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Abstract: We study numerically the effects of finite curvature and
ellipticity of the Gaussian beam on propagation through a saturating
nonlinear medium. We demonstrate generation of different types of
pattern arising from the input phase structure as well as the phase
structure imparted by the nonlinear medium.
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In recent times, there has been considerable interest[1, 2, 3, 4, 5, 6, 7, 8] in the study
of propagation of a beam with certain phase structure, say a vortex structure through
a nonlinear medium. The phase structure can give rise to an angular momentum [9] for
the beam. It is also known that the phase of the Gaussian beam changes sign [10] as one
crosses the focus. It should further be noted that the nonlinear wave equation couples
amplitudes and phases, as the nonlinear polarization is in, general complex. Thus, one
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would expect that the point at which a beam enters the nonlinear medium would be
very important. Besides the sign of the nonlinearly is also important. Keeping this in
view, we have carried out a numerical study of the propagation of a complex Gaussian

beam|[10]
ika? _ iky2> pikz—iwt (1)
2qx 2qy

through a nonlinear medium with saturable nonlinearity. The complex parameter ¢ in
Eq.1 can be written as gz y = i2Rz,y — 2 + 20 Where zrgy .y = ww%z,y/)\ is the Rayleigh
range and the beam waist is located at z = zy. We will throughout assume that the entry
face of the nonlinear medium is at z = 0. Thus for positive (negative) zy the beam’s
waist is inside (outside before the entry face) the medium and we have a converging
(diverging) beam. The saturable nonlinearity will be the one produced by a medium
modelled as a collection of two level atoms. Hence, the induced polarization is taken as

E = Eyexp (—

(11]
A+1
P=nd <A2+1+2|G|2> ¢
A= (wg—w)/y andG:J-E/hv, (2)

where d is the dipole matrix element for the transition with frequency wg. All frequencies
have been scaled with respect to the half width v of the transition.The sign of the
detuning determines whether the nonlinearity is of focussing (A < 0) or defocussing
(A > 0) type. The parameter 2G is the scaled Rabi frequency and n is the density of
atoms. On scaling all frequencies with respect to v and all lengths with respect to [ (the
length of the medium), the wave equation in slowly varying envelope approximation can
be written as

oG i _, . ial Ati
aC ﬁVLG+7<—A2+1+2|G|2>G’ )
2 o
2 e - -
Vi o= <3x3+3y8>’
z x y
C = —7,T0= 7,Y% = 7,

l l l

where « is the absorption coefficient at line centre

Arnd?w
a=—-:
hey

We will solve Eq.3 subject to the initial condition

ikxdl?  ikydl?
G = Gpexp (——2% — 20, ) , (5)

with complex q.

The pattern formation is very sensitive to the focussing or defocusing nature of
the medium as well as to the converging or diverging nature of the Gaussian beam. The
results also depend on the ellipticity of the beam. Simulations were done for propagation
of a converging elliptic Gaussian beam through a focussing nonlinear medium with A =
—18 and a = 300. The medium thickness was taken to be 7.5¢m. The Gaussian beam of
A = 780nm. and complex radius of curvatures g, = .12 4+ 2.5¢m. and g, = .21 4 2.5cm.
was propagated through the medium. To find out the proper aperture size and correct
number of iterations the simulations were done with following parameters.
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1. The simulations were done first on a 256x256 mesh. The iteration number in
each case was decided by observing the convergence of the pattern for different number
of iterations. Therefore, the number of iteration for different cases varies from 60 to 100.
For converging beams, it was found that the entrance aperture, of four times that of
the beam size along both the axes was sufficient for the propagation of 99 percent of
the total beam. In case of diverging beams, the aperture size was adjusted to allow 99
percent of the beam through it at the exit plane.

2. In all cases of converging beams, the simulations were repeated with a 512x512
mesh and the aperture was five times of the beam size at the entrance plane. It was
found that the results were more or less same as obtained with 256x256 mesh. Therefore,
it was decided to use a 256x256 mesh with four times beam size aperture along both
the axes.

In successive figures, we present patterns for different cases. All the figures are
drawn in pseudo colors. The color shades change from red, yellow, green, blue and
magenta for the intensities changing from zero to one. In Figs. 1-6, we present results
for the focussing (A < 0) medium. Some results for the defocusing medium (A > 0)
are shown in Fig.7 and Fig. 8. The figures 1-3 (4-6) show the formation of patterns
for convergent (divergent) beams. Fig.9 shows the intensity profile and zero lines of the
real and imaginary part of the beam at different planes inside the nonlinear medium.
This figure shows several crossings of the contours of Re E =0, Im E = 0 suggesting
the generation of vortices [7, 12]. It must be added that the propagation of an elliptic
beam through a Kerr medium has been studied previously [1]. For weak ellipticity, the
propagation through a saturating medium has also been studied [8]. The flower-like
patterns were observed by Grynberg et al [5] who used a feedback mirror. In their case
the distance between neighbouring flower petals is roughly determined by the distance
of the feedback mirror to the medium. We have presented results in altogether different
regimes where the interplay of diffraction and the self-induced phase shift in beam is
causing the pattern formation. We also note that for zy >> zp, the incoming beam
is almost a plane wave. However the strong nonlinearity is quite sensitive to the small
curvature of the wavefront.

In conclusion, we have shown numerically how the finite curvature of the in-
put beam can generate very different kind of patterns which depend on the conver-
gent/divergent nature of the beam and on the focussing or defocusing characteristics of
the medium. The ellipticity of the beam gives rise to optical vortices, which multiply as
the nonlinearity of the medium increases.

Figure 1.  Patterns obtained with propagation of a converging circular-Gaussian
beam through a focusing nonlinear medium. The medium was placed at several
positions before the beam waist. A = —18, o = 300, Go = 30, and ¢ = (20 + .21%)
cm. The successive frames (from left to right) are for zo = 3.0, 3.5, 4.0 and 5.0 cm.
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Figure 2.  Patterns obtained with propagation of a converging elliptic-Gaussian
beam through a focusing nonlinear medium. The medium was placed at several posi-
tions before the beam waist. A = —18, o = 300, Go = 30, and ¢ = [z0+.12¢, z0+.217]
cm. The successive frames (from left to right) are for zg = 2.5, 3.0, 3.5, 4.0 and 5.0
cm.

Figure 3.  Patterns obtained with propagation of a converging elliptic-Gaussian
beam through a focusing nonlinear medium. The medium was placed at before the
beam waist. A = —18, ¢ = [z0 + .12i, 20 + .21i] cm. Patterns were generated for
different values of o and Gy. For different frames the value of o = 300, 400, and
500 (from top row to bottom row) and the value of Go = 30, 40, and 50 (from left
column to right column)

ofofofo

Figure 4. Patterns obtained with propagation of a diverging circular-Gaussian
beam through a focusing nonlinear medium. The medium was placed at several
positions after the beam waist. A = —18, a = 300, Go = 30 and g = (20 +.217) cm.
Aperture was 8 times of the input beam size along both the axes. The successive
frames (from left to right) are for zg = —3.0, -3.5, -4.0 and -5.0 cm.
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Figure 5. Patterns obtained with propagation of a diverging elliptic-Gaussian
beam through a focusing nonlinear medium. The medium was placed at several po-
sitions after the beam waist, A = —18, a = 300, Go = 30, and q = [z0+.121, z0+.214]
cm. Aperture was 8 times of the input beam size along both the axes. The successive
frames (from left to right) are for zo = —2.5, -3.0, -3.5, -4.0 and -5.0 cm.

Figure 6. Patterns obtained with propagation of a diverging elliptic-Gaussian
beam through a focusing nonlinear medium. The medium was placed at 2.5cm
after the beam waist. A = —18, and ¢ = [-2.5 + .12¢, —2.5 + .214] cm. Patterns
were generated for different values of a and Gy. Aperture was 8 times of the input
beam size along both the axes. For top row frames @ = 300, and for the bottom
row frames o = 400. The value of Gy = 30, 40, 50 (from left to right)

Figure 7. Patterns obtained with propagation of a diverging elliptic-Gaussian
beam through a defocusing nonlinear medium. The medium was placed at sev-
eral positions after the beam waist. A = —18 o = 300, Go = 30, and
q = [z0 + .12, 20 + .217] cm. Aperture was 12 times of the input beam size along
both the axes. The successive frames (from left to right) are for zgp = —3.0, -4.0 and
-5.0 cm.
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Figure 8.  Patterns obtained with propagation of a converging elliptic-Gaussian
beam through a defocusing nonlinear medium. The medium was placed at sev-
eral positions before the beam waist. A = —18, a = 300, Go = 30, and
g = [20 + .12i, 20 + .214] cm. Aperture was 12 times of the input beam size along
both the axes. The successive frames (from left to right) are for zg = 3.0, 4.0 and
5.0 cm.

Figure 9.  Intensity profiles (left) and zero lines (right) of the real (red line)
and imaginary (blue line) part of an elliptic beam propagating through a focusing
nonlinear medium. The input beam was a converging beam as the medium was
placed at 2.5 cm before the waist of the beam. A = —18, a = 300, Go = 30, and
g = [2.5 + .12¢,2.5 + .214] cm. Aperture was 4 times of the input beam size along
both the axes. The successive frames were recorded at different positions inside the
medium. From top to bottom z = 4.5, 6.75 and 7.5 cm.
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