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Abstract

A class of C�-algebras called quantum Heisenberg manifolds were introduced by Rieffel

in (Comm. Math. Phys. 122 (1989) 531) as strict deformation quantization of Heisenberg

manifolds. Using the ergodic action of Heisenberg group we construct a family of spectral

triples. It is shown that associated Kasparov modules are homotopic. We also show that they

induce cohomologous elements in entire cyclic cohomology. The space of Connes–deRham

forms have been explicitly calculated. Then we characterize torsionless/unitary connections

and show that there does not exist a connection that is simultaneously torsionless and unitary.

Explicit examples of connections are produced with negative scalar curvature. This part

illustrates computations involving some of the concepts introduced in Frohlich et al. (Comm.

Math. Phys. 203 (1999) 119), for which to the best of our knowledge no infinite-dimensional

example is known other that the noncommutative torus.
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1. Introduction

Let

G ¼
1 y z

0 1 x

0 0 1

0B@
1CA: x; y; zAR

8><>:
9>=>;

be the Heisenberg group of three by three upper triangular real matrices with ones on
the diagonal. For a positive integer c; let Hc be the subgroup of G obtained when
x; y; cz are integers. The Heisenberg manifold Mc is the quotient G=Hc: Nonzero
Poisson brackets on Mc invariant under left translation by G are parametrized by

two real parameters m; n with m2 þ n2a0 [12]. For each positive integer c and real

numbers m; n; Rieffel constructed a C�-algebra Ac;_
m;n as an example of deformation

quantization along a Poisson bracket [12]. These algebras have further been studied
in [1,2,13]. It was also remarked in [12] that it should be possible to construct
example of noncommutative geometry as expounded in [6] in these algebras also. It is

known [12] that Heisenberg group acts ergodically on Ac;_
m;n and Ac;_

m;n accommodates a

unique invariant tracial state t: Using the group action we construct a family of
spectral triples. It is shown that they induce same element in K-homology. We also
show that the associated Kasparov module is nontrivial. This has been achieved by
constructing explicitly the pairing with a unitary. We also compute the space of
forms as described in [6,7]. Then we characterize torsionless and unitary connections.
As an immediate corollary it follows that a torsionless unitary connection cannot
exist. For a family of unitary connections we compute Ricci curvature and scalar
curvature as introduced in [7]. This family has nontrivial curvature. The construction
of the canonical completely positive semigroup (heat semigroup in analogy with the
classical case) and its stochastic dilation will be treated else where.
Organization of the paper is as follows. In Section 2, after introducing the algebra

we compute the GNS space of t using a crucial result of Weaver [13]. In the next
section, following a general principle of construction of spectral triple on a C�-
dynamical system with dynamics governed by a Lie group, we construct spectral
triples and compute the hypertrace [5,10] associated with the spectral triple. In
Section 4, we compute the space of forms [6, Chapter V]. There are not too many
instances of this computation in the literature. In Section 5, after briefly recalling the

notions introduced in [7], we compute the space of L2-forms and characterize
torsionless/unitary connections. In the next section we compute Ricci curvature and
scalar curvature for a concrete family of unitary connections. In Section 7, we show
that the spectral triples we consider give rise to same Kasparov element and that they
have nontrivial Chern character.

2. The quantum Heisenberg algebra

For xAR; we will denote e2pix by eðxÞ:
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Definition 1. For any positive integer c let Sc denote the space of infinitely
differentiable functions F :R� T� Z-C that satisfy the following two
conditions:
(a) Fðx þ k; y; pÞ ¼ eðckpyÞFðx; y; pÞ for all kAZ; and

(b) for every partial differential operator eXX ¼ @mþn

@xm@yn on R� T and every

polynomial P on Z; the function PðpÞð eXXFÞðx; y; pÞ is bounded on K � Z for any
compact subset K of R� T:

For each _; m; nAR; m2 þ n2a0; let AN

_ denote the space Sc equipped with product

and involution defined, respectively, by

ðF%CÞðx; y; pÞ

¼
X

q

Fðx � _ðq � pÞm; y � _ðq � pÞn; qÞCðx � _qm; y � _qn; p � qÞ; ð2:1Þ

F�ðx; y; pÞ ¼ %Fðx; y;�pÞ: ð2:2Þ

Let p be the representation of AN

_ on L2ðR� T� ZÞ given by

ðpðFÞxÞðx; y; pÞ ¼
X

q

Fðx � _ðq � 2pÞm; y � _ðq � 2pÞn; qÞxðx; y; p � qÞ: ð2:3Þ

Then p gives a faithful representation of the involutive algebra AN

_ : The norm

closure of pðAN

_ Þ; to be denoted byAc;_
m;n is called the quantum Heisenberg manifold.

Let N_ denote the weak closure of pðAN

_ Þ:

We will identify AN

_ with pðAN

_ Þ without any mention. Since we are going to

work with fixed parameters c; m; n; _ we will drop them altogether and denote Ac;_
m;n

simply by A_; the subscript merely distinguishes the Heisenberg algebra from a
general algebra.

Action of the Heisenberg group: To define the group action we parametrize the

points of Heisenberg group by R3: This is legitimate because as a topological space

Heisenberg group is isomorphic with R3: For FASc; ðr; s; tÞAR3

ðLðr;s;tÞfÞðx; y; pÞ ¼ eðpðt þ csðx � rÞÞÞfðx � r; y � s; pÞ ð2:4Þ

extends to an ergodic action of the Heisenberg group on Ac;_
m;n:

The trace: t :AN

_ -C; given by tðfÞ ¼
R 1
0

R
T
fðx; y; 0Þ dx dy extends to a faithful

normal tracial state on N_: t is invariant under the Heisenberg group action. So, the

group action can be lifted to L2ðAN

_ Þ: We will denote the action at the Hilbert space

level by the same symbol.
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Theorem 2 (Weaver). Let H ¼ L2ðR� T� ZÞ and Vf ;Wk;Xr be the operators

defined by

ðVf xÞðx; y; pÞ ¼ f ðx; yÞxðx; y; pÞ;

ðWkxÞðx; y; pÞ ¼ eð�ckðp2_nþ pyÞÞxðx þ k; y; pÞ;

ðXrxÞðx; y; pÞ ¼ xðx � 2_rm; y � 2_rn; p þ rÞ:

Let TABðHÞ: Then TAN_ iff T commutes with the operators Vf ;Wk;Xr for all f in

LNðR� TÞ; and k; rAZ:

Lemma 3. Let Sc
N;N;1 be the space of all functions c :R� T� Z-C satisfying the

following conditions (i) c is measurable, (ii) cn ¼ supxAR;yATjcðx; y; nÞj is an l1
sequence, and (iii) cðx þ k; y; pÞ ¼ eðckypÞcðx; y; pÞ for all kAZg: Then, for

fASc
N;N;1; pðfÞ defined by (2.3) gives a bounded operator on L2ðR� T� ZÞ:

Proof. Let eff : Z-Rþ be defined by effðnÞ ¼ supxAR;yATjfðx; y; nÞj: Then

jðpðfÞxÞðx; y; pÞjpðeff%jxðx; y; :ÞjÞðpÞ;

where % denotes convolution on Z and jxðx; y; :Þj is the function p/jxðx; y; pÞj: By
Young’s inequality we have

jjðpðfÞxÞðx; y; :Þjjl2pjjeff%jxðx; y; :Þj jjl2pjjeffjjl1 jjxðx; y; :Þjjl2

consequently jjpðfÞjjpjjfjj
N;N;1; where jjfjj

N;N;1 ¼ jjeffjjl1 : &

Remark 4. (i) Product and involution defined by (2.1), and (2.2) turns Sc
N;N;1 into an

involutive algebra.
(ii) f/jjfjj

N;N;1 is a �-algebra norm.

Lemma 5. pðSc
N;N;1ÞDN_:

Proof. Follows from Weaver’s characterization of N_: &

Proposition 6. L2ðAN

_ ; tÞ is unitarily equivalent with L2ðT� T� ZÞDL2ð½0; 1� �
½0; 1� � ZÞ:

Proof. For fASc
N;N;1; Gf :R� T� Z-C given by

Gfðx; y; pÞ ¼
eð�cxypÞfðx; y; pÞ for yo1;

fðx; y; pÞ for y ¼ 1;

�
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satisfies Gfðx þ k; y; pÞ ¼ Gfðx; y; pÞ: Also note that

tðf�%fÞ ¼
Z 1

0

Z
T

X
q

jfðx � _qm; y � _qn;�qÞj2 dx dy

¼
Z 1

0

Z
T

X
q

jfðx; y; qÞj2 dx dy;

and therefore tðf�%fÞ ¼ jjGfjj2; i.e, G : L2ðAN

_ ; tÞ-L2ðT2 � ZÞ is an isometry. To

see that G is a unitary observe that

(i) N_DL2ðAN

_ ; tÞ; since t is normal;
(ii) fm;n;k defined by

fm;n;kðx; y; pÞ ¼
eðcxypÞeðmx þ nyÞdkp for 0pyp1

dkpeðmxÞ for y ¼ 1

�
is an element of Sc

N;N;1DN_;

(iii) fGfm;n;kgm;n;kAZ is an orthonormal basis in L2ðT2 � ZÞ: &

Remark 7. f/fj½0;1��T�Z gives an unitary isomorphism.

Corollary 8. Let Myp be the multiplication operator on H ¼ L2ðT2 � ZÞ explicitly

given by ðMypf Þðx; y; pÞ ¼ ypf ðx; y; pÞ on its natural domain. If we consider AN

_ as a

subalgebra of BðHÞ by the left regular representation then ½Myp;A
N

_ �DBðHÞ:

Proof. Note that for fAAN

_ ; ðMypfÞðx; y; pÞ ¼ ypfðx; y; pÞ gives an element in

Sc
N;N;1; and hence a bounded operator. Now for cAAN

_ ;

½Myp;f�cðx; y; pÞ

¼
X

q

ðyp � ðy � _qnÞðp � qÞÞfðx � _ðq � pÞm; y � _ðq � pÞn; qÞ

� cðx � _qm; y � _qn; p � qÞ

¼
X

q

qðy � _ðq � pÞnÞfðx � _ðq � pÞm; y � _ðq � pÞn; qÞ

� cðx � _qm; y � _qn; p � qÞ

¼ ðMypðfÞ%cÞðx; y; pÞ:

This completes the proof. &
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3. A class of spectral triples

Let ðA;G; aÞ be a C� dynamical system with G an n-dimensional Lie group,
and t a G-invariant trace on A: Let AN be the space of smooth vectors,

K ¼ L2ðA; tÞ#CN where N ¼ 2In=2m: Fix any basis X1;X2;y;Xn of LðGÞ the Lie
algebra of G: Since G acts as a strongly continuous unitary group on H ¼ L2ðA; tÞ
we can form self-adjoint operators dXi

on H: Let us define D :K-K by D ¼P
i dXi

#gi; where g1;ygn are self-adjoint matrices in MNðCÞ such that gigj þ gjgi ¼
2dij : The operator D along with AN and K should be a candidate for a spectral

triple. For such a D; clearly one has ½D;AN�DAN#MNðCÞ:

Proposition 9. For the quantum Heisenberg manifold, if we identify the Lie algebra of

Heisenberg group with the Lie algebra of upper triangular matrices, then D as

described above is a self-adjoint operator with compact resolvent with the following

choice of Xi’s:

X1 ¼
0 1 0

0 0 0

0 0 0

0B@
1CA; X2 ¼

0 0 0

0 0 1

0 0 0

0B@
1CA; X3 ¼

0 0 ca

0 0 0

0 0 0

0B@
1CA;

where aAR is greater than one.

Proof. Domain of the operator D consists of all those square integrable functions f

defined on ½0; 1� � ½0; 1� � Z that satisfy the boundary conditions (i) f ðx; 0; pÞ ¼
f ðx; 1; pÞ; (ii) f ð1; y; pÞ ¼ eðcpyÞf ð0; y; pÞ; (iii) pf ; @f

@x
; and @f

@y
are square integrable. On

this domain D is defined by

Dð f#uÞ ¼
X3
j¼1

idjð f Þ#sjðuÞ;

where

id1ð f Þ ¼ �i
@f

@x
;

id2ð f Þ ¼ �2pcpxf ðx; y; pÞ � i
@f

@y
;

id3ð f Þ ¼ �2ppcaf ðx; y; pÞ;

and sj’s are the Pauli spin matrices.

Let Z : L2ð½0; 1� � ½0; 1� � ZÞ-L2ð½0; 1� � ½0; 1� � ZÞ be the unitary given by

Zð f Þðx; y; pÞ ¼
eð�cxypÞf ðx; y; pÞ for yo1;

f ðx; y; pÞ for y ¼ 1:

�
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Then domain of the operator D0 ¼ ðZ� I2ÞDðZ#I2Þ�1 is given by all those square
integrable functions f that satisfy the boundary conditions, namely (i) f ð0; y; pÞ ¼
f ð1; y; pÞ; (ii) f ðx; 0; pÞ ¼ f ðx; 1; pÞ; and (iii) @f

@x
; @f
@y
; pf are square integrable. On this

domain D0 is prescribed by

D0ð f#uÞ ¼
X3
j¼1

idj
0ð f Þ#sjðuÞ;

where

d1
0ð f Þðx; y; pÞ ¼ �2picypf ðx; y; pÞ � @f

@x
ðx; y; pÞ;

d2
0ð f Þðx; y; pÞ ¼ �@f

@y
ðx; y; pÞ;

d3
0ð f Þðx; y; pÞ ¼ 2pipcaf ðx; y; pÞ:

Note that, on DomðD0Þ;D0 ¼ T þ S where DomðTÞ ¼ DomðD0ÞDDomðSÞ and T ; S

given, respectively, by

T ¼ �i
@

@x
#s1 � i

@

@y
#s2 � 2pcaMp#s3; S ¼ 2pcMyp#s1:

These are self-adjoint operators on their respective domains. Also observe that T has
compact resolvents. Our conclusion follows from the Rellich lemma since S is

relatively bounded with respect to T with relative bound less than 1
ao1: &

Theorem 10. Let H ¼ L2ðAN

_ ; tÞ#C2; AN

_ with its diagonal action becomes a

subalgebra of BðHÞ: ðAN

_ ;H;DÞ is an odd spectral triple of dimension 3.

Proof. The fact that ðAN

_ ;H;DÞ is a spectral triple follows from the previous

proposition and the remark preceding that. We only have to show jDj�3ALð1;NÞ; the
ideal of Dixmier traceable operators [6]. For that observe:

(i) Via Fourier transform T can be identified with the operator T 0 on L2ðZ� Z�
ZÞ#C2 given by

T 0

2p
¼ N1#s1 þ N2#s2 � 2pcaN3#s3;

where Ni is the number operator on the appropriate copy of Z: Then T
02 is nothing

but N2
1 þ N2

2 þ 4p2c2a2N2
3 :Using the fact that the volume of the ball of radius r in R3

grows like r3 we get mnðT�1jkerT>Þ ¼ mnðT
0�1jkerT 0>Þ ¼ Oð1=n1=3Þ; where mn stands for

the nth singular value.

(ii) S is relatively bounded with relative bound less than 1
ao1; hence we have

jjSðT þ iÞ�1jjp1
a and jjð1þ SðT þ iÞ�1Þ�1jjp a

a�1:

(iii) mnðABÞpmnðAÞjjBjj; for bounded operators A;B:
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Applying (i)–(iii) to ðD0 þ iÞ�1 ¼ ðT þ iÞ�1ð1þ SðT þ iÞ�1Þ�1 we get the desired
conclusion for D0 and hence for D: &

Corollary 11. Let T ;S;D;D0 be as in the proof of Proposition 9. Let us denote by D0

the operator ðZ#I2Þ�1TðZ#I2Þ: Then ðAN

_ ;H;D0Þ is an odd spectral triple of

dimension 3.

Proof. We only have to show ½D0;A
N

_ �DBðHÞ: Let B ¼ ðZ#I2Þ�1SðZ#I2Þ: Then
since Z#I2 commutes with S; we have B ¼ S: By Corollary 8, ½B;AN

_ �DBðHÞ:
Now the previous theorem along with D ¼ D0 þ B completes the proof. &

Remark 12. Similarly taking Dt ¼ D0 þ tB one can show that ðAN

_ ;H;DtÞ forms an

odd spectral triple of dimension 3, for tA½0; 1�:

Remark 13. D and D0 constructed above depends on a:

Proposition 14. If f1; _m; _ng is rationally independent, then the positive linear

functional on A_#M2ðCÞ given by
R
: a/troajDj�3 coincides with 1

2ðtrojDj�3Þt#tr;

where tro is a Dixmier trace [6].

Proof. Observe that D2 ¼ ðX1

0
0

X2
Þ; where

X1 ¼ � d2
1 þ d2

2 þ d3 þ
1

2a

� �2

� 1

4a2

 !
;

X2 ¼ � d2
1 þ d2

2 þ d3 �
1

2a

� �2

� 1

4a2

 !
:

It is easily seen that:

(i) compactness of resolvents of D2 implies that for X1;X2;
(ii) eigenvalues of X1;X2 have similar asymptotic behaviour.

Therefore X
�3=2
1 ;X

�3=2
2 ALð1;NÞ and tro aX

�3=2
1 ¼ tro aX

�3=2
2 for any aAB

ðL2ðA_ÞÞ: Consider the unitary group on HDL2ð½0; 1� � T� ZÞ#C2 given by

Utðx#y#ep#zÞ ¼ eðptÞðx#y#ep#zÞ:

Then UtD ¼ DUt andZ
A ¼ tro UtAU�

t jDj�3 ¼ tro

Z 1

0

UtAU�
t dt

� �
jDj�3

� �
¼
Z

ðAÞ0;
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where

A ¼
c11 c12

c21 c22

� �
/ðAÞ0 ¼

ðc11Þ0 ðc12Þ0
ðc21Þ0 ðc22Þ0

� �
is the completely positive map given by ðcÞ0ðx; y; pÞ ¼ dp0cðx; y; pÞ for cASc: Since
1
0
0
0

� �
commutes with jDj�3; we getZ

A ¼ troða11Þ0X
�3=2
1 þ troða22Þ0X

�3=2
2

¼ troðða11Þ0 þ ða22Þ0ÞX
�3=2
1 :

Consider the homomorphism F : CðT2Þ-A_ given by Fð f Þðx; y; pÞ ¼ dp0f ðx; yÞ:
Now by Riesz representation theorem for

R
3ðF#I2Þ : CðT2Þ-C; we get a measure l

on T2 such that tro 2ðcÞ0X
�3=2
1 ¼

R
ðcÞ0ðx; y; 0Þ dl implyingZ

A ¼ 1

2

Z
ðða11Þ0 þ ða22Þ0Þ dl: ð3:1Þ

In the next lemma we show l is proportional to Lebesgue measure. That will prove

that
R
is proportional with t#tr and the proportionality constant is obtained by

evaluating both sides on I : &

Lemma 15. If f1; _m; _ng is rationally independent then l as obtained in the previous

proposition is proportional to Lebesgue measure.

Proof. It is known [5,10] that for a spectral triple ðA;H;DÞ with jDj�pALð1;NÞ for
some p; a/tro ajDj�p is a trace on the algebra. This along with (3.1) givesZ

ðf%cÞðx; y; 0Þ dlðx; yÞ ¼
Z

ðc%fÞðx; y; 0Þ dlðx; yÞ; 8f;cASc: ð3:2Þ

Taking fðx; y; pÞ ¼ eðc½x�ypÞf ðx � ½x�ÞgðyÞd1p where g :T-C; f : ½0; 1�-C are

smooth functions with suppð f ÞD½e; 1� e� for some e40 and c ¼ f� we get
from (3.2)Z

jfðx þ _m; y þ _n; 1Þj2 dlðx; yÞ ¼
Z

jf3gðx þ _m; y þ _n; 1Þj2lðx; yÞ; ð3:3Þ

where g :T2-T2 is given by gðx; yÞ ¼ ðx � 2_m; y � 2_nÞ: The hypothesis of linear
independence of ð1; _m; _nÞ over the rationals implies that g-orbits are dense. This
along with (3.3) proves the lemma. &

Remark 16. In the rest of the paper
R
will denote 1

2
t#tr:
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4. Space of forms

Lemma 17. Let A be a dense subalgebra of a unital C� algebra %A closed under

holomorphic function calculus, then A is simple provided %A is so.

Proof. Let JDA be an ideal. Then %J ¼ %A; since %A is simple. There exists xAJ such

that jjx � I jjo1: Then x�1A %A; hence in A because A is closed under holomorphic

function calculus. Therefore 1 ¼ xx�1AJ: &

Assumption 18. Henceforth, we will assume f1; _m; _ng is rationally independent. In
that case A_ is simple [12], hence so is AN

_ :

Definition 19 (Connes). Let ðA;H;DÞ be a spectral triple. Let

OkðAÞ ¼
XN

i¼1
ai
0dai

1ydai
k j nAN; ai

jAA

( )
;O�ðAÞ ¼

MN
0

OkðAÞ

be the unital graded algebra of universal forms. Here d is an abstract linear operator
satisfying d2 ¼ 0; dðabÞ ¼ dðaÞb þ adðbÞ: O�ðAÞ becomes a �-algebra under the

involution ðdaÞ� ¼ �dða�Þ for all aAA: Let p :O�ðAÞ-BðHÞ be the �-representa-
tion given by pðaÞ ¼ a; pðdaÞ ¼ ½D; a� Let Jk ¼ ker pjOkðAÞ: The unital graded

differential �-algebra of differential forms O�
DðAÞ is defined by

O�
DðAÞ ¼

MN
0

Ok
DðAÞ; Ok

DðAÞ ¼ OkðAÞ=ðJk þ dJk�1ÞDpðOkðAÞÞ=pðdJk�1Þ:

Let us introduce some notations before we proceed further. Let fASc; then
½D;f� ¼

P
diðfÞ#si where djðfÞ ¼ idjðfÞ (see proof of Proposition 9 for dj) but

looked upon as derivation onAN

_ : Also note that ½d1; d3� ¼ ½d2; d3� ¼ 0; ½d1; d2� ¼ d3:
In the sequel, we will need a special class of elements ofAN

_ whose symbols are given

by fm;nðx; y; pÞ ¼ eðmx þ nyÞdp0:

Lemma 20. Let A be a unital simple algebra, MDA"y"A
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{n times

a sub A–A

bimodule. Suppose there exists aij; 1pn; 1pjpi such that (i) aiia0; (ii) bi ¼
ðai1;y; aii; 0;y; 0ÞAM:

Then M is isomorphic to DA"y"A|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n times

as an A–A bimodule.

Proof. By induction on n;
For n ¼ 1; 0aM is an ideal in A; hence M ¼ A: Let p : M-A be

pða1;y; anÞ ¼ an:
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Then by hypothesis, pðMÞ is a nontrivial ideal in A and hence equals A: So, we
have a split short exact sequence

0-kerðpÞ-M-A-0:

Therefore M ¼ kerðpÞ"Im p ¼ kerðpÞ"A ¼ A"y"A|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n times

: In the last equality we

have used induction hypothesis for kerðpÞ: &

Proposition 21. (i)

O1
DðAN

_ Þ ¼
X

ai#si j aiAAN

_ ; si’s are spin matrices
n o

¼AN

_ "AN

_ "AN

_ :

(ii) pðOkðAN

_ ÞÞ ¼ AN

_ #M2ðCÞ ¼ AN

_ "AN

_ "AN

_ "AN

_ for kX2:

Proof. O1
DðAN

_ Þ ¼ pðO1ðAN

_ ÞÞD RHS.

Let fmnðx; y; pÞ ¼ dp0eðmx þ nyÞ and fASc be such that fðx; y; pÞ ¼ dp1fðx; y; pÞ:
Then applying the previous lemma to ½D;f01�; ½D;f10�; ½D;f�ApðO1ðAÞÞ we get
result (i).

For (ii) use (i) along with OkðAN

_ Þ ¼ O1ðAN

_ Þ#AN

_
y#AN

_
O1ðAN

_ Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

: &

Proposition 22. (i) pðdJ1Þ ¼ AN

_ :

(ii) O2
DðAN

_ Þ ¼ AN

_ "AN

_ "AN

_ :

Proof. (i) Let o ¼
P

aidðbiÞAJ1: Then pðoÞ ¼
P

aidjðbiÞsj ¼ 0 gives
P

aidjðbiÞ ¼
0; 8j:

pðdoÞ ¼
X

i

X
j

djðaiÞsj

 ! X
k

dkðbiÞsk

 !

¼
X

i

X
j

djðaiÞdjðbiÞ
 !

#I2

þ
X

i

X
jok

ðdjðaiÞdkðbiÞ � dkðaiÞdjðbiÞÞsjsk

 !
; ð4:1Þ

X
i

½dj; dk�ðaibiÞ ¼
X

i

djðdkðaiÞbiÞ � dkðdjðaiÞbiÞ Since
X

aidjðbiÞ ¼ 0; 8j
h i

¼
X

i

½dj; dk�ðaiÞbi þ
X

i

ðdkðaiÞdjðbiÞ � djðaiÞdkðbiÞÞ: ð4:2Þ
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Also note X
i

½dj; dk�ðaibiÞ ¼
X

i

½dj; dk�ðaiÞbi þ
X

i

ai½dj; dk�ðbiÞ

¼
X

i

½dj; dk�ðaiÞbi: ð4:3Þ

Comparing right-hand side of (4.2) and (4.3) we see that the second term on the
right-hand side of (4.1) vanishes, thus proving pðdJ1ÞDAN

_ : For equality in view of

Lemma 20 it is enough to note that o ¼ 2f02dðf01Þ � f01dðf02ÞAJ1; pðdoÞ ¼
2f03#I2a0:
(ii) Suppose fASc satisfies fðx; y; pÞ ¼ d1pfðx; y; pÞ: Let o1 ¼ dðf10Þdðf01Þ;

o2 ¼ dðf10ÞdðfÞ; o3 ¼ dðf01ÞdðfÞ: Now Lemma 20 together with (i) implies the
result. &

Lemma 23. pðdJ2Þ ¼ f
P

aj#sjjajAAN

_ g ¼ AN

_ "AN

_ "AN

_ :

Proof. Let o ¼
P

aidðbiÞdðciÞAJ2;

0 ¼ pðoÞ ¼
X

ai

X
j

djðbiÞsj

 ! X
j

dkðciÞsk

 !
¼ aidjðbiÞdjðciÞ þ

X
jok

aiðdjðbiÞdkðciÞ � dkðbiÞdjðciÞsjsk:

Comparing the coefficients of the various spin matrices we getX
aidjðbiÞdjðciÞ ¼ 0; ð4:4Þ

X
aiðdjðbiÞdkðciÞ � dkðbiÞdjðciÞÞ ¼ 0; 8jak; ð4:5Þ

from (4.5),

0 ¼
X

d1ðaiðd2ðbiÞd3ðciÞ � d3ðbiÞd2ðciÞÞ

¼
X

d1ðaiÞðd2ðbiÞd3ðciÞ � d3ðbiÞd2ðciÞÞ

þ
X

aid1ðd2ðbiÞd3ðciÞ � d3ðbiÞd2ðciÞÞ:

Therefore, X
d1ðaiÞðd2ðbiÞd3ðciÞ � d3ðbiÞd2ðciÞÞ

¼ �
X

aid1ðd2ðbiÞd3ðciÞ � d3ðbiÞd2ðciÞÞ: ð4:6Þ
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Similarly we get two more equalities. Let A be the coefficient of I2 in pðdoÞ: Thenffiffiffiffiffiffiffi
�1

p
A ¼

X
d1ðaiÞðd2ðbiÞd3ðciÞ � d3ðbiÞd2ðciÞÞ

þ
X

d2ðaiÞðd3ðbiÞd1ðciÞ � d1ðbiÞd3ðciÞÞ

þ
X

d3ðaiÞðd1ðbiÞd2ðciÞ � d2ðbiÞd1ðciÞÞ

¼ �
X

aid1ðd2ðbiÞd3ðciÞ � d3ðbiÞd2ðciÞÞ
'

þ
X

aid2ðd3ðbiÞd1ðciÞ � d1ðbiÞd3ðciÞÞ

þ
X

aid1ðd1ðbiÞd2ðciÞ � d2ðbiÞd1ðciÞÞ
(

¼ �
X

aið½d1; d2�ðbiÞd3ðciÞ þ d2ðbiÞ½d1; d3�ðciÞÞ
'

þ
X

aið½d3; d1�ðbiÞd2ðciÞ þ d3ðbiÞ½d2; d1�ðciÞÞ

þ
X

aið½d2; d3�ðbiÞd1ðciÞ þ d1ðbiÞ½d3; d2�ðciÞÞ
(

¼ 0:

Here second equality follows from (4.6) and the last equality follows from (4.5) since
dj’s form a Lie algebra. This shows,

pðdJ2ÞD
X3
j¼1

ajsj j ajAAN

_

( )
DAN

_ "AN

_ "AN

_ : ð4:7Þ

Let fASc be such that fðx; y; pÞ ¼ d1pfðx; y; pÞ: Then,

o1 ¼ 2f02dðf01Þdðf01Þ � f01dðf02Þdðf01ÞAJ2;

o2 ¼ 2f20dðf10Þdðf10Þ � f10dðf20Þdðf10ÞAJ2;

o3 ¼ f02dðf01ÞdðfÞ � f01dðf02ÞdðfÞAJ2;

satisfies

pðdo1Þ ¼ 2f04s2;

pðdo2Þ ¼ 2f40s1;

pðdo3Þ ¼ 2f03d1ðfÞs1 þ 2f03d2ðfÞs2 þ 2f03d3ðfÞs3:

Therefore by Lemma 20 we get equality in (4.7). &
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Corollary 24. O3
DðAN

_ Þ ¼ AN

_ :

Proof. Immediate from the previous lemma and Proposition 3.5(ii). &

Lemma 25. (i) O4
DðAN

_ Þ ¼ 0:

(ii) Ok
DðAN

_ Þ ¼ 0; 8k44:

Proof. (i) It suffices to show pðdJ3Þ ¼ AN

_ "AN

_ "AN

_ "AN

_ :
For that note

o1 ¼ 2f02dðf01Þdðf01Þdðf01Þ � f01dðf02Þdðf01Þdðf01ÞAJ3;

o2 ¼ 2f02dðf01Þdðf01Þdðf01Þ � f01dðf02Þdðf01Þdðf01ÞAJ3;

o3 ¼ 2f02dðf01Þdðf01ÞdðfÞ � f01dðf02Þdðf01ÞdðfÞAJ3;

o4 ¼ 2f02dðf01Þdðf10ÞdðfÞ � f01dðf02Þdðf10ÞdðfÞAJ3;

satisfies

pðdo1Þ ¼ 2f05#I2;

pðdo2Þ ¼ 2f14s2s1;

pðdo3Þ ¼ 2f04d2ðfÞ#I2 þ 2f04d1ðfÞs2s1 þ 2f04d3ðfÞs2s3;

pðdo4Þ ¼ 2f13d1ðfÞI2 þ 2f13d2ðfÞs1s2 þ 2f13d3ðfÞs1s3:

Now an application of Lemma 20 completes the proof.
(ii) The same argument as in (i) does the job with the following choice:

oi
0 ¼ oi dðf01Þydðf01Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ðk�4Þ times

; i ¼ 1;y; 4: &

5. Torsionless and unitary connections

Definition 26Fröhlich et al. [7]

(i)
R
determines a semi-definite sesquilinear form on O�ðAN

_ Þ by setting

ðo; ZÞ ¼
Z

pðoÞpðZÞ� 8o; ZAO�ðAN

_ Þ:

(ii) Let

Kk ¼ foAOkðAN

_ Þjðo;oÞ ¼ 0g; K ¼
MN
k¼0

Kk
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K ;K þ dK are two sided �-ideals, the later is closed under differential.

eOO�ðAN

_ Þ ¼
MN
k¼0

eOOkðAN

_ Þ; eOOkðAN

_ Þ ¼ OkðAN

_ Þ=Kk:

(iii) fHHk denotes the Hilbert space completion of eOOkðAN

_ Þ with respect to the

scalar product. fHH� ¼ "N

k¼0
fHHk; fHHk is to be interpreted as the space of square-

integrable k-forms.
(iv) The algebra multiplication of O�ðAN

_ Þ descends to a linear map

m : eOO�ðAN

_ Þ#
AN

_

eOO�ðAN

_ Þ-eOO�ðAN

_ Þ:

(v) The unital graded differential �-algebra of square-integrable differential forms
is defined by

eOO�
DðAN

_ Þ ¼
MN
k¼0

eOOk
DðAN

_ Þ; eOOk
DðAN

_ Þ ¼ eOOkðAN

_ Þ=ðKk þ dKk�1Þ:

(vi) d :O�ðAN

_ Þ-O�þ1ðAN

_ Þ descends to a linear map d : eOO�
DðAN

_ Þ-eOO�þ1
D ðAN

_ Þ:
(vii) A connection r on a finitely generated projective AN

_ module E is a C linear

map

r : eOO�
DðAN

_ Þ#E-eOO�þ1
D ðAN

_ Þ#E;

such that rðosÞ ¼ dðoÞs þ ð�1ÞkorðsÞ for all oAeOOk
DðAN

_ Þ and all sAeOO�
DðAN

_ Þ#E:
(viii) The curvature of a connection r on E is given by

RðrÞ ¼ �r2 : E-eOO2
DðAN

_ Þ#
AN

_

E:

Remark 27. Each oAeOOkðAN

_ Þ determines two operators mLðoÞ;mRðoÞ fromeOOnðAN

_ Þ to eOOnþkðAN

_ Þ given by mLðoÞðZÞ ¼ mðo#ZÞ; mRðoÞðZÞ ¼ mðZ#oÞ: These
operators extend to bounded linear operators mLðoÞ;mRðoÞ :fHHn-fHHnþk for all n:

Proposition 28. For kX2 we have

(i) eOOkðAN

_ Þ ¼ AN

_ #M2ðCÞDAN

_ "AN

_ "AN

_ "AN

_ ;

(ii) fHHk ¼ L2ðAN

_ ; tÞ#C4;

(iii) eOOk
DðAN

_ Þ ¼ Ok
DðAN

_ Þ:

Proof. (i) Faithfulness of A/
R

A; defined on pðO�ðAN

_ ÞÞ ¼ AN

_ #M2ðCÞ gives

Jk ¼ Kk:

Hence eOOkðAN

_ Þ ¼ OkðAN

_ Þ=kerðpÞDpðOkðAN

_ ÞÞ ¼ AN

_ #M2ðCÞ:
(ii) Follows from (i) and Proposition 14.
(iii)This follows from (i) and the definitions. &
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Remark 29. Since eOO1
DðAN

_ Þ is free with 3 generators, we can and will identifyeOO1
DðAN

_ Þ#AN

_
eOO1

DðAN

_ Þ with AN

_ #M3ðCÞ and a connection r is specified by its

value on the generators.

Definition 30. A connectionr : eOO1
DðAN

_ Þ-eOO1
DðAN

_ Þ#AN

_
eOO1

DðAN

_ Þ is called torsion-
less if TðrÞ ¼ d� m3r :eOO1

DðAN

_ Þ-eOO2
DðAN

_ Þ vanishes.

Proposition 31. A connection is torsionless iff its values on the generators s1; s2; s3 are

given by

rðs1Þ ¼
& a b

a & c

b c &

0B@
1CA; rðs2Þ ¼

& d e

d & f

e f &

0B@
1CA; rðs3Þ ¼

& p � 1 q

p & r

q r &

0B@
1CA;

where all the matrix entries are from AN

_ with restrictions on them as indicated above

and & denotes an unrestricted entry.

Proof. Note that

d
X

i;j

aidjðbiÞsj

 !
¼ �

ffiffiffiffiffiffiffi
�1

p X
i

ðd1ðaiÞd2ðbiÞ � d2ðaiÞd1ðbiÞÞs3

 

þ
X

i

ðd2ðaiÞd3ðbiÞ � d3ðaiÞd2ðbiÞÞs1

þ
X

i

ðd3ðaiÞd1ðbiÞ � d1ðaiÞd3ðbiÞÞs2

!
;

m3r
X

i;j

aidjðbiÞsj

 !
¼m

X
i;j

dðaidjðbiÞÞ#sj

 !
þ
X

i;j

aidjðbiÞm3rðsjÞ

¼m
X
i;j;k

dkðaidjðbiÞÞsk#sj

 !
þ
X

i;j

aidjðbiÞm3rðsjÞ:

Torsion of r vanishes iff ðd� m3rÞð
P

aidjðbiÞsjÞ � 0; or equivalently,X
i

ðdjðaiÞdkðbiÞ � dkðaiÞdjðbiÞÞ

¼
X

i

ðdjðaidkðbiÞÞ � dkðaidjðbiÞÞÞ þ
X

i;l

aidlðbiÞðm3rðslÞÞn
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whenever jak and n satisfies sjsksn ¼
ffiffiffiffiffiffiffi
�1

p
: This happens iff

0 ¼
X

i

ai½dj; dk�ðbiÞ þ
X

i;l

aidlðbiÞðm3rðslÞÞn

whenever jak and n satisfies sjsksn ¼
ffiffiffiffiffiffiffi
�1

p
:

Using the Lie algebra relations between the dj’s we get equivalence of the above

system of equations with

0 ¼
X

i

aid3ðbiÞ þ
X

i;l

aidlðbiÞðm3rðslÞÞ3;

0 ¼
X

i;l

aidlðbiÞðm3rðslÞÞ2;

0 ¼
X

i;l

aidlðbiÞðm3rðslÞÞ1:

Taking bi ¼ f01; ai ¼ 1 we get d1ðbiÞ ¼ d3ðbiÞ ¼ 0; d2ðbiÞ ¼ bi: Substituting these in
the above relations we get ðm3rðs2ÞÞj ¼ 0 for j ¼ 1; 2; 3: Similarly taking bi ¼
f10; ai ¼ 1 we get ðm3rðs1ÞÞj ¼ 0 for j ¼ 1; 2; 3: Substituting these values in the

above equations we getX
i

aid3ðbiÞðm3rðs3ÞÞ1 ¼ 0;X
i

aid3ðbiÞðm3rðs3ÞÞ2 ¼
X

i

aid3ðbiÞð1þ ðm3rðs3ÞÞ3 ¼ 0:

Note that J ¼ f
P

aid3ðbiÞjnAN; a1;y; ai; b1;y; biAAN

_ g is a nontrivial ideal in

AN

_ and hence it equals AN

_ : Therefore ðm3rðs3ÞÞ3 ¼ �1 and ðm3rðs3ÞÞ1 ¼
ðm3rðs3ÞÞ2 ¼ 0: Now the result follows from the anticommutation relation between

the spin matrices. &

Definition 32. A connection on a finitely generated projective AN

_ module E;
endowed with an AN

_ valued inner product /�; �S is called unitary if

d/s; tS ¼ /rs; tS�/s;rtS; 8s; tAE;

where the right-hand side of this equation is defined by /o#s; tS ¼ o/s; tS; and
/s; Z#tS ¼ /s; tSZ�:

Proposition 33. A connection r on eOO1
DðAN

_ Þ is unitary iff its values on the generators

s1; s2; s3 are given by

rðs1Þ ¼
X Y Z

Y U P

Z V Q

0B@
1CA; rðs2Þ ¼

Y U V

U R S

P S F

0B@
1CA;
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rðs3Þ ¼
Z P Q

V S F

Q F G

0B@
1CA;

where all the matrix entries are self-adjoint elements of AN

_ :

Proof. Taking s ¼ aisi; t ¼ bjsj in the defining condition of a unitary connection

we get

dðdijaib
�
j Þ ¼ aið/rðsiÞ; sjS�/; si;rðsjÞSÞb�

j þ dijðdðaiÞb�
j � aiðdðbjÞÞ�Þ ð5:1Þ

implying that /rðsiÞ; sjS ¼ /si;rðsjÞS; which means the jth row of rðsiÞ is the
star of the ith column of rðsjÞ: This completes the proof. &

Corollary 34. A connection r cannot simultaneously be torsionless and unitary.

Proof. If possible let r be one such. Comparing the forms of rðsjÞ; j ¼ 1; 2; 3 in

Propositions (5.6) and (5.8) we get that V ¼ c ¼ P and also V � P ¼ �1: This leads
to a contradiction. &

6. Connections with nontrivial scalar curvature

Definition 35 (Frohlich et al. [7, Theorem 2.9]). There is a sesquilinear map

/�; �SD : eOOk
DðAN

_ Þ#eOOk
DðAN

_ Þ-N_

satisfying ðx;/o; ZSDÞ ¼
R

xZo�; for all xAA_:

In the following proposition we identify eOOkðAN

_ Þ with AN

_ #M2ðCÞ:

Proposition 36. /o; ZSD ¼ 1
2
ðI#trÞðoZ�Þ:

Proof. Let o ¼ o0#I2 þ
P3

i¼1 oi#si; Z ¼ Z0#I2 þ
P3

i¼1 Zi#si: Then 1
2
ðI#trÞ

ðoZ�Þ ¼
P3

i¼0 oiZ�i and ðx;
P3

i¼0 oiZ�i Þ ¼
P

tðxZio
�
i Þ ¼ ðx;/o; ZSDÞ for all

xAA_: This completes the proof since A_ is dense in fHH0: &

Remark 37. Let oAO1
DðAN

_ Þ: Since K þ dK is an ideal in O�
DðAN

_ Þ we get two maps
induced by m : eOO�ðAN

_ Þ#AN

_
eOO�ðAN

_ Þ-eOO�ðAN

_ Þ: These maps denoted by the same

symbol
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m : eOO1
DðAN

_ Þ#AN

_
eOO�ðAN

_ Þ-eOO�þ1ðAN

_ Þ; m : eOO�ðAN

_ Þ#AN

_
eOO1

DðAN

_ Þ-eOO�þ1ðAN

_ Þ
induce bounded maps mLðoÞ;mRðoÞ :fHHk-fHHkþ1 as in Remark 27.

Since eOO1
DðAN

_ Þ is a free bimodule with three generators the curvature RðrÞ of a
connection r; RðrÞ ¼ �r2 : eOO1

DðAN

_ Þ-eOO2
DðAN

_ Þ#AN

_
eOO1

DðAN

_ Þ is given by a 3� 3

matrix ððRijÞÞ with entries in eOO2
DðAN

_ Þ: Let PdK1
:fHH2-fHH1 be the projection onto

closure of pðdK1ÞDeOO2
DðAN

_ Þ; and R>
ij ¼ ðI � PdK1

ÞðRijÞ: Let e1; e2; e3 be the

canonical basis of eOO1
DðAN

_ Þ: If we denote by Ricj ¼
P

i mLðeiÞwðR>
ij ÞAfHH1 then

Ricci curvature of r is given by

RicðrÞ ¼
X

j

Ricj#ejAfHH1#AN

_
eOO1

DðAN

_ Þ;

where w denotes Hilbert space adjoint. Finally, the scalar curvature rðrÞ of r is
given by

rðrÞ ¼
X

i

mRðe�i Þ
wðRiciÞAfHH0 ¼ L2ðAN

_ Þ:

Proposition 38. Let f ; g :T-R be smooth maps. We visualize them as elements of
Sc in the following way, f ðx; y; pÞ ¼ d0pf ðxÞ; gðx; y; pÞ ¼ d0pgðyÞ: Let r be the

connection given by rðs1Þ ¼ f 0dðgÞs1 þ g0dð f Þs2;rðs2Þ ¼ g0dð f Þs1;rðs3Þ ¼ 0;

then rðrÞ is �2f
02g

02:

Proof. It is clear that the derivative functions f 0; g0 also can be visualized as elements
of Sc exactly in the same way as f and g: By direct computation one gets

r2ðs1Þ ¼ �R11s1 � R12s2; r2ðs2Þ ¼ �R21s1; r2ðs3Þ ¼ 0;

where

R11 ¼ f 00gs3; R12 ¼
ffiffiffiffiffiffiffi
�1

p
ð f

02g
02 � g00f 0Þs3;

R21 ¼ �
ffiffiffiffiffiffiffi
�1

p
ðg00f 0 þ f

02g
02Þs3;

and the other Rij’s are zero.

Then

Ric1 ¼ �f 00gs2 � ðg00f 0 þ f
02g

02Þs1; Ric2 ¼ ðg00f 0 � f
02g

02Þs2

implying the desired conclusion rðrÞ ¼ �2f
02g

02: &
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Remark 39. (i) All the above notions of Ricci curvature, scalar curvature was
introduced in [7]. This is one infinite-dimensional example where one can have
connections with nontrivial scalar curvature (see also [4]).
(ii) Note that our choice of the spectral triple depends on a parameter a: However,

for the connections we have considered the scalar curvature does not depend on the
parameter a:

7. Nontriviality of the Chern character associated with the spectral triples

The spectral triple we constructed depends on a real parameter a: In this section we
show that the Kasparov module associated with the spectral triple are homotopic

[3,6]. We also argue that they give nontrivial elements in K1ðA_Þ by explicitly
computing pairing with some unitary in the algebra representing elements of K1ðA_Þ:

Lemma 40. Let A be a self-adjoint operator with a bounded inverse and B a symmetric

operator with DomðAÞDDomðBÞ on some Hilbert space H: Also suppose that

jjBujjpajjAujj; 8uADomðAÞ: Then jAj�p
BjAj�ð1�pÞABðHÞ and jj jAj�p

BjAj�ð1�pÞjj
pa for 0ppp1:

Proof. Essentially the argument in [11, p. 33], gives a proof. &

Lemma 41. Let A;B be as above with ao1: Let At ¼ A þ tB; tA½0; 1�: Then the

assignment t/tan�1ðAtÞ gives a norm continuous function.

Proof. Let us denote jAj�1=2BjAj�1=2 by C: Then by the previous lemma jjCjjpa:We

also have jjjAjðA � lÞ�1jp1 for lAiR:

At � l ¼ðA � lÞ þ tjAj1=2CjAj1=2

¼ jAj1=2ððA � lÞjAj�1 þ tCÞjAj1=2

¼ jAj1=2ð1þ tCðA � lÞ�1jAjÞðA � lÞjAj�1jAj1=2:

Now note jjtCðA � lÞ�1jAj jjpao1 for 0ptp1: Therefore

ðAt � lÞ�1 ¼ jAj�1=2jAjðA � lÞ�1ð1þ tCðA � lÞ�1jAjÞ�1jAj�1=2:

So, if we denote by RtðlÞ ¼ ðAt � lÞ�1 and FðlÞ ¼ jAjðA � lÞ�1 then the above
equality becomes

RtðlÞ ¼ jAj�1=2jAjR0ðlÞð1þ tCjAjFðlÞÞ�1jAj�1=2

¼R0ðlÞ þ jAj�1=2FðlÞ
XN
n¼1

ð�tCFðlÞÞnjAj�1=2: ð7:1Þ
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Let lAR; t; sA½0; 1�; u; vADðAÞ: Observe (i)

XN
n¼1

ð�tCFðilÞÞnjAj�1=2u �
XN
n¼1

ð�sCFðilÞÞnjAj�1=2u
*****

*****
*****

*****
p
XN
n¼0

jjðtnþ1 � snþ1ÞCFðilÞjjnjjCjj jjFðilÞjAj�1=2ujj

p
XN
n¼0

jðtnþ1 � snþ1ÞjanajjFðilÞjAj�1=2ujj

pjðt � sÞj
XN
n¼0

n þ 1anþ1jjFðilÞjAj�1=2ujj

pjðt � sÞj a

ð1� aÞ2
jjFðilÞjAj�1=2ujj;

(ii) Z
N

0

jjFðilÞjAj�1=2ujj2dlp
Z

N

0

/ðA2 þ l2Þ�1u; jAjuSdl

¼ 1

2

Z
N

0

/ðA2 þ xÞ�1u; jAjuSdxffiffiffi
x

p

¼ 1

2
p/A2�1=2u; jAjuS ¼ p

2
jjujj2:

(iii) Using (7.1), (i), (ii) we getZ
N

0

j/ðRtðilÞ � RsðilÞÞu; vSjdl

p
Z

N

0

jðt � sÞj a

ð1� aÞ2
jjFðilÞjAj�1=2ujj jjFð�ilÞjAj�1=2vjjdl

pjðt � sÞj a

ð1� aÞ2
Z

N

0

jjFðilÞjAj�1=2ujj2dl
� �1=2 Z

N

0

jjFð�ilÞjAj�1=2vjj2 dl
� �1=2

pjðt � sÞj a

ð1� aÞ2
p
2
jjujj jjvjj:

This shows lims-tjj
R
N

0
ðRtðilÞ � RsðilÞÞ dljj ¼ 0: Similarly one can show

lims-tjj
R
N

0 ðRtð�ilÞ � Rsð�ilÞÞ dljj ¼ 0: Now the result follows once we observe

tan�1At ¼
R
N

0 ðRtðilÞ þ Rtð�ilÞÞ dl: &

Lemma 42. Let A;B be as above except now we do not require A to be invertible.

Instead we assume A to have discrete spectrum. Then there exists kX0 such that

t/tan�1ðAt þ kÞ is norm continuous.
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Proof. Without loss of generality, we can assume 0 is an eigenvalue of A: Otherwise
we are done by the previous lemma. Choose 2pnAN such that b ¼ a n

n�1o1: Choose

k40 such that,
(i) smallest positive eigenvalue of A is greater than k;
(ii) if b is the biggest negative eigenvalue then bonk:
Let eAA ¼ A þ k; eAAt ¼ eAA þ tB: Then by choice of k
(i) eAA is an invertible self-adjoint operator.

(ii) jjB eAA�1jjpajjAðA þ kÞ�1jjpa n
n�1o1:

That is B is relatively bounded with respect to eAA with relative bound bo1:Now an

application of the previous result to the pair eAA;B does the job. &

Combining these two we get

Proposition 43. Let A;B be operators on the Hilbert space H such that

(i) A is self-adjoint with compact resolvent.
(ii) B is symmetric with DomðAÞDDomðBÞ; and relatively bounded with respect to A

with relative bound less than 1.
Then there exists a continuous function f :R-R satisfying, limx-N f ðxÞ ¼ 1;

limx-�N f ðxÞ ¼ �1 such that t/f ðA þ tBÞ is norm continuous.

Proof. If A is invertible then by Lemma 41 f ðxÞ ¼ 2
p tan

�1ðxÞ serves the purpose. In
the other case by Lemma 42 f ðxÞ ¼ 2

p tan
�1ðx þ kÞ does the job. &

Let the Hilbert space H and the operators D0;B;D be as in Corollary 11.

Corollary 44. The Kasparov module associated with ðAN

_ ;H;DÞ is operatorial

homotopic with ðAN

_ ;H;D0Þ:

Proof. Let Dt ¼ D0 þ tB for tA½0; 1�: Then D ¼ D1 and as in remark (3.4)
ðAN

_ ;H;DtÞ are spectral triples. Let f be the function obtained from the previous

proposition for the pair D0;B: Then ððA_;H; f ðDtÞÞÞtA½0;1� gives the desired

homotopy. &

As remarked earlier the operator D0 depends on a real parameter a41: Now we

will make that explicit and denote D0 by D
ðaÞ
0 :

Proposition 45. The Kasparov modules associated with ðAN

_ ;H;D
ðaÞ
0 Þ are operato-

rially homotopic for a41:

Proof. By Proposition 6, H ¼ L2ðT� T� ZÞ#C2: Let B be the operator

�2pcMp#s3: Here p denotes the Z variable in the L2 space. Then B is self-adjoint

with DðDðaÞ
0 ÞDDðBÞ: Also B is relatively bounded with respect to D

ðaÞ
0 with relative
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bound less than 1
ao1: Let D

ðaÞ
t ¼ D

ðaÞ
0 þ tB for tA½0; 1�: Then D

ðaÞ
t ¼ D

ðaþtÞ
0 : Let f be

the function obtained from Proposition 5.4 for the pair D
ðaÞ
0 ;B: Then from the norm

continuity of t/f ðDðaþtÞ
0 Þ we see the Kasparov modules ððAN

_ ;H;D
ðaþtÞ
0 ÞÞtA½0;1� are

homotopic. Since a is arbitrary this completes the proof. &

Remark 46. Proposition 45 and Corollary 44 together imply the Kasparov module
associates with the spectral triple ðAN

_ ;H;DÞ is independent of a:

In the next proposition we show ðAN

_ ;H;DÞ has nontrivial chern character.

Proposition 47. The Kasparov module associated with ðAN

_ ;H;DÞ gives a nontrivial

element in K1ðA_Þ:

Proof. By Corollary 44 ðAN

_ ;H;DÞ and ðAN

_ ;H;D0Þ give rise to same element

½ðAN

_ ;H;D0Þ�AK1ðA_Þ: Let fAAN

_ be the unitary whose symbol in Sc is given by

fðx; y; pÞ ¼ d0pe2piy: This gives an element ½f�AK1ðA_Þ: It suffices to show

/½f�; ½ðAN

_ ;H;D0Þ�Sa0 where the pairing /�; �S : K1ðA_Þ � K1ðA_Þ-Z is the

one coming from the Kasparov product. f acts on L2ðA_Þ#C2DL2ð½0; 1� � T�
ZÞ#C2 as a composition of two commuting unitaries U1 ¼ MeðyÞ#I2;U2 ¼
Meðpn_Þ#I2: Then note U2 commutes with D0: Let E be the projection E ¼
IðD0X0Þ: U2 also commutes with E: Now by Proposition 2 [6, p. 289] EU1U2E is a
Fredholm operator and /½f�; ½ðAN

_ ;H;D0Þ�S ¼ IndexðEU1U2EÞ ¼ IndexðEU1EÞ;
last equality holds because U2 commutes with E: Now IndexðEU1EÞa0 because this

is the index pairing of the Dirac operator on T3 with the unitary U1: &

8. Invariance of Chern character in entire cyclic cohomology

Now we will show that Chern character associated with the spectral triples
considered above is same. We begin with a general proposition of invariance of
Chern character under relatively bounded perturbations, which is an adaptation of
the arguments given in proposition (2.4) in [9].
Let A be a Banach algebra, and ðH;D0Þ be an odd theta summable Fredholm

module in the sense of [8] i.e, H is a Hilbert space, there is a continuous
representation p :A-BðHÞ; D0 is an unbounded self-adjoint operator such that (i)
a/½D0; pðaÞ� defines a bounded derivation from A to BðHÞ; (ii) for all t40;

Tr expð�tD2
0Þ is finite. Suppose we are given another self-adjoint operator D such

that a/½D; pðaÞ� defines bounded derivation and D is relatively bounded with
respect to D0 with relative bound b strictly less than one. Then we have:

Lemma 48. ðH;Dt ¼ D0 þ tDÞ for 0ptp1 define odd theta summable fredholm

modules.
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Proof. Clearly Dt defines a self-adjoint operator and a/½Dt; pðaÞ� defines a

bounded derivation. It only remains to show that Tr expð�sD2
t Þ is finite for all s40:

For that note for bounded operators B1;B2; with B1 compact, we have

mnðB1B2ÞpmnðB1ÞjjB2jj; ð8:1Þ

where mnð�Þ stands for the nth largest singular value. Letting mn;t ¼ nth smallest

singular value of Dt; (8.1) along with the resolvent identity

ðDt � iÞ�1 ¼ ðD0 � iÞ�1ð1þ tDðD0 � iÞ�1Þ�1 ð8:2Þ

gives

ðm2n;0 þ 1Þ b� 1

b

� �2

pm2n;t þ 1: ð8:3Þ

Now we are done by the finiteness of
P

expð�sm2n;0Þ ¼ Tr expð�sD2
0Þ: &

Remark 49. From the proof of the previous lemma it also follows that Tr expð�D2
t Þ

is uniformly bounded.

Let fHH be the Z=2 graded Hilbert space given by fHH ¼ Hþ"H�; where

HþDHDH�: Let epp be the representation given by epp ¼ p"p: Let eDD0 ¼ 0
�iD0

iD0

0

' (
;

similarly define eDD and eDDt; then eDDt ¼ eDD0 þ teDD: Let c1 be the odd operator given by

c1 ¼ ð0
1
1
0
Þ: Then c1 graded commutes with eDDt’s and eppðAÞ: Consider the multilinear

maps /�;?; �St;n :BðfHHÞ#ðnþ1Þ-C given by

/A0;y;AnSt;n ¼
Z
Dn

Strðc1A0e
�s0eDD2

t A1e
�s1eDD2

t ?Ane�sn
eDD2

t Þ dns;

where Dn denotes the n-simplex and the integration is with respect to the lebesgue
measure on that simplex. Str stands for super trace, explicitly given by StrðAÞ ¼
TrAjHþ � TrAjH� : The Chern character of the theta summable Fredholm modules

ðH;DtÞ is given by the entire cyclic cocycles on A given by the formula

ChnðDtÞða0;y; anÞ ¼ /a0; ½eDDt; a1�;y; ½eDDt; an�St;n:

Note that in the right-hand side ai actually stands for eppðaiÞ: Our objective is to prove
the following theorem.

Theorem 50. The chern characters Ch�ðDtÞ associated with the Fredholm modules

ðH;DtÞ are cohomologous for 0ptp1:

For ease of reference let us recall some results (Lemmas (2.1), (2.2) from [9]).
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Lemma 51. (i) If the operators Aj;Gj; j ¼ 0;y; n are bounded and at most ðk þ 1Þ of

the Aj’s are nonzero, then for 0oeoð2eÞ�1

j/A0
eDDt þ G0;y;An

eDDt þ GnSt;nj

pð2eeÞ�ðkþ1Þ=2 Gð1=2Þkþ1

Gðð2n � k þ 1Þ=2ÞTre�ð1�eÞeDD2
t Pn

0ðjjAjjj þ jjGjjjÞ:

(ii) In each of the following cases we assume that the operators Ai are such that each

term is well defined jAj ¼ 0 if A is even, jAj ¼ 1 if A is odd.

(a)/A0;y;AnSt;n ¼ ð�1ÞðjA0jþ?þjAj�1jÞðjAj jþ?þjAnjÞ �/Aj;y;An;A0;y;Aj�1St;n:

(b) /A0;y;AnSt;n ¼
Pn

0ð�1Þ
ðjA0jþ?þjAj�1jÞðjAj jþ?þjAnjÞ/1;Aj;y;An;A0;y;

Aj�1St;nþ1:

(c)
Pn

0ð�1Þ
jA0jþ?jAj�1j/A0;y; ½eDDt;Aj �;yAnSt;n ¼ 0:

(d) /A0;y; ½eDD2
t ;Aj�;yAnSt;n ¼ /A0;y;Aj�1Aj ;Ajþ1;y;AnSt;n�1 �/A0;y;

Aj�1;AjAjþ1;y;AnSt;n�1:

(e) d
dt
/A0;y;AnSt;n þ

Pn
0/A0;y;Aj ; ½eDDt;

’eDDt�;Ajþ1;y;AnSt;nþ1 ¼ 0:

Proof of the Theorem. Let A0;A1;y;An;G be bounded operators. Then,

(a) j/A0;y;Aj;GeDD;Ajþ1;y;AnSt;nþ1j

¼ j/A0;y;Ai;GeDDðeDDt þ iÞ�1ðeDDt þ iÞ;Aiþ1;y;AnSt;nþ1j

p2ð2eeÞ�1=2 b
b� 1

jjGjjPn
0jjAijj

Gð1=2Þ
Gðð2n þ 1Þ=2ÞTre�ð1�eÞeDD2

t :

Therefore,

fChCh�ðeDDt; eDDÞðða0;y; anÞÞ

¼
Xn

0

ð�1Þj/a0; ½eDDt; a1�;y; ½eDDt; aj�; eDD; ½eDDt; ajþ1�;y; ½eDDt; an�St;nþ1

defines an entire cochain.

(b) /A0;y; eDDAj;y;AnSt;n ¼ /A0;y; ðeDDt þ iÞðeDDt þ iÞ�1eDDAj;y;AnSt;n:

Left-hand side is well defined by (i) of Lemma 51 implying that the right-hand side is
well defined too. Therefore,

a�ðeDDt; eDDÞðða0;y; anÞÞ ¼
Xn

0

/a0; ½eDDt; a1�;y; ½eDD; aj�;y; ½eDDt; an�St;n

defines an entire cochain.
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(c) Again as in (b) it is easily seen that /A0;y;Aj; eDDeDDt;Ajþ1;y;AnSt;nþ1;

and /A0;y;Aj; eDDt
eDD;Ajþ1;y;AnSt;nþ1 make perfect sense. So, that we can talk

about /A0;y;Aj; ½eDDt; eDD�;Ajþ1;y;AnSt;nþ1 which is nothing but /A0;y;Aj;

½fDtDt;
’eDDt�;Ajþ1;y;AnSt;nþ1: Now we are in a position to apply (ii)(c) of Lemma 51

to the following choice:

Aj ¼

a0; for j ¼ 0;

½eDDt; aj� for jpk;eDD for j ¼ k þ 1;

½eDDt; aj�1� for jXk þ 2:

8>>><>>>:
This gives

X1 þ X2 þ X3 ¼ 0; ð8:4Þ

where

X1 ¼ ð�1Þk/½eDDt; a0�; ½eDDt; a1�;y; ½eDDt; ak�; eDD; ½eDDt; akþ1�;y; ½eDDt; an�St;nþ1;

X2 ¼
X
jok

ð�1Þjþk�1/a0; ½eDDt; a1�;y; ½eDD2
t ; aj �;y; ½eDDt; ak�; eDD;y; ½eDDt; an�St;nþ1

þ
X
j4k

ð�1Þkþj/a0; ½eDDt; a1�;y; ½eDDt; ak�; eDD;y½eDD2
t ; aj�;y; ½eDDt; an�St;nþ1;

X3 ¼ /a0; ½eDDt; a1�;y; ½eDDt; ak�; ½eDDt; eDD�; ½eDDt; akþ1�;y; ½eDDt; an�St;nþ1:

We now sum (8.4) over 0pkpn: By Lemma 51(ii)(b) we see after reordering terms
that

X
k

X1 ¼ �ðBfChCh�ðeDDt; eDDÞÞðða0;y; anÞÞ: ð8:5Þ

Similarly, using Lemma 51(ii)(d),

X
k

X2 ¼ �ðbfChCh�ðeDDt; eDDÞÞðða0;y; anÞÞ þ a�ðeDDt; eDDÞðða0;y; anÞÞ: ð8:6Þ
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Here b;B are the boundary operators in entire cyclic theory [9]. Combining (8.4)–
(8.6) along with the expression for X3 we get

dCh�ðDtÞ
dt

ða0;y; anÞ

¼
X

k

/a0; ½eDDt; a1�;y; ½eDDt; ak�; ½eDDt; eDD�; ½eDDt; akþ1�;y; ½eDDt; an�St;nþ1

þ a�ðeDDt; eDDÞðða0;y; anÞÞ

¼ ðB þ bÞfChCh�ðeDDt; eDDÞðða0;y; anÞÞ: &

Let the Hilbert space H and the operators D0;B;D be as in Corollary 3.3. A1
_

defined as faAA_j½D0; a�; ½B; a�ABðHÞg becomes a Banach algebra with the norm
jjajjn ¼ maxfjjajj þ jj½D0; a�jj; jjajj þ jj½B; a�jjg: Let D0 ¼ D0;D ¼ B; then with these

choice A1
_;H;D0;D satisfy all the hypothesis required for applying Theorem 50 by

which we get

Corollary 52. The Chern character associated with the spectral triples ðAN

_ ;H;DÞ;
and ðAN

_ ;H;D0Þ are cohomologous.

Remark 53. The spectral triple ðAN

_ ;H;DÞ depends on a real number a41: An
argument very similar to Proposition 45 will show that Chern character associated
with this whole family of spectral triples is independent of a:

References

[1] B. Abadie, ‘‘Vector Bundles’’ over quantum Heisenberg manifolds, Algebraic Methods in Operator

Theory, Birkhauser, Basel, 1994, pp. 307–315.

[2] B. Abadie, Generalized fixed-point algebras of certain actions on crossed products, Pacific J. Math.

171 (1) (1995) 1–21.

[3] B. Blackadar, K-Theory of Operator Algebras, in: MSRI Publications, Vol. 5, Springer, Berlin,

1986.

[4] P.S. Chakraborty, D. Goswami, K.B. Sinha, Probability and geometry on some noncommutative

manifolds, J. Operator Theory 49 (2003) 187–203.

[5] F. Cipriani, D. Guido, S. Scarlatti, A remark on trace properties of K-cycles, J. Operator Theory 35

(1996) 179–189.

[6] A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.

[7] J. Frohlich, O. Grandjean, A. Recknagel, Supersymmetric quantum theory and non-commutative

geometry, Commun. Math. Phys. 203 (1999) 119–184.

[8] E. Getzler, The odd Chern character in cyclic homology and spectral flow, Topology 32 (1993)

489–507.

[9] E. Getzler, A. Szenes, On the Chern character of a Theta–Summable Fredholm module, J. Funct.

Anal. 84 (1989) 343–357.

[10] J.M. Gracia-Bondia, J.C. Varilly, H. Figuera, Elements of Noncommutative Geometry, Birkhauser,

Basel, 2000.

ARTICLE IN PRESS
P.S. Chakraborty, K.B. Sinha / Journal of Functional Analysis 203 (2003) 425–452 451



[11] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. II, Academic Press, New York,

1978.

[12] M. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989)

531–562.

[13] N. Weaver, Sub-Riemannian metrics for quantum Heisenberg manifolds, J. Operator Theory 43

(2000) 223–242.

ARTICLE IN PRESS
P.S. Chakraborty, K.B. Sinha / Journal of Functional Analysis 203 (2003) 425–452452


	Geometry on the quantum Heisenberg manifold
	Introduction
	The quantum Heisenberg algebra
	Weaver
	A class of spectral triples
	Space of forms
	Connes
	Torsionless and unitary connections
	Fr—hlich et™al. [7]
	Connections with nontrivial scalar curvature
	Frohlich et™al. [7, Theorem 2.9]
	Nontriviality of the Chern character associated with the spectral triples
	Invariance of Chern character in entire cyclic cohomology
	References


