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Abstract

DNA methylation is crucial for gene regulation and maintenance of genomic stability. Rat has been a key model system in
understanding mammalian systemic physiology, however detailed rat methylome remains uncharacterized till date. Here,
we present the first high resolution methylome of rat liver generated using Methylated DNA immunoprecipitation and high
throughput sequencing (MeDIP-Seq) approach. We observed that within the DNA/RNA repeat elements, simple repeats
harbor the highest degree of methylation. Promoter hypomethylation and exon hypermethylation were common features
in both RefSeq genes and expressed genes (as evaluated by proteomic approach). We also found that although CpG islands
were generally hypomethylated, about 6% of them were methylated and a large proportion (37%) of methylated islands fell
within the exons. Notably, we obeserved significant differences in methylation of terminal exons (UTRs); methylation being
more pronounced in coding/partially coding exons compared to the non-coding exons. Further, events like alternate exon
splicing (cassette exon) and intron retentions were marked by DNA methylation and these regions are retained in the final
transcript. Thus, we suggest that DNA methylation could play a crucial role in marking coding regions thereby regulating
alternative splicing. Apart from generating the first high resolution methylome map of rat liver tissue, the present study
provides several critical insights into methylome organization and extends our understanding of interplay between
epigenome, gene expression and genome stability.
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Introduction

The genome per se appears to be static, incorporating stable

changes in sequence in spans of generations. However, higher

organisms require versatile characteristics in order to maintain

homeostasis with their fluctuating environmental niche [1,2]. To

cater to such needs, mechanisms of chemical modifications of

chromatin have evolved, that retains the genetic code but

transiently alter its functional potential [2]. Such modulations

are termed epigenetic modifications; key modifications include

acetylation/methylation of histones and methylation of cytosine

bases [1]. Aberration/dysregulation of these epigenetic signatures

influences the transcription and leads to altered protein expression.

The regulation and characteristics of DNA methylation remains

enigmatic although it has been implicated in a range of processes

like genomic integrity, X chromosome inactivation, genomic

imprinting, transposon silencing and diseases like cancer, cardio-

vascular diseases, etc [3–7]. Thus, for a comprehensive under-

standing of these processes and manifestation of related diseases

along with their prognosis, it is imperative to investigate the

distribution pattern of DNA methylation at genomic level [4–6].

With the advent of newer technologies, elucidation of

methylation profiles as a function of the genome is now possible.

In this regard, immunoprecipitation of methylated DNA by

monoclonal antibodies specific to 5-methylcytidine (5mC)

(MeDIP) followed by microarray analysis (MeDIP-Chip) or direct

sequencing (MeDIP-Seq) has been used as a valuable tool to map

methylated DNA on a genomic scale [8,9]. The MeDIP-Seq

approach provides sequence-level information that aids in

distinguishing highly similar sequences as opposed to MeDIP-

Chip (using microarrays) where technical drawbacks of cross

hybridization, prior knowledge for probe design and low sensitivity

from poorly methylated regions limits its use in the study of whole

genome methylation [10–12]. However, unlike whole genome

bisulfite sequencing which provides single base resolution of

methylated cytosines, MeDIP-Seq gives sequences of the region

that are enriched in methylation [13].

A significantly lower cost and ease of data analysis makes

MeDIP-Seq an attractive method to study tissue or cell specific

genome-wide methylation profiles [13]. Such studies using model

systems have revealed some unique features of the methylome

landscape like promoter hypomethylation and gene body hyper-
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methylation [14]. In the context of model systems, human along

with mice and rat (Rattus norvegicus) forms a triumvirate which has

been extensively used to study various aspects of mammalian

biology [15]. However, although a number of human pathologies

have been probed in terms of its epigenetic component using mice

and human, reports based on rat are barely handful [6,16–18]. For

diseases like cancer, cardiovascular diseases, neurological disor-

ders, etc where rat is the primary animal model to investigate

physiological alterations, a high resolution DNA methylation map

is necessary to understand their regulation at molecular level [15].

Moving a step closer to addressing some vital questions to

understand the basic methylome structure, we have for the first

time generated a high resolution methylome of a rat liver.

Analysis of the rat liver methylome revealed low methylation

around transcription start sites (TSS) and high methylation at

exons, which is in agreement with previously reported observa-

tions in other model systems [19,20]. We observed that although

CpG islands in general had low methylation, some of these

islands located mainly within exons were methylated. We also

observed that intron/exon boundaries had a distinctive methyl-

ation pattern with the terminal exons (UTR’s) being lowly

methylated. However, if even part of these terminal exons

contained protein coding region, they were found to be

methylated. Similarly, we observed DNA methylation marks on

the coding exons and at introns that are classified in intron

retention category of alternate splicing. High methylation at

introns predicted their inclusion in transcript as validated using

Reverse transcriptase PCR (RT-PCR). Our findings support the

notion that DNA methylation, either independently or in

conjunction with other components of the epigenome, might

play an important role in alternate splicing.

Results

We generated MeDIP libraries enriched for methylated fraction

of the rat liver genome by using Illumina’s sequencing protocol

that was modified according to Down et al [8]. The efficiency of

enrichment was checked by real-time quantitative PCR using

known imprinted regions and regions lacking CG sites as control

for methylated and unmethylated regions respectively. We

achieved a significant enrichment efficiency of ,30–250 folds as

shown by an E value of 4.93 to 8.91 (Table S1).

The MeDIP libraries were sequenced on Illumina Genome

Analyzer (GAIIx) to generate the first high resolution methylome

map of rat liver. We used Mapping and Assembly with Qualities

(MAQ) algorithm to assemble the reads onto the reference genome

(rn4) downloaded from UCSC Genome Bioinformatics and

obtained ,120 million pass filter reads [21,22]. From this, we

generated 264,454 methylation peak summits using Model-based

analysis of ChIP-Seq (MACS) (Excel S1, Figure S1) [23].

Saturation curves showing the depth of sequencing were plotted

by a systematic data reduction approach using MACS which

confirmed that we had generated sufficient data to cover the whole

genome (Table S2; Figure S2). The ,4.3 GB of sequence data

generated in our study was comparable to earlier reports where

,1.4 GB of sequence data (in humans) was shown to provide

sufficient genome coverage in a MeDIP-Seq experiment [24]. Our

data showed high degree of concordance between two replicates as

evident from Figure S3. The correlation of methylation peaks

(r = 0.84) obtained in our study was similar to that reported in

other studies [25]. We independently validated the results obtained

in MeDIP-Seq by randomly sequencing a few methylated and

unmethylated regions after bisulfite conversion and cloning (Figure

S4).

DNA methylation framework of the Rattus norvegicus
genome

Individual chromosomal distribution of methylation as a

function of GC percentage, RefSeq genes (16,908) and CpG

Islands (15,302) in rat genome (data downloaded from UCSC

Genome Bioinformatics) is shown in File S1 and representative

figures for three chromosomes (1,2 and 3) are shown in Figure 1.

To ascertain relative methylation in each bin, we performed a

detailed analysis by calculating the ratio of methylated peaks

located in a particular class (like exons, introns, promoters, repeats,

etc) to the total area of that class in the genome (Figure 2A). As

repeats occupy a major portion of the mammalian genome we

looked at the methylome architecture in context of different repeat

classes and found that they account for half (53.3%) of total

methylation peak summits encompassing whole genome [26]. We

observed differential methylation of repeat elements with high

methylation in simple repeats (41%), DNA repeat elements (20%)

and low complexity repeats (15%) (Figure 2B). Within the gene

body, exons showed higher methylation than introns and UTRs.

The average methylation of promoters was found to be the lowest

amongst all the classes in the gene body (Figure 2 Figure S5).

Class distribution of CpG Islands based on methylation
CpG islands (CGI) are pivotal foci for epigenetic modulations,

generally believed to be unmethylated, except for the islands

located at the genomic imprinting loci and those present on the

inactivated X chromosome [3]. However, recent evidences point

to the fact that some of the CpG islands may be methylated

[27,28]. We found that of the 15809 CpG islands reported in the

UCSC genome bioinformatics for rat, about 6.4% (n = 1020) were

methylated (Figure 3). We then categorized both methylated and

unmethylated CGIs based on their size (Table S3) and queried the

numbers of CGI in each class. We found that a large proportion

(48%) of methylated CGI were in the size range of 200–300 bases

and the number of CGIs decreased with increase in the size of the

islands. Further, we found that methylated CGIs were enriched in

exons compared to other classes (37%), while unmethylated ones

were mainly present in the promoters followed by exons (Figure 3).

Promoter and Gene Body Methylation
Regulations of genes are known to be affected by methylation

in the promoter or in the gene body [29,30]. As expected, the

average methylation pattern at Transcription start site (TSS) in

RefSeq genes showed a V shaped curve indicative of low

methylation levels at the TSS (Figure 4A). Since all the RefSeq

genes are not expressed in a particular tissue, we looked at the

methylation pattern around the TSS of highly and lowly

expressed genes. To analyze this, we downloaded the data for

the genes expressed in liver from a microarray study (GSE19830)

[31]. Genes that had expression levels greater or lower than one

standard deviation from the mean were considered to be highly

or lowly expressed respectively. On plotting the methylation

density, we found that the highly expressed genes showed a

typical V shape curve at the TSS while lowly expressed ones did

not show any such pattern (Figure 4B). To further validate these

findings, we employed a high throughput proteomics approach

(GeLC-MS followed by mass spectrometry using Orbitrap LTQ)

and applying stringent criteria [95% false discovery rate (FDR),

with two peptide or one unique peptide hit], we obtained 494

high confidence proteins expressed in the same liver tissue (Excel

S2). These expressed proteins also exhibited low level of

methylation at their proximal promoter regions (2 kb upstream

of TSS) similar to the highly expressed genes. This suggests

First High Resolution Rat Methylome
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existence of a differential pattern of promoter methylation

(proximal vis à vis distal), which may in turn play a crucial role

in regulating gene expression.

Inside the gene body, we observed that exons were more

methylated than the introns. At the intron-exon (6200 bases from

exon start site)/exon-intron (6200 bases from exon end site)

junctions for all RefSeq gene exons, the exon start site was found

to be more methylated than the exon end site (intron start site) and

there was a sharp transition at the exon boundaries (Figure 5A, B).

To check if the methylation patterns in TSS and exon-intron

and intron-exon boundary that we observed in rats are also similar

in human and mice, we downloaded the MeDIP-Seq data from

the Sequence Read Archive (SRA) and processed it through the

same pipeline i.e, peak identification by MACS. We found that the

methylation pattern at the TSS of RefSeq genes in human and

mice have patterns that are similar to rat methylome data (Figure

S6A, B and C). Further, the exon intron junctions also follow a

similar pattern in human and mice (Figure S7A, B and C). This is

consistent with earlier reports in human embryonic stem cells and

neonatal fibroblasts [20]. Thus, DNA methylation may define the

splicing boundaries of a gene, thereby helping RNA polymerase II

in recognizing exons in a sea of intronic DNA.

We observed a marked elevation of methylation at exons which

is apparent at the exon start site and similarly the decrease in

methylation density at the approach of exon end site. Interestingly,

while the first exon also followed the same pattern their

methylation density was lower than that generally observed for

all RefSeq exons (Figure 5A). The methylation at the beginning of

the first and the last exon were lower than other exon

(Figure 5A,B). Since, the first and last exons usually constitute

the 59UTR and 39 UTR regions respectively, we checked

methylation levels in first exons and last exons that either contains

or lacks coding region and noted that DNA methylation marked

the start sites of these exons only if they formed a part of the

protein coding sequence (Figure 6A, B). This was further

substantiated by the observations that methylation levels up to

the second exon were substantially lower in genes where coding

starts from the third exon (Figure S8). For instance, in Ccdc 75

gene where coding region starts from the 3rd exon and first two

exons, that comprise the UTR, are unmethylated (Figure 7). To

confirm that the pattern of cytosine methylation associated with

coding part of the transcript is not restricted to rat liver only, we

compared methylation levels from human brain tissue, an entirely

different tissue type from phylogenetically distant species

Figure 1. Chromosomal distribution of DNA methylation. Graphical representation of chromosome wide distribution of methylation peaks of
chromosome 1, 2 and 3 along with their GC percentage (dark black color), Refseq genes (blue color), CpG Islands (green color), and chromosome
band in UCSC Genome Browser.
doi:10.1371/journal.pone.0031621.g001
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(Figure 6C, D). Despite significant divergence with respect to

tissue and species, we still observe that UTRs are generally not

marked by methylation, unless the exon they are a part of, also

contains protein coding region. This highlights the conserved

nature of DNA methylation pattern in protein coding sequences

across species and tissue fates. To prove this point further, we

analyzed the methylation status of ‘‘introns’’ that are known to be

retained in the transcript (intron retention). We downloaded the

Figure 2. Methylation density in different genomic regions. Methylation density within promoter, gene body and repeats was calculated by
dividing the peak summit count in that region by the area of that region. Further repeats were classified in different classes and average methylation
level of each class was calculated and plotted.
doi:10.1371/journal.pone.0031621.g002

Figure 3. Genomic distribution of methylated and unmethylated CGI. CpG Island of each methylated and unmethylated Islands were
classified in different bins on the basis of size. A – Number of methylated CpG Islands in a particular bin was calculated in different regions like intron,
exon, promoter (5 kb upstream from the transcription start site) and rest was put in others category. The count was then normalized by the total
number of CpG Island in that bin. B – Number of unmethylated CpG Island of bin was calculated in different regions like intron, exon, promoter (5 kb
upstream from the transcription start site) and others, and the count was then normalized by the total number of CpG Islands in that bin.
doi:10.1371/journal.pone.0031621.g003

First High Resolution Rat Methylome
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data from the Alternative Splicing and Transcript Diversity

(ASTD) database, selecting only the unique entries in intron

retention (IR) class [32]. We found methylation levels within

introns that are retained to be markedly higher compared to

constitutive introns that are spliced out (Figure 8; Figure S9A). To

confirm that these introns are indeed a part of the mRNA, we

performed intron specific RT-PCR in rat liver tissue for a few

such introns which were found to be methylated in our data. We

isolated RNA from rat liver and converted it into cDNA by RT-

PCR using primers that would specifically amplify the introns if

Figure 4. Average methylation density around transcription start site (TSS). A - Distribution of peak summit count in 100 bp sliding
window, 5 kb upstream and downstream from the start site was calculated for all RefSeq genes and identified liver proteins. Count was normalized
by dividing individual count with total number of genes in that category. The plot obtained of RefSeq and identified liver proteins were further
smoothened by taking a moving average of 5. B – Similar distribution of peak summit count in 100 bp sliding window, 5 kb upstream and
downstream from the transcription start site was calculated for up regulated and down regulated genes in normal rat liver tissue. Smoothing of peaks
was done by taking moving average of 5.
doi:10.1371/journal.pone.0031621.g004

Figure 5. Average methylation density at the intron-exon-intron junctions. Distribution of peak summit count in 10 bp sliding window,
200 bp upstream and downstream from the start site and end site of exons was calculated for all RefSeq gene exons, first exon and all last exons.
Smoothing of peaks was done by taking moving average of 5.
doi:10.1371/journal.pone.0031621.g005
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they are retained in the transcript (Figure S10A). Similarly, RT-

PCR was done for constitutive introns (that were not methylated),

which acted as controls. We found that the introns that are

methylated are indeed retained in the transcript while the

constitutive introns that were unmethylated were not a part of the

final transcript (Figure S9B). This strengthens our conclusion that

DNA methylation is possibly used as a mark to label the introns

as candidates for inclusion within the final transcript by enabling

them to evade splicing.

To further prove our point, we analyzed the methylation

pattern at the boundaries of cassette exons (of alternative splicing

events from ASTD). Interestingly, we observed a marked elevation

in methylation density at intron-exon junction in constitutive

exons but only mildly higher methylation density at the intronic

part of the intron-exon boundary in cassette exons compared to

that of the constitutive suggestive of the role of DNA methylation

in marking these exons for splicing (Figure 8 Figure S10B).

Overall, our observations indicate an important role for DNA

methylation in regulation of splicing events and final constitution

of the protein sequence.

Discussion

DNA methylation has two crucial evolutionarily conserved

functions. It is one of the subtle control elements that govern gene

response to environmental cues and also chief defense mechanism

for the genome against selfish mobile elements. Genome-wide

methylation map provides a thorough quantitative and qualitative

assessment of genomic methylation; a prerequisite for understand-

ing its functional potential both in terms of maintenance of

genomic stability as well as gene regulation. There is increasing

evidence to show that in addition to its role in X-chromosome

inactivation, genomic imprinting, and maintenance of cellular

transcriptional memory during development, DNA methylation

plays an important role in predicting the course of complex

diseases [1,3,33].

To understand the importance of DNA methylation in disease

causation and progression it becomes imperative to analyze the

basal methylome of various tissues in different model systems.

Despite rat being a well established model system for studying

several complex disorders, methylome from a control rat is not

Figure 6. Methylation distribution of first and last exons based on presence and absence of coding region. The first and last exons
were further classified as coding exons and non-coding exons based on the fact that they contain coding region within them or not. (a), (b)
represents the methylation of rat RefSeq first exon and last exons while (c), (d) represent the methylation pattern in Human RefSeq first exon and last
exons plotted using the MeDIP-Seq data from Human brain tissue. Distribution of peak summit count in 10 bp sliding window, 200 bp upstream and
downstream from the start site and end site of exons was calculated for first exon and all last exons. Smoothing of peaks was done by taking moving
average of 5.
doi:10.1371/journal.pone.0031621.g006
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available. Since of complex disorders have a metabolic component

and liver is a key regulator of mammalian metabolism, we

preferentially choose to look at the liver methylome. To our

knowledge this is the first high resolution mammalian liver

methylome and it is expected that the rat methylome generated in

this study will help the research community to investigate aberrant

DNA methylation in several complex disorders for which well

established rat models already exist.

Although MeDIP-Seq has several advantages, it runs a risk of

generating false positive results especially when raw tags are

directly used for assessing methylation levels. We used MACS to

sharpen methylation peak summits for better score and thus

overcome this problem, MACS improves the spatial resolution of

aligned data and imparts robustness to the final alignment of

sequences on the basis of a dynamic poisson distribution which

corrects for local biases in the genome [23].

Since, this is the first report of rat methylome, we have several

interesting observations. We observed that repeat regions in

general are highly methylated. Approximately 41.9% of rat

genome is covered by repeats which include ten different classes.

Figure 7. Methylation marks the coding region. Third exon of the Ccdc 75 gene shows methylation in MeDIP-Seq data as visualized in UCSC
genome browser.
doi:10.1371/journal.pone.0031621.g007

Figure 8. Methylation in alternate splice events. Methylation in genomic features along with Intron retention class of alternative splicing events
was calculated. Genomic features include RefSeq exons, introns, identified liver expressed gene exons and introns. Three bins were created: 1) 200 bp
upstream from start site of the event, 2) from start site to end of the event, 3) 200 bp downstream from the end. Peak summit count obtained in all
bins was normalized by dividing the count with the area of that bin. Distribution of peak summit count in 10 bp sliding window, 200 bp upstream
and downstream from the start site of all RefSeq exons and cassette exons.
doi:10.1371/journal.pone.0031621.g008
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Repeat elements are usually associated with chromosome

instability, translocation and gene disruption via transposition or

recombination events [6,34]. Methylation of repeat elements is

known to silence the repeat region and prevent reactivation of

endoparasitic sequences [35,36]. Consequently, repeat regions

have been reported to account for a major proportion of genomic

methylation which is substantiated by our data. Simple repeats

were hypermethylated to a greater extent (,20% of total

methylation peak summits) vis a vis other repeat classes and thus

might hinder recombination and consequent chromosome insta-

bility [37]. LINE (Long Interspersed Nuclear Elements) and LTR

(Long Terminal Repeats) were also significantly methylated and

accounted for 16% and 11.4% of total methylation peak summits.

Methylation of LTRs is crucial in maintenance of genomic

stability since transcriptional silencing at these loci via DNA

methylation suppresses the initial stages of retrotransposition. A

recent study has shown that one endogenous retrovirus (ERV)

class i.e., ERV-K-type family contributes to genome variability in

inbred rat strains [38]. Therefore, such defence mechanism is

important for rodents who harbour active ERV within their

genomes.

Although methylation occurs at 70–80% of cytosines that are

followed by guanine bases (CpG), there are regions in the genome

known as CpG islands (CGI) which are generally believed to be

unmethylated in spite of having high GC percentage [3]. These

regions are known to play a key role in gene regulation and their

aberrant methylation has been reported in various disease

conditions such as cancer and several neurological/autoimmune

disorders [6]. Our study for the first time provides a catalogue of

methylated and unmethylated CGIs in adult rat liver which will

aid in better understanding of the disease mechanism in rat models

of such diseases. While earlier reports investigating CGI had

established hypomethylation as a hall mark of CGIs, a recent

report indicates that a small proportion of these islands might be

methylated. Straussman et. al. showed that methylated CGIs are

generally shorter in size. We for the first time show that these

methylated CGIs are significantly enriched in exons and are

shorter in size in the rat genome [27]. We also show a distinct

methylation pattern upstream of CGIs irrespective of their

methylation status with a dip in the methylation levels upstream

(,1 Kb) of CGI start site (Figure S11). Although, this trend is

recurrent in rat methylome, we could not identify any underlying

specific sequence motif. It is plausible that there are sequence

independent messages that bring about this pattern of methylation

distribution immediately preceding CGI.

Our data also shows that about 1/3rd of unmethylated CGIs are

distributed within the promoter region which are important for

expression of genes. Analysis of methylation status across promoter

regions of RefSeq genes and expressed genes revealed a V shaped

curve, due to declining methylation near TSS which is in

agreement with other reports [20,39]. Expressed genes, like

RefSeq genes, were less methylated at proximal promoter region

while methylation at distal promoter in both categories was higher.

Therefore, collectively the methylation status of proximal

promoter diverges from that of the distal promoter. Such a

divergence might stem from increased probability of existence of

CpG Island at the proximal promoter.

DNA methylation along with nucleosome positioning has been

shown to be enriched at the exonic positions in the genome hinting

at a role in splicing [40]. During splicing, which generally occurs

co-transcriptionally, gene splicing machinery needs to accurately

distinguish an exon from an intron [41]. Earlier reports have

shown that splicing is influenced by chromatin structure [42]. Our

observation that intron-exon-intron junctions are distinctly

marked by DNA methylation thus supports the hypothesis that

chromatin modification and DNA methylation probably work in

tandem to regulate splicing [42,43]. Choi et al. have shown that

the coding margins constituting coding start and end boundaries

are demarcated by DNA methylation [44]. However, inclusion of

UTR in the final transcript has hitherto remained unexplained.

Our analysis revealed that UTR recognition and retention is

independent of DNA methylation. In general, UTRs were not

marked by methylation unless a part of UTR was included in the

coding sequence, in which case they were found to be methylated.

A similar pattern was also observed on analysis of human brain

tissue, thus, advocating a universal identification code conserved

over different species and tissue types. In the light of this

observation we suggest that protein coding region of genes harbor

distinctly elevated methylation levels in comparison to the non-

coding regions, which might help in splicing as postulated by

earlier studies [40].

Anastasiadou et al. has recently analyzed a small data set

derived from Human Epigenome Project and reported a possible

link between methylation and splicing [45]. Our observation of

altered methylation in alternately spliced events like cassette exons

and intron retention and that of marking of UTR containing

coding region with DNA methylation suggests that DNA

methylation is possibly used as a mark to label these introns and

exons as candidates for inclusion within the final transcript and to

enable them to evade splicing. It has been reported that co-

transcriptional splicing requires the recruitment of splicing factors

at splice sites during transcription, even though completion of

intron removal may occur post-transcriptionally [41,46]. This

dynamic link between splicing and transcription has been partially

explained by RNA Pol II kinetic model of alternative splicing,

which states that recognition of splice sites is dependent on the rate

of RNA Pol II elongation [46]. Therefore, it can be perceived that

DNA methylation along with chromatin road blocks like

nucleosome positioning may cause slowing down of RNA Pol II

and lead to alternate splicing. This view is also supported by the

fact that nucleosomes and RNA Pol II and DNA methylation (as

found in our study) are enriched at the alternate splice sites

[46,47]. Thus, we speculate that DNA methylation may directly or

indirectly via nucleosome positioning affect splice site choice and

thereby decide the sequence of the final transcript.

Overall, our results show that DNA methylation is one of the

marks that a cell employs to distinguish between protein coding

and non-coding regions of the genome. Interestingly, methylation

seems to mark all the coding exons more than the non-coding ones

suggesting presence of an under-appreciated link between DNA

modification and coding. While generating the first high resolution

methylome map of rat liver, the present study has provided ample

intriguing and critical insights into methylome organization and

function of cytosine methylation in defining the coding region in a

gene. Further studies to validate the functional potential can help

identify key methylation signatures in diverse cellular contexts

including altered, disease states, which would not only increase our

knowledge base but also empower us to design better epigenetic

diagnostics.

Materials and Methods

Genomic DNA extraction
The experiment was carried out in Wistar rats in accordance

with the ‘principles of laboratory animal care’ (US Department of

Health, Education and Welfare: Guide for the Care and Use of

Laboratory Animals. Washington, DC, U.S. Govt. Printing Office,

1985, (NIH publ. no. 85–23) and with the approval of the

First High Resolution Rat Methylome
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‘Institute’s Ethical Committee on Animal Experiments’ at the

National Institute of Nutrition, Hyderabad, India. Genomic DNA

was isolated from liver of two adult Wistar rats using protocol from

Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia, USA) and

20 mg/mL RNase was used to degrade the RNA present in the

sample. DNA integrity was verified by agarose gel electrophoresis.

Quality and quantity of DNA was measured using Nano-Drop

Spectrophotometer and Quant-iT PicoGreen dsDNA Reagent

and Kits (Invitrogen, USA) respectively.

Methyl-DNA immunoprecipitation sequencing (MeDIP-
Seq)

Before carrying out MeDIP, we sonicated genomic DNA to

produce random fragments ranging in size from 100 to 500 bp

and purified using the PCR purification kit (Qiagen). Based on the

manufacturer’s recommended protocol, we then end-repaired,

phosphorylated and A-tailed the fragmented DNA and ligated

Illumina single read adapters to the fragments. We used ,4 mg of

adaptor-ligated DNA for subsequent MeDIP enrichment. Briefly,

following adaptor ligation, DNA was denatured at 95uC for

10 min. Immunoprecipitation was then carried out at 4uC for 3 hr

using 10 mg of monoclonal antibody against 5-methylcytidine

(Eurogentec) in a final volume of 500 ml IP buffer (10 mM sodium

phosphate (pH 7.0), 140 mM NaCl, 0.05% Triton X-100). We

incubated the mixture with 40 ml of Dynabeads with M-280 sheep

antibody to mouse IgG (Dynal Biotech) for 2 hr at 4uC and

washed it seven times with 700 ml of IP buffer. We then treated the

beads with proteinase K for 4 hr at 50uC and recovered the

methylated DNA by phenol-chloroform extraction followed by

ethanol precipitation. PCR amplification by Illumina single read

PCR primers was performed as described earlier. We performed

agarose gel electrophoresis and excised bands from the gel to

produce libraries with insert sizes of ,200 bp, and quantified

these libraries using the Quant-iT PicoGreen dsDNA Reagent and

Kits (Invitrogen). We then prepared flowcells with 14 pM DNA

using the manufacture’s recommended protocol and sequenced for

36 cycles on an Illumina Genome Analyzer II. Obtained images

were analyzed and base-called using GA pipeline software version

1.3 with default settings provided by Illumina.

PCR and real-time PCR on MeDIP samples
We carried out real time PCR reactions with 0.5 ng of input

DNA and immunoprecipitated methylated DNA. For real-time

PCR reactions, we used the SYBR Green PCR master mix

(Kappa Biosystems) and Roche - LightCycler 480 System. For

each qRT-PCR reaction (total volume of 10 ml), we used 5 ml

SYBR Green PCR master mix and 2 ml primer mix (0.5 mM

each). Reaction conditions were as follows: 1 cycle at 95uC for

30 seconds, 35 cycles at 95uC for 30 seconds and 1 cycle at Tm

for 30 seconds. Experiments were done in triplicates. We have

followed the method described by Tomazou et al to evaluate the

relative enrichment of target sequences after MeDIP [9]. Briefly

we normalized the Ct of the MeDIP fraction to the Ct of the input

(DCt). Subsequently we normalised the DCt of each target

sequence to the DCt of an unmethylated control sequence (DDCt).

Finally, the enrichment was calculated as E = 2DDCt. Refer Table

S4 for primer sequence

RT-PCR
Total RNA (1 mg) was isolated using the RNeasy RNA isolation

kit (Qiagen) and reverse transcribed using Superscript III

(Invitrogen) using random hexamers, according to the manufac-

turer’s protocol. PCR were performed on 1 ml of complementary

DNA or a comparable amount of RNA with no reverse

transcriptase, using AmpliTaq Gold DNA Polymerase (ABI

Biosystems). The list of primers is attached in Table S4.

Bisulfite Sequencing
DNA (0.5 mg), from same rat liver sample was bisulfite

converted using the EZ DNA methylation kit (ZYMO Research)

according to the manufacturer’s protocol.PCR was performed

using primers flanking the methylated and unmethylated regions.

PCR products were cloned into pGEMH-T (Promega). Randomly

clones were sequenced and then analyzed using BiQ Analyzer

[12]. Refer Table S4 for primer sequence.

Data Download and Analysis
We downloaded the rat genome sequence and mapping

information (rn4) from the University of California Santa Cruz

Genome Bioinformatics Site (http://genome.ucsc.edu). The reads

were mapped onto the rat genome reference sequence using the

high-performance alignment software ‘maq’ version 0.7.1 (http://

maq.sf.net) and those with maq quality less than 10 were removed

from further analysis. We used MACS (version 1.4.0 beta) for peak

detection and analysis of immunoprecipitated single-end sequenc-

ing data to find genomic regions that are enriched in a pool of

specifically precipitated DNA fragments.

The Browser Extensible Data (BED) files of the Human Brain

MeDIP seq was downloaded from the SRA012488 [14]. These

BED files were then merged and analyzed by MACS to generate

peak summit coordinates. The summit files were then used for

further downstream analysis. The data for the analysis of alternate

splicing events was downloaded from the EBI ASTD database

version 1.1 (http://www.ebi.ac.uk/astd/main.html;jsessionid =

8E5318CC1D7E9AF0E003465EE3084922).The IPI IDs of identi-

fied liver proteins were searched for their gene IDs in ENSEMBLE

genome browser and then in UCSC Genome Bioinformatics for

gene coordinates. Of the 524 proteins, we could get 494 gene IDs

and further analysis was done using these proteins.

For analyzing the methylation pattern between the highly vs

lowly expressed genes we downloaded microarray gene expression

data for control rat liver from Gene Expression Omnibus (GSE

19830). Data analysis was done using Bioconductor package Affy,

via R programming language. Average of the normalized

intensities of all three replicates was converted to log base 2, and

then statistically highly and lowly expressed (mean 6 standard

deviation) genes were used to check the methylation pattern across

their TSS in a 100 kb sliding window.

The RefSeq genes, repeat element and CGI coordinates of

human and rat were downloaded from UCSC Genome Bioinfor-

matics. The CGIs in our study follow the three basic character-

istics, a) length greater than 200 bp, b) GC content .50% and c)

CpG Observed/Expected .0.6. The methylation status of the

CpG Islands was determined by mapping the methylation peak

summits (from MeDIP-Seq data) on the CpG islands. Islands

having methylation peak summits were designated methylated

islands while the rest were termed unmethylated.

For describing the methylation of any event, we have used the

term ‘‘methylation density’’, which in the case of all bar plots is the

ratio of methylation peak summit count in the given region to the

area in base pairs of that region (Figure 1, 2, 7). While in the case

of line plots, methylation density refers to the ratio of methylation

peak count vs number of data points (Figure 3, 4, 5).

1D SDS-PAGE and In-Gel Tryptic Digestion
Briefly, 100 mg of total protein of rat liver was separated in 12%

SDS-polyacrylamide gel using the Biorad SDS-PAGE setup. The
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protein lane was excised from the gel and chopped into 5 equal

fractions. These fractions were digested with trypsin (promega

V511A) as mentioned earlier [48].

Nano-RP-LC MS/MS analysis-
Nanoflow LC MS was performed by coupling a split-free nano

LC system (Proxeon nano-LC) with the LTQ Orbitrap mass

spectrometer (Thermo Electron, Bremen, Germany). A 3 cm pre-

column (100 mm i.d) packed with 5 mm Synergi C18 100Å reverse-

phased material was connected via a micro-tee fitted with an

electrode for voltage application. This was connected to a 10 cm

fused silica microcapillary analytical column (100 mm i.d) with a

homemade laser pulled spray tip packed with 5 mm Synergi C18

100 Å reversed phase resin. Each fraction was loaded using a

proxeon auto sampler and injected onto a sample storage loop.

After equilibrating the columns with 30 ul buffer A at a flow rate

of 6 ul/min and 10 ul buffer A at a flow rate of 0.8 ul/min

respectively, the sample stored in the loop was loaded onto the

trap column for desalting and then onto the analytical column for

reverse-phased separation of separation of peptides. A stepwise

gradient of the organic phase (Buffer B- 100% and 0.1% formic

acid) with a constant flow rate of 300 nl/min was run for a total of

140 min. The composition of the gradient is as follows- 1% Buffer

B for 20 min, 45% for 110 min and 100% for 2 min extended to

100% buffer B for 8 min. Nitrogen gas used as sheath (75psi) and

auxiliary gas(10 units) gas with the heated capillary at 200uC. CID

experiments employed helium with 35% collision energy. The

resolution was set to 60000 at positive polarity. The LTQ

Orbitrap mass spectrometer was operated in a data dependent

MS/MS mode consisting of a full scan at mass range 350–

2000 m/z at FTMS mode followed by four data-dependent scans

performed in linear ion trap in which the four topmost intense ions

was subjected to MS/MS. Dynamic mass exclusion was enabled

with a repeat count of once every 30 seconds for a list size of 500.

Protein Identification and Data Analysis
The .raw spectral files containing MS and MS/MS data were

submitted to Proteome Discoverer 6.0 (Thermo Scientific, San

Jose, CA) and searched using Sequest algorithm in IPI rat

database (IPI.rat.v3.67.). The search was performed against IPI

database V3.74 with specified precursor ion mass tolerance of 10

ppm and fragment ion mass tolerance of 0.8 Dalton with 2 missed

tryptic cleavages. Oxidation of methionine was set as dynamic

modification while carbamidomethylation of cysteine was set as

static modification. To eliminate false discovery, the spectra were

searched against decoy database 1% targeted and 5% relaxed

FDR. The results of all five fractions were combined to give a

multi-consensus report.

Online Data Submission
The MeDIP-Seq data from this study have been submitted to

the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.

gov/geo/) under accession no. GSE31571. Proteome data and

methylation tracks can be accessed from the following links

respectively URL: http://genome.igib.res.in/epigenome/medip/

rat_proteome.rar. and http://genome.igib.res.in/SSG/SSG_

MEDIP_rat_liver_control_methylation_tracks.tar.gz.

Supporting Information

Figure S1 MACS model for MeDIP-Seq data. The reads

generated from the MeDIP sequencing was processed through

MACS (Model-based Analysis for ChIP-Seq) software version

1.4.0 beta for the generation of MACS model. The fragment size

was 200 bp and the distance d between the forward and the

reverse tags is 38.

(TIF)

Figure S2 Saturation curve. The curve shows saturation at

the end on plotting the percentage of peak covered by sampling (y-

axis) against the percentage of raw reads take during data

reduction approach (x-axis).

(TIF)

Figure S3 Concordance between replicates. Read cover-

age at each base pair was calculated separately for both the

replicates and then Pearson’s correlation was calculated using R

programming and statistical language.

(TIF)

Figure S4 Bisulfite validation of MeDIP Seq data. Two

regions (SSG06 and SSG08) showing high methylation and one

region showing no methylation (SSG04) but with a number of

CpGs were sequenced after bisulfite conversion and PCR

amplification.

(TIF)

Figure S5 Methylation density in different bins. Methyl-

ation density within genomic features along with all the repeat

class (DNA, RNA, LTR, LC, LINE, SINE, SATELLITE,

SIMPLE REPEAT, OTHER REPEATS, and UNKNOWN

REPEATS) and rRNA (a component of RNA class) was

calculated. Genomic features include RefSeq exons, introns,

identified liver expressed gene exons and introns.

(TIF)

Figure S6 CpG methylation distribution around TSS in
Human, mice and rats. Average methylation density around

Transcription Start Site (TSS) of 3 different species. Distribution of

peak summit count in 100 bp sliding window, 5 kb upstream and

downstream from the start site was calculated for all RefSeq genes

of A – Human and B - Mouse. Smoothing of peaks was done by

taking moving average of 5.

(TIF)

Figure S7 CpG methylation distribution at exon bound-
aries in Human, mice and rats. Methylation density around

Exon/Intron junction of 3 different species. Distribution of peak

summit count in 10 bp sliding window, 200 bp upstream and

downstream from the start site was calculated for all exons of A-

Human and B– Mouse. Smoothing of peaks was done by taking

moving average of 5.

(TIF)

Figure S8 Methylation density at the start site of non
coding 2nd exons. Distribution of peak summit count in 10 bp

sliding window, 200 bp upstream and downstream from the start

site was calculated for all 2nd exons which were non coding.

Smoothing of peaks was done by taking moving average of 5.

(TIF)

Figure S9 Methylation distribution in alternate splice
events. CpG methylation distribution in two different alternate

splice events. A: Distribution of peak summit count in 10 bp

sliding window, 200 bp upstream and downstream from the start

site of all RefSeq exons and cassette exons. Smoothing of peaks

was done by taking moving average of 5. B: Distribution of peak

summit count in 10 bp sliding window, 200 bp upstream and

downstream from the end site of RefSeq exons and introns of

Intron Retention class. Smoothing of peaks was done by taking

moving average of 5.

(TIF)
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Figure S10 PCR amplification products of alternate
splice events. PCR amplification of introns of IR category

showing methylation in our MeDIP-Seq data (A; IRM1 to IRM7)

and their constitutive counterparts (B; IRC1 to IRC7).

(TIF)

Figure S11 Methylated and Unmethylated CGI distri-
bution around TSS. Methylation pattern in methylated/

unmethylated CpG Island around their start site. Distribution of

peak summit count in 100 bp sliding window, 5 kb upstream and

downstream from the start site was calculated for methylated and

unmethylated CpG Islands.

(TIF)

Table S1 Real Time PCR validation of the MeDIP
process. The methylated regions were selected as imprinted

regions either in rat (H19) or in Human and mice (Gnas). Negative

regions were randomly taken from the genome where there were

no CpGs. The enrichment is shown as E.

(DOCX)

Table S2 Table showing percentage of reads versus
percentage of peaks called by MACS. Table showing the

data generated by MACS employing data reduction approach

after the model generation.

(DOCX)

Table S3 Distribution of CGI based on size. Distribution

of mCGI and uCGI based on their size and genomic location.

(DOCX)

Table S4 Primer list. List of primers used in the study: The

list contains primers used for calculating MeDIP-Seq enrichment

efficiency, for bisulfite PCR and those used for the reverse

transcriptase PCR of the rat liver cDNA.

(DOCX)

File S1 Chromosomal distribution of methylation. The

methylation tracks visualized in UCSC genome browser with CGI

tracks and RefSeq genes for all chromosomes.

(DOCX)

Excel S1 Methylation peak summit file. Details of each

methylation peak generated by MACS.

(XLSX)

Excel S2 List of proteins found in proteomics study.
Proteins with their accession Ids and related information.

(XLSX)
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