground state spin, S0, is very large compared to the energy range over which we
perform our measurements.
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form of the tunneling transition energies as E(N+1, H) − E(N,H). The results

are shown in Figure 6.8. Assuming S0 ∼ 1000 (appropriate to a 4 nm Co particle),

and an average value of 〈kN〉 ≈ 0.01 meV in accord with the switching field [9],

fluctuations in kN , as a function ofN , of order 1-3% (i.e. δk/kN = (kN+1−kN)/kN =

0.03) are sufficient to explain both the size and form of the non-monotonicities.15

Similar conclusions can also be reached in a more rigorous quantum-mechanical

picture [9]. The results of the model show qualitative features that are similar to

the experimental data.

By plotting the non-monotonic addition energy as a function of the spin S0 and

δk, we observe that when the addition energy exhibits an extremum (e.g. marked

by ? in Figure 6.8), the value of the magnetic field at the extremum increases if

either S0 or δk is increased. Although this dependence is not linear, it is clear that

the second energy scale in the system, other than kN , is set by δk S0.

Although fluctuations in the properties of eigenstates are not often considered

in the context of ferromagnets, they are not surprising. In non-magnetic particles,

the g-factors for Zeeman splitting fluctuate from energy level to energy level [19],

and the statistics of these fluctuations have been investigated in random-matrix

treatments of the spin-orbit interaction [20, 21]. Anisotropy in magnetic particles

also arises from spin-orbit interactions. Therefore, it should not be surprising that

different quantum states might have different anisotropy energy. An additional

physical consequence of anisotropy-energy fluctuations should be that the value of

Hsw will vary by 1-3%
16 depending on the occupation of excited electronic states.

15The estimate 〈kN 〉 ∼ 0.1 meV in [7] based on the size of energy-level jumps at Hsw is inaccurate
because it neglects effects of kN -fluctuations [9].
16In the simple picture of magnetic switching Hsw ∝ kN [15], and the proportionality constant

depends on the relative orientation of the magnetic field and the easy axis. As a result, a variation
of 1-3% in the magnitude of kN translates to a proportional change in the magnitude of the
switching field (Hsw).
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This has yet to be investigated.

Our phenomenological model does not capture all the features of our experi-

mental data. Some of the energy levels in Figure 6.3 show more than one region

of non-monotonic behavior. This needs to be investigated further since our phe-

nomenological model has no explanation for that.

Recent calculations done by Cehovin, Canali and MacDonald [18] suggest that

the variation in anisotropy with electron number can be explained using a micro-

scopic description of our system. Their finding supports our phenomenological pic-

ture.

Having discussed the low field magnetic behavior, and the possible origin of the

magnetic field dependence of the tunneling energies, we next need to ask a very

fundamental question – what are these resonances? A satisfactory explanation for

the other experimental features cannot be provided without answering this very

pertinent question.

6.4 What is the origin of the observed resonances?

In Chapters 3 and 4 we have seen how the resonances corresponded to transitions

via electronic states in the metal nanoparticle. The question that arises is – should

one expect similar electron-hole excitations to be the dominant contribution for res-

onances observed for ferromagnetic nanoparticles? Carlo Canali and Allan MacDon-

ald [8], and Silvia Kleff and Jan von Delft [9] have proposed models of a nanometer-

scale magnetic system which have similar predictions. Their model consists of two

spin bands for the majority and minority spin together with the exchange inter-

action, Zeeman energy and anisotropy energy. They then consider the properties

of the true many-body electronic states of the magnetic system, in contrast with
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older models which attempted single-electron descriptions. A “cartoon” picture of

their Hamiltonian can be seen in Figure 6.6. Their calculations indicate that the

resonances we observe cannot be simple particle-hole excitations since the typical

level-spacing for the majority (δmaj) and minority (δmin) electrons is much larger

than what we experimentally measure. Within their model δmaj = 5.55 eV/NA and

δmin = 1.43 eV/NA, where NA is the number of atoms in the magnetic nanoparticle.

For our samples NA ∼ 1000, this implies that the level spacing we see is about

two orders of magnitude smaller than the electron-hole excitations expected for this

system. This suggests that the resonances have more to them than simple electron-

hole excitations. Since our system is magnetic it is possible that the resonances that

we observe are excitations involving the magnetic degree of freedom. The simplest

kind of magnetic excitation is a spin-wave excitation. More complex excitations are

possible when one begins to consider non-equilibrium processes. In each of these

two scenarios we will check if other experimental features can be satisfactorily ex-

plained.17

6.4.1 Spin-wave excitations within the magnetic

nanoparticle

It was suggested by Sophie Guéron [7] that the tunneling electrons could excite a

spin-wave mode of the lowest order (uniform rotation) within the magnetic nanopar-

ticle. Inelastic tunneling with emission of spin-wave excitations could then generate

the extra density of states that we observe. Detailed analysis done by Silvia Kleff

and Jan von Delft [9, 11] suggests that the observed resonances cannot be due only

17The main features that cannot be explained on the basis of the semiclassical model discussed
in the previous section are: 1) the sign of slope for the high energy levels is the same for most
energy levels, and 2) the average level spacing of ∼ 0.2 meV or less in different samples.
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to inelastic emission of spin waves. The typical energy of uniform-rotation spin-

waves is kN ∼ 0.01 meV. This is much smaller than the spacing between the states

that we experimentally observe. As a result, a simple emission of spin waves during

inelastic tunneling cannot explain our experimental observations. Next we consider

the possible role of non-equilibrium processes.

6.4.2 Non-equilibrium transport via a magnetic nanoparti-

cle

Since neither the electron-hole excitations nor the simple inelastic tunneling with

spin-wave emission explain the observed experimental features, it was proposed

[7, 9, 11] that non-equilibrium excitations involving the spin could play an im-

portant role. In Chapters 3 and 4, we explained that non-equilibrium electron-hole

excitations in Al nanoparticle can lead to broadening of tunneling resonances or

(in very small particles) to the appearance of new resonances with energies differ-

ent from the ground-state tunneling transitions [23]. This work motivated the idea

that similar non-equilibrium excitations involving the spin of the nanoparticle may

produce additional tunneling features for the case of ferromagnetic nanoparticles.

The basic idea of electron-hole non-equilibrium is shown in a cartoon in Fig-

ure 6.9.18 At bias voltages much larger than the typical level spacing a number

of energy levels are involved in the current transport through the nanoparticle (as

discussed in Chapter 3). As a result the tunneling events can lead the system to

an excited state, and this can affect the tunneling energy of the next electron if it

does not relax before the next electron tunnels in. Under such circumstances an

ensemble of non-equilibrium states can be realized by the system.

18This figure here is shown for the case of particle-hole excitations, however, similar processes
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Figure 6.9: A cartoon diagram depicting tunneling events which can cause the
system to be in an ensemble of non-equilibrium states when the rate of relaxation
is much smaller than the rate of tunneling (γrelaxation ¿ γtun).
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The consequences of spin non-equilibrium have been extensively investigated by

Kleff et al. [9, 11], and we will briefly summarize the qualitative results of their

study. They find that in a ferromagnetic nanoparticle, non-equilibrium spin excita-

tions are also possible in addition to the non-equilibrium single-electron states. This

can happen when the spin-flip rate Γsf is smaller than the tunneling rate Γtun. Under

such circumstances a ladder of transitions will occur between states of different total

spin, so that there is finite occupation probability of having states with spin other

than the ground state spin. A rate equation calculation under such conditions pre-

dicts that the resonance spacing is determined primarily by the transitions involving

the minority electrons and the model can predict the resonance spacings that we

observe. Inclusion of spin-wave excitations within this non-equilibrium picture also

explains the same sign of slope that we observe in our experiments, i.e. that all the

transitions correspond to the same change in Sz. The absence of Zeeman-splitting

of resonances is due to the fact that the tunneling weight corresponding to one tran-

sition in the Zeeman-split pair is smaller than the other by a factor of 1/s0 (the

Clebsch-Gordan coefficient connecting the initial and the final states is ∝ 1/√s0),

where s0 is the ground state spin. This makes one of the resonances immeasurably

small.19 As a result one observes the same sign of slope.

One of the ways of putting the non-equilibrium picture for the tunneling reso-

nances to a test is to carry out tunneling spectroscopy with a device having a gate

electrode. As seen in Chapters 2 and 4, the gate electrode changes the threshold

voltage needed for the single electron tunneling to begin, consequently changing the

extent of non-equilibrium.

can take place with the spin degree of freedom.
19Similar qualitative arguments were made by Sophie Guéron [7] to explain the absence of

Zeeman-splitting.
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6.5 Experimental results using the gate electrode

6.5.1 Testing the non-equilibrium picture

We now turn to data from a gated tunneling device, with the primary motivation

being to test whether the larger-than-anticipated density of tunneling resonances

observed at low energy is due to non-equilibrium effects [9, 5]. As explained earlier

in Section 6.4.2,20 the idea of the non-equilibrium mechanism is that the energy

of tunneling transitions can be described as the energy differences of states in the

nanoparticle with N and N ± 1 electrons: ∆E±
fi ≡ EN±1

f −EN
i . If under conditions

of current flow, EN
i can assume an ensemble of different values, for instance due

to low-energy spin excitations or electron-hole excitations within the particle, then

the number of observed tunneling resonances can increase above the number that

originate only from a single equilibrium ground state. We can test this with a gate

voltage because the energy of a tunneling transition can be tuned from high values

down close to zero where tunneling can be initiated by small V . For sufficiently small

V , the tunneling electrons may have insufficient energy to excite non-equilibrium

states. Therefore, a test of whether tunneling resonances are associated with non-

equilibrium initial states is whether some transitions disappear when they are tuned

to small V . This disappearance is exactly what is observed for the lowest-energy

transitions at H=0 (Figure 6.10(a)), when the electrodes are superconducting. We

have not observed well-resolved transitions in non-magnetic particles to disappear

completely as Vg is varied, whereas at least the first 5 lowest-energy states in the

Co particle lose conductance. Non-equilibrium effects, therefore, appear to be much

stronger in Co, perhaps due to larger fluctuations in electron-electron interactions for

20We have discussed non-equilibrium in the context of electron-hole excitation in Sections 3.4
and 4.7. Here we consider the non-equilibrium involving the spin.
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Figure 6.10: Colorscale conductance plot of a gated Co nanoparticle as a function of
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an ensemble of many-body states realized during non-equilibrium tunneling and/or a

large multiplicity of low-energy collective spin excitations (in addition to the particle-

hole excitations that were considered previously [5]). Since the relaxation rate of

non-equilibrium excitations must be slower than the tunneling rate for the spectrum

to be affected, the relaxation rate is of the order of or slower than ∼ 1 MHz.

The presence of level crossings (instead of avoided crossings), noted in Figure 6.3

provides independent new evidence supporting the non-equilibrium scenario. In non-

magnetic particles, when spin-orbit scattering reduces the large-H g-factors to less

than 1.7, tunneling transitions originating from the same initial state exhibit clear

level repulsion [19]. In contrast, under non-equilibrium conditions, tunneling reso-

nances occurring at similar values of V can result from different pairs of eigenstates

(EN
i , E

N±1
f ), none of which are nearly degenerate, so an avoided crossing would not

be expected.

Despite these two lines of evidence for the importance of non-equilibrium tran-

sitions, our observations are not in full agreement with the simplest phenomeno-

logical scenario that includes non-equilibrium effects [9]. Ref.[9] proposes that non-

equilibrium spin-accumulation may occur by a sequence of transitions up a ladder of

energy states having different total spin S, with the sequence terminating when the

next step up the ladder requires more energy than that provided by the source-drain

bias, eV . Within this scenario, a fraction of both the low-energy and high-energy

tunneling resonances should disappear as Vg tunes the transitions to lower voltages.

In Figure 6.10(a), only the lowest-energy transitions experience a loss of tunneling

amplitude.

Another unanticipated observation is that the disappearance of tunneling res-

onances as a function of Vg occurs only when the electrodes are superconducting,
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and not when they are normal (Figure 6.10(b)). Scans for normal-state electrode

at 0.07, 1, 3, 5, and 8.5 T are all qualitatively similar. Perhaps, because of the

singularity in the density of states for superconducting electrodes, the ensemble of

non-equilibrium states may be populated differently by tunneling from normal and

superconducting electrodes, with less non-equilibrium at low V in the supercon-

ducting case. One important difference between the cases for superconducting and

normal electrodes is the existence of thermally-excited electrons in the normal case,

which might play an important role in initiating non-equilibrium excitations in the

nanoparticle. However, I think that there is at least one more piece of the puzzle

missing before we can have complete understanding of the system.

A gated device can also be used to change the number of electrons in the magnetic

nanoparticle, allowing us to answer the question – how does the magnetic moment

change if the number of electrons on a nanomagnet is changed? We try to answer

this question next.

6.5.2 Determining the spin type of resonances

An additional simple benefit of having a gate electrode is that it allows a determina-

tion of whether the tunneling resonances correspond predominantly to the motion

of majority or minority electrons. Consider the data shown in Figures 6.10 and 6.11.

At Vg = 20 mV the low-energy tunneling thresholds correspond to the addition of an

electron to the nanoparticle (N→N+1), and at large magnetic fields (Figure 6.11(a))

the tunneling energies increase, meaning that the tunneling states have lower 〈Sz〉.

It follows that the transitions correspond predominantly to minority-electron tun-

neling. Similarly, at Vg = 125 mV (Figure 6.11(b)), the tunneling thresholds are

N+1→N processes in which the spin increases, so a minority electron is tunneling
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off the nanoparticle. These results from one sample are in agreement with predic-

tions [8, 9] that the total spin should almost always decrease when electrons are

added, due to both a large minority density of states and strong exchange interac-

tions. Of course, because of spin-orbit coupling, the transitions are not purely of

minority-electron character.

6.5.3 Evolution of the degeneracy point as a function of the

magnetic field

Figure 6.12 shows data from a gated cobalt nanoparticle for a sequence of magnetic

fields.21 First we look at the qualitative features of the data, before diving into more

quantitative information. The upper half in each of the gate scans, corresponds to a

region where the transition is of the type N+1→ N , and the lower half corresponds

to a region where the transitions are of the N → N + 1. The degeneracy point

corresponds to the gate voltage, Vdeg, where the two charge states are degenerate.

Note that as the magnetic field is increased the gate voltage at which the degeneracy

point occurs increases. Using the idea that Vdeg defines a point with a fixed number

of electrons even as magnetic field is varied we can write an implicit relation between

magnetic field B and Vdeg; this relationship can be used to compare the experimental

results and the predictions of a model used to describe our system.

Canali and MacDonald predict [8], if the electron number is fixed, that

∆µgate
∆(µBB)

= g 0.46, (6.2)

where ∆µgate = eCgVg/CΣ is the change in chemical potential of the nanoparticle

due to the gate voltage at a fixed magnetic field, and g is the g-factor.22 Figure 6.13

21This data is from the same device as the data shown in Figures 6.10(a) and (b).
22 ∆µgate

∆(µBB)
depends on the charging energy of the device and in their calculation Canali et al.
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Figure 6.12: Conductance for a device with cobalt nanoparticle as a function of gate
voltage and source-drain voltages for a sequence of magnetic fields. The dashed lines
indicate the gate voltage corresponding to the charge degeneracy point (Vdeg).
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shows the plot of degeneracy voltage (Vdeg) as a function of the magnetic field.

Correcting for the capacitance division at the gate electrode we find

∆µgate
∆(µBB)

= 0.38± 0.04. (6.3)

The g-factor corresponding to the first state that initiates the current flow in the

lower half of Figure 6.12(a-d) is 0.77±0.08. As a result the calculation of Canali and

MacDonald [8] predicts ∆µgate

∆µBB
= 0.35± 0.04 (using Equation 6.2). This indicates a

good agreement between the measured and predicted values (Equation 6.2 and 6.3).

Although there is good agreement between the results of the simple model devel-

oped by Canali et al. [8] and our experiments, this agreement should be examined

carefully since the prediction of the model assumes a specific number of atoms (NA).

Nevertheless, this provides an interesting way to analyze data from the experiments

and compare with the predictions of the model.

Until now we have discussed data in this chapter that involves analyzing the

energy of the spectrum. We have not considered the amplitude of the resonances.

The current amplitude provides interesting information about the system that is

complementary to the data we get from measuring the energies of the resonances.

We have previously used information from the amplitude of the current in non-

magnetic particles to calculate the tunneling rates in Chapter 4, and in Chapter 5

we used that information to calculate tunneling polarization. In the next section we

revisit some of the data discussed earlier in this chapter, but now the emphasis will

be to measure the strength of resonances.

assume EC = 30 meV and that the number of atoms in the nanoparticle (NA) is 1500. For the
device whose data is shown in Figure 6.12 we find EC = 26± 3 meV and Cg/CΣ = 0.0043.
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Figure 6.13: Plot of the degeneracy point (Vdeg) as a function of the magnetic field.
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6.6 Amplitude of the resonances

In this section we will look at the variation in the current amplitude as a function of

magnetic field and gate voltage. In the last part we will briefly consider data where

we see some structure in the Coulomb blockade regime, which may suggest the role

of cotunneling. But first, we turn to the amplitude of the resonances as a function

of magnetic field.

6.6.1 Low magnetic field data

We saw in Section 6.2.1 how the quantum levels exhibit an abrupt jump in their

energies as one sweeps through the switching field (Hsw). In this section we will

try to examine if the amplitude of the current carried by a resonance changes as a

function of the magnetic field. Before we look at the current carried by resonances

as a function of magnetic field I want to point out that the models that have been

discussed until now do not provide any information about current – they are geared

towards understanding the energies of resonances.

In Figure 6.14(a) we show the colorscale conductance plot for the data shown in

Figure 6.3(b), except that we now plot the conductance for both signs of the bias

voltage. The data shown in Figure 6.14(a) is used to extract information about

the current carried by peaks 1 and 2. In Figure 6.14(b) we plot the current carried

by peaks 1 and 2 as a function of magnetic field. This was obtained by fitting the

conductance peak with the derivative of the Fermi function to extract the amplitude

of the current. The reason we choose the peaks on the negative side of the bias is

that they do not intersect each other and are well separated in energy to allow

fitting.

We observe that the currents carried by peaks 1 and 2 change as a function of the
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magnetic field, and the variation is different for each of the two peaks. Data around

0 T is not shown since the aluminum leads turn superconducting and the resonances

reflect the BCS density of states. Around the switching field (∼ −0.15 T) we see

abrupt jumps in the amplitude of the current. One other noticeable feature is the

non-monotonic variation in the strength of the current.23

As of now I do not have a model with which to compare this variation. However,

there are two contributions that need to be taken into account when interpreting

the variation in the amplitude of current as a function of the magnetic field; this

effect could either be due to the presence of a magnetic oxide near the nanoparticle,

or it may be an effect of the variation in the wavefunction of the state being probed.

Strong variations in the addition energy as a function of magnetic field suggests

that variation in the wavefunction of a state is possible resulting in the change of

tunneling rates, and this could lead to the observed variation in the amplitude of

the current. This is an aspect that needs further thought.

Next we consider the amplitude of the resonances as a function of gate voltage,

Vg.

6.6.2 Data from gated devices at high magnetic fields

As seen in Chapter 4, the gate electrode allows us to change the threshold voltage

required for tunneling. Using this feature we can access a regime where only one

energy level is involved in the current transport. In this section we will examine

data from a gated device at high magnetic fields with particular attention to the

amplitude of the resonances.

23It is difficult to fit in the region where peak 1 crosses the first peak for positive bias. This
gives rise to some scatter in our data for peak 1 around the magnetic field (∼+0.12T and ∼-0.20T)
where the two peaks cross. This effect is not related to the magnetic switching of the nanoparticle.
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Figure 6.15: Conductance for a device with cobalt nanoparticle as a function of the
gate voltage and bias voltage for a sequence of magnetic fields.
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Figure 6.15 shows data from a gated device for different gate voltages.24 As

mentioned earlier, the threshold event for the upper half of the plot, in each of the

gate scans, corresponds to a region where the transition is of the typeN+1→ N , and

the threshold event for the lower half corresponds to a region where the transitions

are of the N → N +1 type. All the levels seen in Figure 6.15 with negative slope as

a function Vg correspond to threshold transition across the high resistance barrier

L. Only line I corresponds to transition across the low resistance barrier R. Since we

observe no other levels corresponding to transitions across the low resistance barrier

(R), we can conclude that the tunneling rates associated with the two barriers are

very asymmetric γR À γL.

Before we look at the data shown in Figure 6.15 in greater detail, consider the

cartoon – shown in Figure 6.16 – of the one of the panels in Figure 6.15. The dotted

area corresponds to the region with Coulomb blockade. The black lines correspond

to thresholds across the thick barrier and the grey lines are due to thresholds across

the thin barrier. The black arrows “←→” mark paths along which one can measure

a current step for which only one energy level is involved in the transport. For any

nanoparticle we expect the current steps across line I,II, and III (marked by ←→)

to have the same magnitudes when all degeneracies are lifted (i.e. at high fields).25

In this situation, the current steps across I and II should be the same due to time

reversal symmetry. The currents via I and III along the sections marked with ←→

are the same because they correspond to the same final current. The current step

along I and III therefore should be the same in any system, whenever electrons are

tunneling via only a non-degenerate ground state.26 Now, we look at the data to

24This data is from the same device as the data shown in Figures 6.10(a) and (b).
25All the current steps considered in this discussion are measured before the first excited states

are involved in the current transport.
26The current step along I and III should be the same in all systems when the energy levels are
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Figure 6.16: Cartoon showing the region near the charge degeneracy point. The
dotted area corresponds to the region with zero conductance due to Coulomb block-
ade. The black lines correspond to the transition across the thick barrier L, and the
grey lines correspond to transition across the thin barrier R (γR À γL). The grey
dotted lines correspond to transitions across the thin barrier R, and have almost
zero weight since γR À γL; these threshold do not result in an increment in the
magnitude of the current. The ←→ indicates the current steps along lines I,II and
III.
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see if the magnitudes of the current steps across the lines II and III are indeed the

same for the magnetic system.

For the case of the magnetic nanoparticle, whose data we show in Figure 6.15,

we observe that the ratio of the amplitude of currents for the two signs of bias (I+ is

current step across line II, and I− is current step across line III) I+/I− = 0.53±0.10

at 5 T, and I+/I− = 0.58± 0.20 at 8.5 T.27

As mentioned earlier the current step for line I and II has to be the same when

simple ground state tunneling occurs via a non-degenerate energy level. In our

system the degeneracies are lifted due to the magnetic field, so the asymmetry

in the measured current for the two signs of the bias requires an explanation. It

may be due to the presence of non-equilibrium excitations in the magnetic particle

even at very small bias voltages, when the electrodes are in the normal state (not

superconducting). The non-equilibrium occupation of states might take place due

to thermal excitations in the electrodes even at dilution fridge temperatures. This

means that the single electron tunneling via magnetic nanoparticles would always

be a non-equilibrium process as long as the electrodes are normal. Recall that in

Section 6.5.1 we saw that non-equilibrium tunneling could be tuned off by tuning the

gate voltage when the source and drain are superconducting. In a superconductor,

thermal excitations are exponentially suppressed.

Next we discuss the possible origin of structure in the Coulomb blockade region

that is seen in the case of devices fabricated using cobalt nanoparticles.

non-degenerate and the transition is due to equilibrium tunneling.
27At other magnetic fields it is difficult to extract the ratio of currents since it is difficult to

resolve the first resonance from the other higher energy resonances. In calculating these ratios we
have used the fact that current across lines I and III are the same since it is difficult to measure
the current along I in a very small range of Vg.
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Figure 6.17: Colorscale conductance plot for three different devices with a cobalt
nanoparticle and aluminum leads, with the plots on right showing the structure in
the Coulomb blockade regime. Structures within the blockade are marked by arrows.
a) & b) Conductance plot as a function of magnetic field (same sample as the one
shown in Figure 6.5(a). The maximum of the conductance-scale is 2× 10−9 S for a)
and 2× 10−10 S for b). c) & d) Conductance plot as a function of the gate voltage.
The maximum of the conductance-scale is 2× 10−8 S for c) and 2× 10−10 S for d).
e) & f) Conductance plot as a function of the gate voltage. The maximum of the
conductance-scale is 1× 10−8 S for e) and 4× 10−10 S for f).
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6.6.3 Cotunneling ?

After discussing the amplitude of resonances due to single electron tunneling we

next turn to features that we observe in the Coulomb blockade region, where one

does not expect resonances because of the cost of charging energy. However, higher

order tunneling events are energetically allowed in this region. These are commonly

known as cotunneling events since they involve the simultaneous tunneling of two

or more electrons [25]. Signatures of cotunneling events have been observed in a

variety of experiments using quantum dots [26] and nanotubes [27]. Figure 6.17

shows colorscale conductance plots of devices with a cobalt nanoparticle. We ob-

serve that there is a regular structure in the Coulomb blockade regime which shows

no dependence on the gate voltage (Figure 6.17 (d) & (f)), and magnetic field (Fig-

ure 6.17 (b)). The average spacing between the structure in the Coulomb blockade

regime is ∼ 0.5 meV which is much larger than the energy of spin-wave excitations

∼ kN = 0.01 meV. These features in the Coulomb blockade regime might be a

signature of inelastic cotunneling events [25, 26]. However, there are several reasons

why I am skeptical about this. These structures in the blockade could be due to

another nanoparticle conducting in parallel to the nanoparticle whose features we

prominently observe. The way we fabricate our devices makes me think that we

cannot completely rule this out. Also, the tunneling rates associated with cotunnel-

ing events, which are second order processes, should be related to the resistances of

the devices in the following way [25],

Γcotun ≈ Γse
RK

Rt

, (6.4)

where Γcotun is the rate associated with cotunneling events, Γse is tunneling rate

associated with single electron tunneling events, RK is quantum of resistance, and

Rt is the resistance of the rate limiting tunnel barrier in the device. For our devices
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Rt ≥ 10 MΩ, this results in RK

Rt
≤ 10−3. (The quantum of resistance RK is 25.8 KΩ.)

As a result one would expect the amplitude of the structure in the Coulomb blockade

to be smaller than what we measure. In our experiments we find that the amplitude

for the structure in the Coulomb blockade region is a factor of 0.1 to 0.01 smaller

than the amplitude of the transitions due to single electron tunneling. As a result

the experimentally observed amplitude of the structure in the Coulomb blockade

region is a factor of ∼10 larger than the very simple estimate. Most of the work in

the literature deals with non-magnetic systems (low-spin); further theoretical work

is needed to check if the cotunneling signal could be enhanced in magnetic systems

because presence of spin excitations.

6.7 Summary and open questions

Our measurements of the H-dependence of the tunneling-resonance energies in

cobalt nanoparticles exhibit level-to-level differences and non-monotonic variations

that can both be explained qualitatively by variations of 1-3% in the magnetic

anisotropy energy between different states. Recent microscopic calculations by Ce-

hovin et al. [18] support our phenomenological model. The observation of level

crossings and the disappearance of resonances as a function of Vg indicate that the

majority of low-energy resonances are associated with tunneling transitions from

non-equilibrium initial states. The strength of non-equilibrium effects appears to

depend on whether the electrodes are normal or superconducting. The fact that we

observe asymmetry in the magnitude of current flow for different signs of bias when

current flow occurs via one energy level is puzzling.

It is possible that in our experiments non-equilibrium occupation exists for very

small bias voltages due to the effects of thermally excited electrons in the electrodes;
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this is suggested by the asymmetry in the magnitude of current for different signs

of bias. When the leads of our device are superconducting, the non-equilibrium

population of states in the nanoparticle – due to the thermal excitations in the lead

– is exponentially suppressed. However, the non-equilibrium population of states

within the nanoparticle is gradually turned on as the bias voltage is increased. This

would explain the difference between the data as a function of gate voltage for the

cases when the electrodes are superconducting and when they are normal.

There are several open questions that need further thought, and I list them here

in the hope that someone else will also think more about them.

• If these resonances are due to non-equilibrium processes then what are the

ingredients that need to be included to arrive at a complete description? Is

this non-equilibrium only due to spin degree of freedom, or do the electron-

hole excitations also contribute to it, if so then in what way are they coupled?

Is there any other description of the physics we have explored?28

• Why do we see a discrepancy between the values of kN , anisotropy energy per

unit spin, for bulk (0.1 meV) and nanometer scale magnets (0.01 meV)?

• Are cotunneling amplitudes enhanced in high-spin system? This would need to

be answered before we can start thinking of the structure in Coulomb-blockade

region of our samples as a signature of cotunnneling.

28Recent calculations done by Cehovin et al. [18] suggest that non-monotonic features, and same
sign of high field slope for resonances can be explained without non-equilibrium processes. In their
picture, they still do not observe high density of resonances we experimentally observe and it is
not clear if their model can explain the asymmetry in the current for the two signs of bias. This
aspect needs further thought.
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Chapter 7

Tunneling spectroscopy of a

nanomagnet using a ferromagnetic

electrode

In the previous chapter, we used tunneling spectroscopy to probe a ferromagnetic

nanoparticle using nonmagnetic electrodes. In this chapter, we perform tunneling

spectroscopy on a ferromagnetic nanoparticle (cobalt) by using one lead fabricated

from a ferromagnetic metal (cobalt) and the other from a non-magnetic metal (alu-

minum). The motivation is to understand the interplay of spin and charging, in

ways different from what was considered in Chapter 5 and Chapter 6. I will be

discussing qualitative features of the data, since I have not been able to analyze

these data in detail. I hope to complete the analysis sometime soon.
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7.1 Introduction

There have been several recent studies [1, 2, 3, 4] which suggest that making com-

ponents of single electron transistors (SETs) with ferromagnetic elements allows

access to regimes where the interplay of spin and charge can be observed in the

conductance of the device. These studies [1, 2, 3, 4] have motivated the present

set of experiments. Most of the theoretical [1, 2] and experimental work [5] has fo-

cused on regimes where the ferromagnetic island has a continuum of states, whereas

our technique allows us to measure a discrete electronic spectrum. Measurement of

the conductance via discrete energy levels should allow us to measure the tunnel

magnetoresistance (TMR) effect for conductance via single energy level.

7.2 Fabrication

The fabrication procedure for devices described in this chapter is very similar to

the process described in the earlier chapters. Figure 7.1 shows the schematic of

our device. The process starts by fabricating a nano-hole in a freely suspended

silicon nitride membrane by using a combination of e-beam lithography and reactive

ion etching (RIE).1 After this, the first electrode is formed by depositing 150 nm

of aluminum; this is followed by controlled oxidation at 50 mTorr for 3 min to

form the first tunnel barrier. Following this, the nanoparticles are fabricated by

depositing 0.5 nm of cobalt using e-beam evaporation. The second tunnel barrier

is formed by depositing 11-12 Å of aluminum oxide. The second electrode is then

deposited by evaporating 80 nm of cobalt using e-beam evaporation. Deposition of

cobalt completes the fabrication procedure, following which the devices are checked

1Fabrication of the nano-hole is described in detail in Section 2.4.1.
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Figure 7.1: Schematic of a device with a cobalt electrode (F), a cobalt nanoparticle
and an aluminum lead (N).
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at 4.2 K to see if they have a exhibit Coulomb blockade – a sign that a single

nanoparticle is formed between the two leads. Good devices are then cooled in a

dilution refrigerator to measure the discrete conductance spectra.

7.3 Experimental data

Figure 7.2(a) shows a colorscale conductance plot as a function of the magnetic

field; with the field being swept from positive to negative values. One can notice

that each of the energy levels shift continuously as a function of the magnetic field,

and some energy levels undergo a shift to higher bias voltages near 0 mT. This

shift near 0 mT, observed for some energy levels, is due to the superconductivity

of the aluminum lead. Notice that the first resonance for positive bias does not

undergo the shift due to the superconductivity; this means that the threshold step

for positive bias is tunneling in of an electron from the ferromagnet.2 Using one

superconducting lead and one ferromagnetic lead has an advantage that we can

identify which energy level corresponds to the threshold across the ferromagnetic

electrode. After the superconductivity of the aluminum electrode is suppressed due

to the magnetic field, we notice that all energy levels undergo an abrupt shift at

-0.04 T. We associate this shift with the switching of the ferromagnetic electrode.

This shift arises because the electrochemical potential of the electrode undergoes a

change when the magnetic moment of the electrode undergoes magnetic switching.

The switching field of cobalt films ∼100 nm thick is expected to be around ∼ 5 mT.

However, this can be enhanced in disordered films [6]. At fields more negative than

-0.04 T we see a continuous variation of energies for different levels. At ∼ −0.25 T

we observe another small shift for all the energy levels. We associate this with the

2This transition has been referred to as the transition of n+ 1→ n kind.
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Figure 7.2: Colorscale conductance plot of a device with a cobalt lead, a cobalt
nanoparticle and an aluminum lead. a) Data taken while the magnetic field is swept
from positive to negative values. b) Data taken while the magnetic field is swept
from negative to positive values. The arrows indicate the two switching events: one
∼40 mT and the second ∼250 mT.
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Figure 7.3: Cartoon showing the relative orientation of the direction of magnetiza-
tion for the nanoparticle and ferromagnetic lead. This sequence of cartoons is for
the case of sweeping the field from “↑” to “↓” direction. These cartoons illustrate
that ideally we can measure the tunnel magnetoresistance (TMR) effect for the case
of transport via single energy level. This can be easily achieved for the case of device
with a gate electrode.
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reversal of nanoparticle’s magnetic moment. The switching field measured here is

larger than the switching field for cobalt nanoparticles measured in the previous

chapter. This could be due to dipolar coupling of the ferromagnetic lead and the

nanoparticle. As the magnetic field is increased further, there are continuous shifts

for the energy levels. Figure 7.2 (b) shows a similar plot of the conductance as a

function of magnetic field with the difference that magnetic field is now swept from

negative values to positive values. We observe similar features for the two directions

of magnetic field sweep; the difference being that they are reflected about 0 mT. The

fact that the nanoparticle and ferromagnetic particle have different switching fields

allows us to study the device when the two are aligned parallel to each other, and

then antiparallel to each other.3 Three different cases for the orientation of magnetic

moments relative to each other is shown in Figure 7.3. Ideally, this device geometry

allows us to measure the tunnel magnetoresistance (TMR) effect for the case when

transport occurs via a single energy level. Unfortunately for this device, we cannot

observe such an effect since it has a large threshold voltage for the initiation of

tunneling. This makes it difficult to deconvolve the effect of one level. We observe

only a ∼ 10 % variation in the peak conductance of the first level at positive bias for

parallel and anti-parallel orientation. It is difficult to conclude that this is due to

the TMR effect. However, with a gated device one could make direct conclusions.

Figure 7.4 shows the conductance plot for a field sweep from positive to negative

values for a larger range of magnetic fields. The important aspect of this plot is

that there is symmetrical behavior for positive and negative values of the magnetic

field if one omits the region between −250 mT and +250 mT.4 This supports the
3This is a very simplistic view point. It is possible that the moments of the nanoparticle and

the electrode are not collinear.
4The extra glitch seen at ∼-350 mT is due to a sudden change in the offset charge.
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Figure 7.4: Colorscale conductance plot as a function of magnetic field. The sweep
direction is from positive to negative values. Note the symmetry for the position of
the energy levels outside the -250 mT to +250 mT region.
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picture that the shift at −250 mT is due to magnetic switching of the nanoparticle.

Figure 7.4 also shows complex evolution of different energy levels as a function of

applied magnetic field, similar to the data discussed in previous chapter. However, in

this case there are two different effects that contribute to the shifting of energy levels

at high fields – the shift in energy of the individual levels within the nanoparticle,

and the shift due to chemical potential change for the ferromagnetic lead.

7.4 Outlook

Unfortunately,I have not carried out a detailed analysis of the data now, but I hope

to do it soon. This system has interesting physics associated and needs to be pursued

further. It would make a very interesting project.
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Chapter 8

Nanofabrication using a stencil

mask

In the previous chapters, we considered the transport properties via quantum dots

fabricated using different metals. In this chapter, we consider a stencil fabrication

technique that I worked on during my first year in the group. This chapter has

been adapted from a paper we wrote [1]. The tests described here are results from

preliminary work, with the motivation being to demonstrate that the stencil based

fabrication technique can make structures in the ∼ 15 nm range. Since then, this

technique has been extensively developed by Alex Champagne and Aaron Couture.

Now, Alex can fabricate structures on the tip of an atomic force microscope (AFM)

controllably.

8.1 Introduction

The usual procedures for fabricating nm-scale devices, using electron-beam, x-ray,

or other forms of lithography, involve exposing a pattern in a polymer-resist layer
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applied directly to a sample substrate. However, there exist several circumstances

in which it would be convenient to do away with the resist on the sample; instead

completing the pattern-formation process separately to make a free-standing stencil,

which is later used to deposit patterned material onto the substrate. By this means,

lithography could be performed on substrate materials which would be damaged by

the chemical or thermal stresses encountered during resist application and baking.

Another application is for the fabrication of nanostructures on surfaces in ultrahigh

vacuum, for experiments such as studies of atomic diffusion, or the fabrication of

electrodes to contact self-assembled nanostructures. It would also be possible to

make devices on unusual substrates for which it is not possible to achieve the uniform

coating of resist necessary for ordinary processing. We have in mind the desire to

write nm-scale devices directly on the tips of scanning probe microscopes, for the

purpose of creating new types of scanning sensors [2].

In this chapter, we describe a process for fabricating nanostructures by evapo-

rating metal through holes in a suspended silicon nitride membrane. In doing this

work, we follow many groups who have used stencil techniques to make structures

≥0.1 µm in scale [3, 4, 5]. We are able to write metal dots 15 nm in diameter and

lines 15-20 nm wide. We have also tested the rate at which nm-scale holes in the

stencil clog during the deposition process, and the extent to which the ultimate res-

olution of this technique is limited by the divergence angle of the deposition beam

and diffusion of atoms on the sample surface.

8.2 Fabrication of stencil and nanostructures

The stencil masks are made by adapting a procedure used previously for fabricat-

ing metal point-contacts [6] and tunneling devices [7]. Details of the fabrication
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Figure 8.1: Bright-field scanning transmission electron microscope (STEM) images.
(a) A hole 5 nm in diameter etched through a silicon nitride membrane. (b) A metal
dot made by evaporating 10 nm of Er through an orifice 5-10 nm in diameter onto
an oxidized aluminum film held at room temperature. (c) Section of a 4 µm-long ×
15-20 nm-wide line etched through a silicon nitride membrane. (d) Sections of 10
nm-thick Er lines, which are deposited through an orifice similar to the one shown
in (c), at room temperature onto an oxidized Al film. The two lines, 19 nm and
16 nm wide, were made by separate depositions of Er, from different angles, through
the same linear hole.
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steps are described in Chapter 2, but here we describe the process briefly. First,

low-stress silicon nitride is deposited on both sides of a 〈100〉 double-side-polished

silicon wafer. Photolithography and etching in an aqueous KOH solution are used

to remove selected regions of the silicon to leave square suspended membranes of

silicon nitride 50 nm thick and 60-80 µm on a side. Electron-beam lithography is

then performed to write an array of holes on the membrane, using the Leica VB6

operating at 100 keV. After development, the holes are etched through the silicon

nitride membrane using a CHF3/O2 plasma. The etching conditions are such that

the hole is bowl-shaped, and the final orifice is smaller than the original pattern

formed by lithography [6]. Figure 8.1(a) displays a STEM (Scanning Transmission

Electron Microscope) bright-field image of a single 5-nm-diameter hole in an array,

looking through the membrane. The gradual darkening in the region surrounding

the hole is due to the taper on the sides of the bowl-shaped hole. In our tests we

have used holes ranging up to 50 nm in diameter, and also larger orifices for contact

pads and other test structures.

The geometry for deposition through the stencil mask is shown in Figure 8.2.

For simple single-step metal depositions, the mask can be clamped directly to a

substrate. However, we find that the mask-substrate spacing in this case varies,

due to small particulates or surface irregularities, typically being in the range of

1 µm. A predictable spacing is necessary for alignment of multiple-angle evapora-

tions and for tests of the ultimate size resolution of the technique, so we introduce

1.6-µm-diameter silica spheres [8] as spacers between the stencil and substrate before

clamping. The sample/stencil assembly is attached to a stepper-motor controlled

tilting stage within an evaporator, so that the angle of evaporation can be varied.

The mask-substrate spacing with the microspheres is generally reproducible to ± 0.1
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µm, and is checked by evaporating metal through a nano-hole from two known an-

gles, measuring the distance between the resulting dots on the substrate by scanning

electron microscopy (SEM) or atomic force microscopy (AFM), and using triangula-

tion. The sample and stencil are baked in vacuum to remove adsorbed water before

the evaporation (one exception will be noted).

In order to produce nm-scale features by deposition through a stencil more than

1 µm from the substrate, the incoming beam of metal atoms must be collimated.

This is achieved by using a resistive-heating source containing a pinhole of width

wsource = 1 mm through which metal is evaporated [10]. From the geometry shown

in Figure 8.2, assuming no diffusion of atoms on the surface, the width of a deposited

dot should be wdot ≈ whole + (d/L)wsource, where whole is the width of the orifice in

the stencil, d is the stencil-substrate spacing, and L = 30 cm is the source-stencil

spacing [9]. The broadening (d/L)wsource is, therefore, expected to be approximately

5 nm.

Figure 8.1(a) shows a bright-field plan-view STEM image of one example from

an array of metal dots made by depositing 10 nm of erbium (Er) through an orifice

5-10 nm in diameter onto a room temperature substrate. The deposited dot is

∼15 nm in diameter. The substrate in Figure 8.1(b) (and also Figure 8.1(d)) is an

oxidized Al film, 30 nm thick, deposited on a photoresist layer on top of a Si wafer.

This geometry allows the Al film to be lifted off for STEM examination of the Er

structures. Because of the photoresist layer, the samples in Figure 8.1 were not

baked prior to the deposition. The images were taken looking through the Al film,

whose grains are visible on the 40-50 nm scale. We choose Er for depositions tests

due to its sticking properties, good visibility in electron microscopes (atomic number

= 68), and convenient melting temperature. Chromium and aluminum have also
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Figure 8.2: Diagram of deposition through the stencil mask using a pinhole evapo-
ration source. (Not to scale.)
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been deposited successfully. We have verified that the dots are Er, using electron

energy-loss spectroscopy.

In Figure 8.1(c), we show a section of a 4 µm-long line-shaped orifice in a sten-

cil membrane, and in Figure 8.1(d) images of two 10-nm-thick Er lines deposited

through such a hole. Both the deposited lines and the stencil orifice have widths

15-20 nm. The grain size of the deposited Er is visible in Figure 8.1(d), 2-5 nm.

The results described above show that this technique is capable of fabricating

nanometer scale patterns. However, it is essential to determine how much metal can

be deposited through the holes in order to determine the usefulness of the technique.

Next, we describe a test to quantify the clogging of the holes as metal is deposited

through them.

8.2.1 Clogging of holes

We have investigated how much material may be deposited through the nm-scale

holes before they become clogged. This test is done by slowly tilting the sten-

cil/substrate assembly, using a stepper motor, while Er is evaporated at a constant

rate so as to draw a line of material on the substrate. In one test, with a 1.8-µm

stencil-substrate spacing, we deposited 200 nm of Er over the course of a 20 de-

gree rotation, which in the absence of hole-clogging would give a 660 nm line. The

deposited structures (e.g., Figure 8.3(a,b)) have an angular shape, thinning as the

evaporation proceeds, indicating that the holes close gradually. From the length of

the lines, we can estimate that for a hole of approximately 40 nm diameter, 65 nm

of evaporated Er clogs the hole, while for 20-nm-diameter holes, 30 nm of Er is the

limit. Somewhat greater thicknesses of gold can be deposited without clogging the

stencil, approximately 3 times the hole diameter; however gold produces broader
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Figure 8.3: (a,b) Clogging tests: SEM images of Er deposited through 40 and 20-
nm-diameter orifices onto oxidized Si, as the substrate was gradually tilted so as to
scan the deposition spot. The hole clogs after the deposition of 65 nm and 30 nm of
material respectively. (c) 25-nm-wide, 10-nm-thick Er line connected to macroscopic
electrodes using multiple-angle evaporations. The inset shows the pattern of the
stencil mask used to fabricate the device.
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deposited features than Er, due to increased surface diffusion.

The next test determines the effect of surface diffusion on the dimensions of the

deposited structures.

8.2.2 Role of surface diffusion

As a test of the extent to which the divergence of the incident atom beam and also

surface diffusion of Er limit the resolution of the stencil technique, we have used an

AFM to compare the heights of Er dots with different diameters, deposited simulta-

neously at fixed angle onto oxidized silicon through holes in one stencil membrane.

The heights are listed in Table 8.1 as averages over tens of dots made in arrays of sim-

ilar diameters. The total deposited thickness of Er is determined by measuring the

thickness of very large (0.5-µm-wide) features in the test array. Smaller-diameter

dots are progressively shorter, as would be expected due to spreading of the de-

posited metal. In order to obtain an approximate measure of this spreading, we

can model the deposited features as pillars (slightly tapered to take into account

hole-clogging) convolved with a Gaussian spreading function. This is not accurate

in all cases, since some dots are observed with thicknesses greater than the deposited

film, due to clustering of the metal. However, the average dot heights indicate a

full-width at half maximum (FWHM) for the spreading function of approximately

18±5 nm. For a substrate cooled to liquid nitrogen temperature during the evapo-

ration, this is reduced to 10±4 nm, so we can conclude that thermal diffusion of Er

contributes to the spreading at room temperature.
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Table 8.1: AFM study of the thicknesses of Er dots deposited through orifices of
varying diameter, in order to measure the spreading of the deposited Er. Room-
temperature and 77 K depositions were performed through the same sets of holes,
from different angles. The smaller hole sizes listed for the 77 K deposition reflect
partial hole clogging. The uncertainties are standard deviations for dots deposited
through different holes of similar size in the same array. Diameters are accurate to
±3 nm.

Hole diameter(nm) 500 47 31 25

Height for RT (nm) 10.8±0.1 10.4±0.3 8.5±0.1 6.6± 0.3

Hole diameter (nm) 500 41 25 19

Height for 77K (nm) 10.1±0.1 10.9±0.3 10.4±0.4 7.3 ±0.2
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8.2.3 Fabrication of micrometer-scale structures

In order to make use of nm-scale structures as electrical devices, it is necessary to

connect them to macroscopic leads. We have accomplished this by making a stencil

pattern which contains both a line on the 25-nm scale and electrodes on the 10’s-of-

µm scale. Then we have connected the wire and the electrodes using a series of three

10-nm-thick Er evaporations from different angles (Figure 8.3(c)). The electrodes are

large enough to be convenient for wire-bonding. The room-temperature resistance

of the wire + electrodes shown in Figure 8.3(c) is ∼1000 Ω.

8.3 Conclusion

We have demonstrated that the stencil based fabrication has the potential to fab-

ricate structures with sizes as small as approximately 15-20 nm. Structures can be

made by evaporating metal at multiple fixed angles, or they can be drawn contin-

uously by tilting the stencil and thus scanning the substrate relative to the stencil

orifice. The technique is useful for performing lithography on substrates for which

it is not possible to apply resist.

Since the time of this preliminary work, Alex Champagne and Aaron Couture

have developed this technique further, and it has reached a stage where structures

can be fabricated controllably on a tip of an atomic force microscope (AFM). This

opens up a whole new way of making “smart” surface probes like a high resolution

magnetic force microscope (MFM) tip, near field antennas [11], and charge sensors

based on single electron transistors fabricated on the tip of an AFM [2]. The ability

of the stencil based technique to fabricate structures in ultra high vacuum (UHV) has

already been exploited in the Buhrman group; they fabricated magnetic structures∼
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100 nm in size on semiconductor surfaces in an ultra-high vacuum environment, and

probed the magnetic properties of the fabricated structures using ballistic electron

magnetic microscopy (BEMM) [12].
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Chapter 9

Conclusion

In this work, I have described how tunneling spectroscopy, using metallic quantum

dots, can be used to explore physics associated with magnetic and non-magnetic

metals. The basic principle of all these experiments was to measure the discrete

energy spectrum of a nanometer-scale metallic particle; the measured spectrum

reflects the forces at work in the quantum dot and its electrodes. We were able

to probe electronic interactions in non-magnetic systems, and the interplay of spin

and charge for the case of a ferromagnet. The versatility our fabrication technique

allowed us to study the flow of polarized currents from a ferromagnet in a unique way,

and our results confirm the crucial role played by interfaces in magnetic systems.

The technique can be used further to study spin transport in greater detail. The

physics explored in this work has wider applicability in the burgeoning fields of

molecular electronics and spintronics.
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Appendix A

Stripline cryogenic filters

The cryogenic electrical filters described here were designed to reduce the elec-

tron temperature for tunneling spectroscopy measurements. As discussed in Sec-

tion 2.3.2, the resolution in energy is improved with lower electron temperature,

and proper filtering of the electrical lines connecting a room-temperature appara-

tus to an electronic device at cryogenic temperature is essential. Anchoring1 the

electrical lines helps to reduce the noise that is generated in them. However, it

does not attenuate the noise travelling down from equipment at room temperature.

The problem of electrical noise is further complicated by the fact that the electron-

phonon coupling decreases rapidly as one reduces the temperature below the Debye

temperature (ΘD). The electron-phonon scattering rate ∝ T 3 [1]; so at low temper-

atures the rate of heat flow from electrons to phonons is slow, and the electrons are

easily heated above the temperature of the lattice. The result of this decoupling is

that the electron temperature (Te) is always higher than the base temperature of

the refrigerator.

1Attaching the electrical lines near the 1 K pot and the mixing chamber of the refrigerator
helps to anchor them.
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There have been several schemes for the design of cryogenic electrical filters:

copper powder filters [2], miniature electrical filters [3], waveguide filters [4], and

thermocoax cables as filters [5]. However, we have used only the first two types

of filters on our refrigerator since they are compact, and can be attached easily on

our refrigerator. I am not going to discuss the details of fabrication of the copper

powder filter since their recipes can be easily found in the literature [2]. Most of the

data that is discussed in this thesis was taken with only the copper-powder filters

acting to reduce the noise; the lowest electron temperature Te was measured to be

∼ 70 mK. It was only in the fall of 2001 that the miniature electrical filters were

fabricated with help of Kirill Bolotin, Abhay Pasupathy, Edgar Bonet, Eric Smith

and Alex Corwin. The data shown in Chapter 5 were taken after these filters were

installed.

A.1 Fabrication of miniature electronic filters

These filters were fabricated by adapting the design of Saclay group [3]. We have

adapted this design with changes, so that 16 filters can be attached to the mixing

chamber of the refrigerator. On the basis of the results, we can say that the operation

of the filters has not been compromised by the design changes. Figure A.1 shows the

diagram of a single filter and its cross-section. The filtering element is a meander line

which acts like a RLC filter [3]. The microfabrication is done using photolithography

since the minimum feature size is 10µm. The steps are:

• A silicon wafer coated with 500 nm of silicon oxide is used as a starting sub-

strate. Then 200 nm of gold is deposited to form a ground plane. It is impor-

tant to use a 15 nm of chrome as a sticking layer since the gold tends to peel
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Figure A.1: a)Top view shows the design of a microfabricated meander line filter,
which serves as a RLC filter, with exposed contact pads. b) Cross-section of filter
shows various layers: the oxide layer is 500 nm thick, the gold ground plane is
200 nm thick, the meander line made of Cu-Au alloy is 200 nm thick, and both the
silicon nitride layers are 1µm thick.
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off at later stages due to internal stress from three more layers of deposition.

• Following the gold deposition 1µm of silicon nitride is grown using plasma en-

hanced chemical vapor deposition (PECVD). The PECVD process was carried

out with a substrate temperature of 300o C.

• The meander line is patterned on a 2µm thick photoresist using the 5X-stepper.

A 2 minute descum is done to get rid of any photoresist sticking on the sub-

strate. This is important since any photoresist remaining will degas and the

layers to be deposited next will peel off.

• 200 nm of a copper-gold alloy is thermally evaporated to form the meander

lines. The composition of the Au-Cu alloy is 85% copper and 15% gold by

weight. The composition of the alloy is critical, since the resistivity of the

binary system varies significantly [6]. This binary system’s resistivity, 7.5 ×

10−8 Ωm at 4 K, is an order of magnitude larger than that of gold or copper.

The higher resistivity ensures that the meander line has enough resistance

at cryogenic temperatures to function as RLC filter. The resistance of the

meander lines is typically ∼ 4.5 kΩ.

• The meander line is then insulated by deposition of 1µm PECVD silicon ni-

tride. The square contact pads are exposed by a patterned trench etch, as

shown in Figure A.1 (a).

The microfabricated meander lines are then cleaved into individual pieces, so that

they can be inserted into a “pillbox” designed to shield the filters electromagneti-

cally. The schematic of the design is depicted in Figure A.2. Each of the filters is

placed in a compartment of the pillbox, and the ground plane is contacted with the

ground of the system (the dilution refrigerator support), by using dense silver epoxy
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Figure A.2: Placement of each of the individual filters in a brass “pillbox” for
electromagnetic shielding. The filters are soldered to wires using indium. The
indium wire in the center of the box is used to fill the gap between the individual
filters and the cover of this “pillbox”. (Not to scale.)
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Figure A.3: Result of fitting for a current step using a Fermi function. The black
stars show the experimental data and the grey solid line is the result of fitting. The
electron temperature calculated from this fit is 38± 3 mK.



239

at one point on the edge of the chip. This provides a good way to contact the ground

plane and the pillbox without resorting to a couple more layers of lithography. The

leads from each of the lines are soldered onto the pads using indium wire. Care

should be taken to wash away any flux used during soldering, since it provides a

parasitic path to ground. A small piece of indium is then used to bridge the gap

between the chip and the lid of the pillbox. I should point out that I have used

thin braided coax to connect the samples lines and the filters, so as to minimize

coupling with noise from the unfiltered lines. I have used these filters for several

(∼ 10) cool-downs and have found that they withstand the thermal cycling well.

During these cool-downs I have had to replace filters on two lines due to leakage to

ground.2

A.2 Result of using these filters

The improvement in the electron temperature due to the addition of the filter can

be measured by fitting one of the current steps in the I-V characteristics with a

Fermi function. The temperature extracted from the width, after correcting for

the capacitive division, is a measure of the electronic temperature.Figure A.3 shows

the result of such a fitting. The temperature extracted from this measurement is

38± 3 mK; the uncertainty arises from the measurement of the capacitance ratios,

and from the fitting procedure. One other way to benchmark the filter is also to

measure the width of a current step as a function of the temperature of the dilution

refrigerator. This can be done easily in a stable manner by heating the mixing

chamber using a heater with feedback. Figure A.4 shows the result from such an

2I have made several spare filters that are with Kirill Bolotin and they can be used to replace
the bad ones.
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Figure A.4: This plot shows the measured width of a Fermi function, a measure of
the electron temperature Te, fitted to a current step, as a function of the temperature
of the mixing chamber temperature. The dashed line is a guide to the eye, and shows
the deviation of the measured width from a linear dependence on mixing chamber
temperature.



241

experiment. We notice that the electron temperature follows the temperature of

the refrigerator at higher temperatures, however, at lower temperatures there is a

departure from this linear behavior (as indicated by the dashed line which is a guide

to the eye). This sort of departure is expected if the noise level starts dominating.

What is interesting is that this departure from linearity is not abrupt, but gradual.

There are several effects that could contribute to this: the samples had not really

reached the temperature indicated by the thermometer on the mixing chamber, or

the temperature calibration of the thermometer on the refrigerator is not accurate. I

haven’t looked into this carefully, and this may be a good short project for a starting

graduate student who can do a careful calibration with a gated device. It is clear

that we can attain electron temperatures of ∼ 40 mK. This electron temperature

may not be the lowest attained,3 but it is one of the lower temperatures.

3The Saclay group has measured an electronic temperature of 30 mK in their experiments [3].
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