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Abstract
Chronic pancreatitis is known to be a heterogeneous 
disease with varied etiologies. Tropical calcif ic 
pancreat i t is (TCP) is a severe form of chronic 
pancreatitis unique to developing countries. With 
growing evidence of genetic factors contributing to the 
pathogenesis of TCP, this review is aimed at compiling 
the available information in this field. We also propose 
a two hit model to explain the sequence of events in 
the pathogenesis of TCP.
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INTRODUCTION
Pancreatitis is a heterogeneous disease with varied 
etiologies, defined as an inflammatory disease of  the 
pancreas leading to morphologic changes that typically 
cause pain and/or loss of  function. Chronic pancreatitis 
(CP), [Online Mendelian inheritance in man (OMIM) 
167800], is a continuing inflammatory disease which 
eventually leads to morphologic changes characterized 
by irreversible destruction and fibrosis of  the exocrine 
parenchyma, leading to exocrine pancreatic insufficiency 
and progressive endocrine failure leading to diabetes. 
Histologic changes from the normal pancreatic 
architecture include irregular fibrosis, acinar cell loss, 
islet cell loss and inflammatory cell infiltrates, and 
distorted and blocked ducts[1]. Thus expert “state-of-the-
science” reviewers conceded that “chronic pancreatitis 
remains an enigmatic process of  uncertain pathogenesis, 
unpredictable clinical course, and unclear treatment”[2]. In 
most developed countries, alcohol causes about 60%-70% 
of  the cases of  chronic pancreatitis in male patients, 
and unknown causes are responsible for 25% of  cases, 
termed as idiopathic chronic pancreatitis (ICP). Tropical 
calcific pancreatitis (TCP, OMIM 608189) is a juvenile 
form of  chronic calcific non alcoholic pancreatitis, seen 
almost exclusively in developing countries of  the tropical 
world[3]. In the most simple of  terms, tropical calcific 
pancreatitis has been described as a disease with “pain in 
childhood, diabetes in puberty and death at the prime of  
life”[4].

TCP patients in former years were mostly children, 
adolescents, or sometimes young adults, who had 
common characteristics of  malnutrition, deficiency 
signs, a cyanotic hue of  enlarged lips, bilaterally enlarged 
parotid glands, a pot belly, and sometimes pedal edema. 
However, the clinical features and presentation of  
tropical pancreatitis has changed over the past 50 years 
with an older age of  onset; severe malnutrition being 
uncommon with many patients being of  ideal body 
weight which is attributed to improved nutritional 
status[5-8].

The cardinal manifestations of  TCP are recurrent 
abdominal pain in childhood, followed by onset of  
diabetes mellitus a few years later. Prevalence of  
pancreatic calculi in TCP is nearly 90%, which is much 
higher than in alcoholic pancreatitis (30%)[9]. Pancreatic 
calculi varying in size and shape are demonstrable 
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throughout the markedly dilated main duct forming a 
ductogram and in some cases even in the dilated ductules 
mimicking a pancreatogram[9,10]. Early reports on TCP 
identified patients only in the late stages of  the disease 
when extreme emaciation and other obvious clinical 
signs of  protein malnutrition, such as bilateral parotid 
gland enlargement as well as skin and hair changes of  
kwashiorkor, dominated the clinical picture[11]. A recent 
population based study in southern India has shown 
the prevalence of  TCP to be 0.02% in the general 
population[12]. Histopathological changes include dilation 
of  the main pancreatic duct, intralobular fibrosis in early 
and interacinar fibrosis in later stages[13]. Unlike other 
forms of  CP, the diabetes secondary to TCP has been 
given the unique name of  ‘fibrocalculous pancreatic 
diabetes’ (FCPD). 

ETIOPATHOGENESIS OF TCP
Etiopathogenic mechanisms of  TCP are still unclear. 
Based on the observation that TCP almost exclusively 
affects the poor population of  developing nations, 
malnutrition was strongly suspected to be a major 
etiologic factor. The role of  under-nutrition in the 
etiology of  TCP has been extensively reviewed[14-17]. 
However, recent observations suggest that malnutrition 
could be the effect rather than the cause of  the disease. 
The geographical distribution of  TCP coincides with 
the areas of  consumption of  cassava (Tapioca, Manihot 
esculenta), which is the staple diet of  poor people 
in Kerala, a state in India. Cyanogen toxicity in the 
presence of  malnutrition and antioxidant deficiency 
has been proposed as an ideal setting for free radical 
injury[18]. However, TCP is prevalent in many parts of  
India and Africa where cassava is not consumed and 
is not seen in West African populations consuming a 
high cassava diet[19]. A study on rats fed with a cassava 
diet for one year did not produce either pancreatitis or 
diabetes[20]. Thus it is unlikely that cassava ingestion can 
explain the majority of  cases of  TCP seen world wide 
and the current opinion is that cyanogen toxicity is not 
relevant in its etiopathogenesis. The contribution of  
dietary factors like proteins, and carbohydrates is not 
clear. The micronutrient deficiency-induced free radical 
hypothesis[21,22] remains to be proven and certainly merits 
further studies.

GENETICS OF TCP
It had been hypothesized about a century ago that the 
first important step in the development of  pancreatitis 
is the inappropriate activation of  trypsinogen in the 
pancreas[23,24]. Three different trypsinogens; cationic, 
anionic and meso, representing 23.1%, 16% and 0.5% of  
total pancreatic secretory proteins respectively, have been 
described in human pancreatic juice[25]. Normally, after 
trypsinogen is secreted into the duodenum it becomes 
active due to the action of  an intestinal endopeptidase 
called enterokinase at the Lys15-Ile16 peptide bond, 
releasing the N-terminal octapeptide called trypsinogen 

activation peptide (TAP). It is thought that generally 
about 5% of  trypsinogens get activated within the 
normal pancreas, but the pancreas has several safety 
mechanisms to cope with the premature activation 
of  these enzymes, which would otherwise lead to 
indiscriminate proteolysis (autodigestion)[26].

Trypsin is known to lose its activity spontaneously 
by autolysis at the initial hydrolytic point of  trypsin 
at Arg122-Lys123, which renders it more susceptible 
to further degradation[27]. A~6 kDa protein termed 
pancreatic secretory trypsin inhibitor (PSTI) or serine 
protease inhibitor Kazal type Ⅰ (SPINK1 , OMIM 
167790) is present in the secretory granules of  acinar 
cells which binds to the active site of  trypsin in a 1:1 ratio 
and inhibits tryptic activities. Other safety mechanisms 
are the presence of  trypsin inhibitors in plasma including 
α1-antitrypsin and β2-microglobulin, which inhibit the 
trypsin that leaks into the interstitial space around the 
pancreas[26]. It has been hypothesized that the primary 
mechanism to prevent trypsin injury inside the acinar 
cell is to maintain calcium at low levels[28]. Trypsinogen 
activation and trypsin survival are known to be regulated 
by calcium. Once trypsinogen is secreted into the duct, 
the calcium-dependent mechanisms utilized by the 
acinar cell for protection from trypsin become irrelevant 
because the calcium levels in the duct are quite high. 
Instead, the duct is protected through maintenance of  an 
alkaline pH and by rapid flushing of  the zymogens and 
prematurely activated enzymes out of  the pancreas and 
into the duodenum[29]. Thus, trypsinogen plays a key role 
in the initiation of  pancreatitis by evading the protective 
mechanisms leading to autodigestion of  pancreas.

A high-density map of  the human genome based 
on polymorphic simple tandem repeat (STR) markers 
and familial linkage analysis on several affected and 
unaffected individuals in several generations made it 
possible to identify an hereditary pancreatitis (HP) 
gene locus on chromosome 7q35[30,31]. Subsequently 
a mutation (365G>A) leading to arginine to histidine 
substitution at 122 position (R122H) in cationic 
trypsinogen gene [protease, serine, 1 (trypsin 1)(PRSS1), 
OMIM 276000], was found to be associated with 
hereditary pancreatitis[32]. Subsequent studies reported 
other PRSS1 alterations including A16V, N29T, R116C, 
and R122C, as well as several others, in families with 
suspected hereditary pancreatitis or in patients without a 
family history (www.uni-leipzig.de/pancreasmutation)[33]. 
The current model of  PRSS1 mutations suggests that 
the identified mutations cause enhanced auto-activation 
of  trypsinogen to trypsin or prevent prematurely 
activated trypsin from being inactivated by autolysis. 

Familial aggregation is seen in about 8% of  TCP 
patients. In some families, there has been evidence of  
vertical transmission of  TCP from patients to offspring, 
while in others horizontal distribution of  the disease 
among siblings was reported[34]. Familial aggregations 
suggest a genetic etiology for TCP. However, on 
screening known susceptibility factor, PRSS1, reported 
to be associated with HP and CP in Western populations, 
no association with TCP was found[35-37]. Instead, the 
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inhibitor of  trypsinogen called SPINK1 has been 
reported to be strongly associated with TCP[38,39]. An 
A>G transition at 101 nucleotide position in the SPINK1 
gene leading to substitution of  asparagine by serine at 
codon 34 (N34S) has been reported with its highest 
frequency (approximate 46%) found so far in the Indian 
population[37]. Similar associations with varying strength 
have been reported by several studies, establishing 
SPINK1 as a strong candidate for contributing to the 
pathogenesis of  TCP[40,41]. Loss of  function mutations 
in protease inhibitor SPINK1 is thought to result in 
sustained “super-trypsin” activity. However, no genotype-
phenotype correlation was found in patients carrying the 
N34S SPINK1 mutation in homozygous or heterozygous 
states[42] and a wide variability has been reported in 
the pattern of  inheritance[40]. Functional studies with 
human recombinant N34S SPINK1 did not show altered 
trypsin inhibitor capacity or secretion[43-45]. An animal 
model deficient of  Spink3, the murine orthologue of  
human SPINK1, showed progressive disappearance of  
acinar cells due to autophagic cell death and impaired 
regeneration. Thus, it might be surmised that SPINK1 
plays an essential role in the maintenance of  integrity and 
regeneration of  acinar cells[46]. Nevertheless, pathogenic 
mechanisms of  N34S remain obscure. However, 
N34S has been observed to be in complete linkage 
disequilibrium with four intronic variants, 56-37T>C, 
87+268A>g, 195-604G>A, 195-66_-65insTTTT[47], one 
of  which may be pathogenic.  Thus, in spite of  being the 
strongest predictor and an important risk factor in the 
pathogenesis of  TCP, the mechanism of  N34S SPINK1 
still remains elusive.

Mutations in anionic trypsinogen [protease, serine, 
2 (trypsin 2) (PRSS2), OMIM 601564] have been 
hypothesized to cause the disease by a mechanism 
similar to that of  PRSS1. Earlier studies by various 
groups in ICP and TCP patients did not find associated 
polymorphisms in PRSS2[48,49]. However, a glycine to 
arginine change at codon 191 in PRSS2 screened in a 
European population has been demonstrated to play a 
protective role against chronic pancreatitis[50]. Functional 
studies on purified recombinant G191R protein revealed 
that generation of  a novel tryptic cleavage site within the 
mutated gene product makes the enzyme hypersensitive 
to autocatalytic proteolysis, thus playing a protective role 
in chronic pancreatitis. However, data from a study by 
Chandak’s group (manuscript under review) suggests 
that this variant may not have a significant role to play in 
the Indian population. A very low allele frequency in the 
control populations and a comparable frequency in TCP 
patients are suggestive of  the variant allele being neutral 
to natural selection. This could possibly be due to the 
dietary patterns marked by low protein consumption.

An association of  Cystic fibrosis transmembrane 
regulator (CFTR, OMIM 602421) gene with alcoholic 
pancreatitis and ICP has been reported, where about 
13.4%[51] and 25.9% [52] of  patients in two studies 
were shown to carry at least one mutation in the 
gene. A study by Noone et al[53] revealed association 
of  CFTR mutations with ICP and a possibility of  its 

interaction with PRSS1 and SPINK1 mutations in 
western populations. However, the frequency of  CFTR 
mutations was found to be lower in TCP patients[54], and 
needs to be studied in a larger group of  patients.

Prev ious s tud ie s w i th syn the t i c subs t r a t e s 
demonstrated a similarity between cathepsin B (CTSB, 
OMIM 116810) and trypsin in their specificity towards 
synthetic substrates. This made it of  interest to observe 
if  cathepsin B might activate trypsinogen. There is 
evidence to suggest that partially purified beef  spleen 
cathepsin B activates trypsinogen to a trypsin-like 
product. Studies on native and recombinant cationic 
trypsinogen assigned a central role of  cathepsin B in 
the development of  different forms of  pancreatitis[55]. 
It was recently shown that polymorphisms in CTSB are 
associated with TCP[56]. Mutations in the propeptide 
region of  the CTSB gene like L26V and S53G have 
been found to be associated with TCP and it has been 
hypothesized that inappropriate localization of  cathepsin 
B protein in zymogen granules due to these mutations 
could lead to premature activation of  trypsinogen. 
This not only suggests an important role for CTSB 
polymorphisms in TCP, but also advocates emphasis on 
factors likely to change the pH or alter the intracellular 
calcium levels.

An important feature of  TCP is the high incidence 
of  pancreatic calcification and stone formation. It 
has been suggested that lithostathine C [coded by 
regenerating islet-derived protein (Reg) genes], a major 
proteic component of  pancreatic stone in patients with 
alcoholic calcifying chronic pancreatitis, could promote 
the nucleation of  calcite crystals or may prevent 
pancreatic lithiasis by inhibiting calcite crystal nucleation 
and growth in the pancreatic juice. With suggestions 
that it might help in preventing the harmful activation 
of  protease precursors in the pancreatic juice, it was 
thought to be a logical assumption that mutations in 
this gene could lead to pancreatitis and calcification[57]. 
Exons of  Reg1α gene (OMIM 167770) were screened 
for associated polymorphisms, but no association has 
been found so far[58,59]. As the protein is known to be 
down-regulated in TCP patients, a recent study screened 
the gene including the putative promoter and intronic 
regions, but did not find a significant association with 
TCP[60]. Reg1α is highly represented in human pancreatic 
secretions unlike Reg1β (OMIM 167771), which is 87% 
homologous to Reg1α and is not extensively studied and 
remains to be characterized[61].

Progression to diabetes, called fibro-calculous 
pancreatic diabetes (FCPD), which takes place in a 
majority of  TCP patients, is another important feature 
of  TCP, but the nature of  the diabetes is controversial. 
A recent study, hypothesized that investigating a 
known susceptibility factor for T1D or T2D can help 
in understanding the type and mechanism of  diabetes 
in FCPD patients. In this study type 2 diabetes (T2D) 
associated polymorphisms in transcription factor 7 like 
protein 2 (TCF7L2, OMIM 602228) were screened in 
TCP and FCPD patients. Although no association was 
found with FCPD independently, data suggested that the 
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polymorphisms in TCF7L2 may interact with SPINK1 
and CTSB mutations and cause FCPD[62].

Increased accumulation of  extracellular matrix is 
a histological characteristic of  chronic pancreatitis 
that results in pancreatic fibrosis (Haber et al, 1999). 
Angiotensin converting enzyme (ACE, OMIM 106180), 
a zinc metallopeptidase which is a key enzyme of  
the renin-angiotensin system (RAS) and is known to 
proliferate hepatic stellate cells, has been hypothesized 
to play a role in pancreatic fibrosis in TCP patients. A 
polymorphism within intron 16 (g.11417_11704del287) 
of  the ACE gene is strongly related to the circulating 
enzyme levels in a dose dependent manner. However, no 
association of  this polymorphism has been found with 
TCP[63].

Genetic and functional data from a recent study by 
Rosendahl et al[64] identified chymotrypsin C (CTRC, 
OMIM 601405) as a new pancreatitis-associated gene and 
discovered that loss-of-function alterations in the gene 
predispose to pancreatitis by diminishing its protective 
trypsin-degrading activity. The same was shown to be 
true with TCP patients. Their observations provided 
support for the trypsin-dependent pathogenic model 
of  chronic pancreatitis in humans by demonstrating 
that trypsin-trypsinogen degradation by CTRC is an 
important mechanism for maintaining the physiological 
protease-antiprotease balance in the pancreas. Copy 
number variations, i.e. triplication of  a 605 kilobase 
segment containing the PRSS1 and PRSS2 genes have 
been reported in hereditary pancreatitis patients[65]. A 
study by Masson et al[66] revealed the molecular basis 
of  6% of  young ICP patients demonstrating chronic 
pancreatitis to be a genomic disorder. However, no copy 
number variations were found in TCP patients to provide 
evidence, showing that trypsinogen gene mutations do 

not play an important role in the pathogenesis of  TCP 
in the Indian population.

Mutations involving the calcium sensing receptor 
(CASR , OMIM 601199) have been suggested to 
increase the risk of  chronic pancreatitis (CP), since high 
intracellular levels of  calcium activate trypsinogen within 
the acinar cells. A combination of  CASR and SPINK1 
gene mutations has been proposed to predispose to 
idiopathic CP[67]. A study by Murugaian et al[68] identified 
4 novel CASR mutations in TCP patients and concluded 
that the risk of  disease may be further increased if  there 
is an associated SPINK1 mutation.

CONCLUSION
In conclusion, all the established mutations in the 
cationic trypsinogen gene, including the copy number 
polymorphism, are not a common cause of  tropical 
calcific pancreatitis in the Indian population[37,66]. The 
model for etiopathogenesis of  TCP emerging from the 
available information is presented in Figure 1. Many 
aspects of  TCP remain unclear. What triggers intra-
pancreatic trypsin activation, and in the presence of  
an intact autolysis site how is it maintained in an active 
state? Are the various manifestations of  TCP, such as 
calcification, ketosis resistant diabetes mellitus, pancreatic 
cancer and fibrosis, consequences of  a proteolytic 
cascade of  prematurely activated trypsin? Since TCP 
is a complex disease, in addition to candidate gene 
analysis which has undoubtedly been influential, there 
is a necessity for a more comprehensive and holistic 
approach to understand its etiopathogenesis, to help 
early detection and discover possible treatment. The role 
of  environmental factors as disease modifiers cannot be 
undermined. An in-depth study of  the contribution of  
dietary- and lifestyle-related factors, and their association 
with genetic variants would yield interesting leads.
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