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Abstract

A class of C*-algebras called quantum Heisenberg manifolds were introduced by Rieffel
in (Comm. Math. Phys. 122 (1989) 531) as strict deformation quantization of Heisenberg
manifolds. Using the ergodic action of Heisenberg group we construct a family of spectral
triples. It is shown that associated Kasparov modules are homotopic. We also show that they
induce cohomologous elements in entire cyclic cohomology. The space of Connes—deRham
forms have been explicitly calculated. Then we characterize torsionless/unitary connections
and show that there does not exist a connection that is simultaneously torsionless and unitary.
Explicit examples of connections are produced with negative scalar curvature. This part
illustrates computations involving some of the concepts introduced in Frohlich et al. (Comm.
Math. Phys. 203 (1999) 119), for which to the best of our knowledge no infinite-dimensional
example is known other that the noncommutative torus.
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1. Introduction

Let

z
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0
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x |:x,p,zeR
1

be the Heisenberg group of three by three upper triangular real matrices with ones on
the diagonal. For a positive integer ¢, let H, be the subgroup of G obtained when
x,y,cz are integers. The Heisenberg manifold M, is the quotient G/H.. Nonzero
Poisson brackets on M, invariant under left translation by G are parametrized by
two real parameters u,v with > +v>#0 [12]. For each positive integer ¢ and real
numbers u,v, Rieffel constructed a C*-algebra A;’; as an example of deformation
quantization along a Poisson bracket [12]. These algebras have further been studied
in [1,2,13]. It was also remarked in [12] that it should be possible to construct
example of noncommutative geometry as expounded in [6] in these algebras also. It is
known [12] that Heisenberg group acts ergodically on A;’f and A;i’ accommodates a
unique invariant tracial state 7. Using the group action we construct a family of
spectral triples. It is shown that they induce same element in K-homology. We also
show that the associated Kasparov module is nontrivial. This has been achieved by
constructing explicitly the pairing with a unitary. We also compute the space of
forms as described in [6,7]. Then we characterize torsionless and unitary connections.
As an immediate corollary it follows that a torsionless unitary connection cannot
exist. For a family of unitary connections we compute Ricci curvature and scalar
curvature as introduced in [7]. This family has nontrivial curvature. The construction
of the canonical completely positive semigroup (heat semigroup in analogy with the
classical case) and its stochastic dilation will be treated else where.

Organization of the paper is as follows. In Section 2, after introducing the algebra
we compute the GNS space of 7 using a crucial result of Weaver [13]. In the next
section, following a general principle of construction of spectral triple on a C*-
dynamical system with dynamics governed by a Lie group, we construct spectral
triples and compute the hypertrace [5,10] associated with the spectral triple. In
Section 4, we compute the space of forms [6, Chapter V]. There are not too many
instances of this computation in the literature. In Section 5, after briefly recalling the
notions introduced in [7], we compute the space of L>-forms and characterize
torsionless/unitary connections. In the next section we compute Ricci curvature and
scalar curvature for a concrete family of unitary connections. In Section 7, we show
that the spectral triples we consider give rise to same Kasparov element and that they
have nontrivial Chern character.

2. The quantum Heisenberg algebra

For xeR, we will denote ¢>™* by e(x).
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Definition 1. For any positive integer ¢ let S¢ denote the space of infinitely
differentiable functions @:R x T x Z—C that satisfy the following two
conditions:

(@) &(x + k,y,p) = e(ckpy)®(x,y,p) for all keZ, and

(b) for every partial differential operator X :8;‘"—5},

polynomial P on Z, the function P(p)(X®)(x,y,p) is bounded on K x Z for any
compact subset K of R x T.

For each , i, ve R, 12 +v*#0, let .o7;° denote the space S¢ equipped with product
and involution defined, respectively, by

(@ * ¥)(x,»,p)

on Rx T and every

—Z hg —p)p.y = h(q —p)v, @) ¥ (x — hqu,y — hgv,p = q),  (2.1)

qj*(xvyvp) = (ﬁ(xvyv _p) (22)

Let 7 be the representation of .o/;° on L*(R x T x Z) given by

(R(@)E)(x,3,p) = > D(x — h(g — 2p),y — h(q — 2p)v, 9)E(x,p,p — q).  (2.3)

Then n gives a faithful representation of the involutive algebra .o/;°. The norm
closure of n(.«7;”), to be denoted by sz/:ff is called the quantum Heisenberg manifold.
Let Nj, denote the weak closure of n(.e7;”).

We will identify «7,° with n(<7,°) without any mention. Since we are going to
work with fixed parameters ¢, u, v, we will drop them altogether and denote &722
simply by .7y, the subscript merely distinguishes the Heisenberg algebra from a
general algebra.

Action of the Heisenberg group: To define the group action we parametrize the
points of Heisenberg group by R®. This is legitimate because as a topological space
Heisenberg group is isomorphic with R*. For eS¢, (r,s, 1) e R

(Lirs. @) (x,3:p) = e(p(t + es(x = 1)))p(x =1,y = 5,p) (2.4)

extends to an ergodic action of the Helsenberg group on /%" v

The trace: ©: o/;° —C, given by 1( fo J7 #(x,»,0) dx dy extends to a faithful
normal tracial state on Nj. 7 is invanant under the Helsenberg group action. So, the
group action can be lifted to L?(.«Z;°). We will denote the action at the Hilbert space
level by the same symbol.
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Theorem 2 (Weaver). Let # = L*(Rx T x Z) and Vy, Wi, X, be the operators
defined by

(I//‘é)(xvyvp) :f(X,J’)f(X;J’aP)a
(Wké)(xvyvp) :e(_Ck(pth —|—PJ’))5(X + k,y,p),
(X:8)(x,y,p) =&(x = 2hrp,y — 2hrv,p + r).

Let Te #(H). Then T € Ny iff T commutes with the operators Vy, Wy, X, for all f in
L*(RxT), and k,reZ.

Lemma 3. Let S5, | be the space of all functions : R x T x Z—C satisfying the
following conditions (1) Y is measurable, (i) Y, = Sup,cp etV (x,y,n)| is an I
sequence, and (i) Y(x+ k,y,p) = e(ckyp)y(x,y,p) for all keZ}. Then, for
pesS¢ n(¢) defined by (2.3) gives a bounded operator on L*>(R x T x 7).

o0,00,1?

Proof. Let ¢:Z—R, be defined by <75(n) = SUPycpyer|P(x;»,n)|. Then

[(7($)&) (x, 3, p)| < (K |E(x, 2, )]) (),

where % denotes convolution on Z and |£(x, y,.)| is the function p+ |&(x, y, p)|. By
Young’s inequality we have

1)) (x 3, 1, <16 K €, v, ], <111 1, v, )

h

consequently [|z(¢)[[<||¢l]. 1o where [[9][, ooy = [[@ll;- T

Remark 4. (i) Product and involution defined by (2.1), and (2.2) turns ¢, | into an

involutive algebra.
(i) ||}, . is a *-algebra norm.

Lemma 5. =(S¢, |

) S Ny.
Proof. Follows from Weaver’s characterization of N,. O

Proposition 6. L(.«/;°,t) is unitarily equivalent with L*(T x T x Z)=L*([0, 1] x
[0,1] x Z).
Proof. For ¢peS¢ I'¢:Rx T x Z—-C given by

00,00,1?

e(_cxyp)¢(x7yap) for y<17

Téty.p) = { ¢ (x,,p) for y =1,
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satisfies I'¢(x + k,y,p) = I'p(x,y,p). Also note that
! 2
o kd) = [ [ S 100~ hawy —hgr. )P ey
q

1
:/ /Z |6, v, ) dx dy,
0 Ty

and therefore t(¢* % ¢) = ||[I'p||, ie, I': L2(o/;°,7) = LX(T? x Z) is an isometry. To
see that I" is a unitary observe that

() NycL?(o/;", 1), since 7 is normal;
(i1) d)m‘n’k defined by

e(cxyp)e(mx + ny)oy, for 0<y<l
d)m,n,k(xvyvp) =

Okpe(mx) for y=1

1 c .
is an element of S¢, | =Ny;

(i) {I'h,, 14 }mnrez is an orthonormal basis in LXN(T*x 7). O
Remark 7. ¢ | ), 7.7 gives an unitary isomorphism.

Corollary 8. Let M,, be the multiplication operator on # = L*(T* x Z) explicitly
given by (M,,f )(x,y,p) = ypf (x,y,p) on its natural domain. If we consider </;° as a
subalgebra of B(A) by the left regular representation then [M,,, o/ ,"| = B(A).

Proof. Note that for ¢pe.o/,°, (M,,¢)(x,y,p) =ypd(x,y,p) gives an element in

8¢ 1> and hence a bounded operator. Now for ye.o7;",

[Myp, @l (x, ¥, p)
=" 0r— (v —he)(p— @) ¢(x — hiqg — p)u,y — h(g — p)v,q)
quﬂ(x — hqu,y — hqv,p — q)
=Y 4y —h(g—p))d(x — h(g = p)u,y — h(g = p)v,q)
quﬂ(x — hqu,y — hqv,p — q)

= (M}’P(¢) * lp)(xvyvp)

This completes the proof. [
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3. A class of spectral triples

Let («/,G,a) be a C* dynamical system with G an n-dimensional Lie group,
and 7 a G-invariant trace on .o/. Let o/ be the space of smooth vectors,
A = L*(oA,7)®CY where N = 2L%/2]_ Fix any basis X;, X, ..., X, of L(G) the Lie
algebra of G. Since G acts as a strongly continuous unitary group on # = L*(.</, 1)
we can form self-adjoint operators dy, on #. Let us define D: 4" - by D =
> dx, ®7;, where )y, ...7, are self-adjoint matrices in My(C) such that y;); + y,7; =
20;. The operator D along with .«/® and 2 should be a candidate for a spectral
triple. For such a D, clearly one has [D, o/ *]|=.o/* ® My(C).

Proposition 9. For the quantum Heisenberg manifold, if we identify the Lie algebra of
Heisenberg group with the Lie algebra of upper triangular matrices, then D as
described above is a self-adjoint operator with compact resolvent with the following
choice of X;’s:
010 0 00 0 0 co
Xi;=10 0 0f, X,=]10 0 1], Xx3=(0 0 0 |,
0 00 0 00 0 00
where o€ R is greater than one.

Proof. Domain of the operator D consists of all those square integrable functions f
defined on [0,1] x [0,1] x Z that satisfy the boundary conditions (i) f(x,0,p) =
f(x,1,p), Gi) £ (1,p,p) = e(cpy)f(0,,p), (iii) pf, %, and % are square integrable. On
this domain D is defined by

w

D(f®u) = Z f)®ai(u
where
id () = —i7-
idy(f') = =2mepxf(x,y,p) — i

.a_y’
ld}(f) = —27TPC“f(ny’aP)7

and ¢;’s are the Pauli spin matrices.
Let : L*([0,1] x [0,1] x Z)— L*([0,1] x [0,1] x Z) be the unitary given by

_ [e(=exyp)f(x,py,p) for y<l,
10/ )xy.p) = { o ot
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Then domain of the operator D' = (5 x L)D(n® L)~ is given by all those square
integrable functions f that satisfy the boundary conditions, namely (i) f(0,y,p) =

F(1,y,p), (i) f(x,0,p) =f(x,1,p), and (iii) L e 9},pf are square integrable. On this
domain D’ is prescribed by

3
D'(f@u) = Z /) ®a(w),

where

di'(f )(x,p,p) = =2micypf (x,y,p) — % (x,»,p),

&' (f )(xop) = —g—’; (5,7,),

d3'(f )(x,y,p) = 2mipcaf (x,y,p).

Note that, on Dom(D"), D' = T + S where Dom(T) = Dom(D')< Dom(S) and T, S
given, respectively, by

T = —i%@al — i%@az —2ncaM,®o3, S =2ncM,,@ao;.

These are self-adjoint operators on their respective domains. Also observe that 7" has
compact resolvents. Our conclusion follows from the Rellich lemma since S is
relatively bounded with respect to T with relative bound less than é< 1. O

Theorem 10. Let # = Lz(,sz{;,",r)®62, o0 with its diagonal action becomes a
subalgebra of B(A). (A, ,D) is an odd spectral triple of dimension 3.

Proof. The fact that (/,°, #,D) is a spectral triple follows from the previous
proposition and the remark preceding that. We only have to show |D| e #1*) the
ideal of Dixmier traceable operators [6]. For that observe:
(i) Via Fourier transform 7 can be identified with the operator 7" on L*(Z x Z x
Z)®C? given by
Tl
o Ni®ao; + Ny®oy — 2ncaN; Q a3,
where N; is the number operator on the appropriate copy of Z. Then T'2 is nothing
but N7 + N7 + 4n°c?e> N3. Using the fact that the volume of the ball of radius r in R?
grows like r? we get 1, (T~ 72 ) = (T poppre ) = O(1/n'/?), where p,, stands for
the n't singular value.
(i1) S is relatively bounded with relative bound less than §<1, hence we have
IS(T +i)~'|<tand ||(1+S(T+)7) 7 lI<3%
(i) w,(AB) <, (A)||B||, for bounded operators 4, B.



432 P.S. Chakraborty, K. B. Sinha | Journal of Functional Analysis 203 (2003) 425452

Applying ()—(iii) to (D' +i)' = (T+i)"'(1+S(T+i)"")"" we get the desired
conclusion for D' and hence for D. O

Corollary 11. Let T, S, D, D’ be as in the proof of Proposition 9. Let us denote by D
the operator (@ L) 'T(n®L). Then (A, #,Dy) is an odd spectral triple of
dimension 3.

Proof. We only have to show [Dy, o/, | = %B(H#). Let B= (n® L) 'S(n®L). Then
since n® I, commutes with S, we have B=S. By Corollary 8, [B, .</,°| = %#(X).
Now the previous theorem along with D = Dy 4+ B completes the proof. [

Remark 12. Similarly taking D, = Dy + B one can show that (.«7;°, #°, D,) forms an
odd spectral triple of dimension 3, for z€]0, 1].

Remark 13. D and D constructed above depends on o.
Proposition 14. If {1,hu, hv} is rationally independent, then the positive linear
Sunctional on o/, ® M>(C) given by [ : ar troa|D| > coincides with %(er\D|_3)r®tr,

where tr,, is a Dixmier trace [6].

Proof. Observe that D? = (7 )(()2)7 where

1\? 1
G )

1\? 1
Xo=—|d+d+|di—— ) —|.
2 <1+2+(3 2oc) 4<x2>
It is easily seen that:

(i) compactness of resolvents of D? implies that for X7, X,
(i1) eigenvalues of X, X> have similar asymptotic behaviour.

Therefore X1_3/2,X2_3/ze$(1’“’) and 17, aXl_3/2 =ty ch2_3/2 for any ae%
(L2(.o#y)). Consider the unitary group on # =~ L*([0,1] x T x Z)® C?* given by

U(x®@y®e,®z) = e(p)( xRy ®e,®z).

Then U,D = DU; and

1
/A = tr, UAU?|D| = trw<(/ U, AU dt>|D|3> - /(A)O,
0
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where

o l//11 lplZ — _ ("pll)() (WIZ)O
A‘(wﬂ wm) (4o ((MO <w22>0>

is the completely positive map given by (),(x,y,p) = d,o¥(x, y,p) for Y eS¢ Since

(4 %) commutes with [D] ™, we get

/A = lrzv(all)OX;3/2 + trta(a22)0X;3/2

=tro((an)y + (a22)p) X, .

Consider the homomorphism @: C(T?)— .o/, given by ®(f )(x,»,p) = dpf (x,).
Now by Riesz representation theorem for [o(®®1): C(T?)—C, we get a measure

on T2 such that tr, 2(), X; > = [()o(x,¥,0) d4 implying

[a=5 [ @+ @) an G.)

In the next lemma we show A is proportional to Lebesgue measure. That will prove
that [ is proportional with t®#r and the proportionality constant is obtained by
evaluating both sides on 7. [J

Lemma 15. If {1, hp, hv} is rationally independent then 1. as obtained in the previous
proposition is proportional to Lebesgue measure.

Proof. It is known [5,10] that for a spectral triple (o, #, 2) with |9|7"e$<1’°°) for
some p,ar>tr, a|2| " is a trace on the algebra. This along with (3.1) gives

/ (6K P)(x.,0) di(x,y) = / (& B)(x.y,0) dix,y), Vbpes. (32)

Taking  ¢(x,y,p) = e(c[x]yp)f (x — [x])g(»)01, where g:T—C,f:[0,1]>C are
smooth functions with supp(f)<[e,1 —¢] for some &¢>0 and Y = ¢* we get
from (3.2)

/|¢(X+hu,y+hv,l)|2di(x,y)=/|¢OV(X+hu7y+hv,l)lzl(x,yx (3.3)

where 7: T2 T2 is given by y(x,y) = (x — 2hu, y — 2hv). The hypothesis of linear
independence of (1,#Au, hv) over the rationals implies that y-orbits are dense. This
along with (3.3) proves the lemma. O

Remark 16. In the rest of the paper [ will denote %r@tr.
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4. Space of forms

Lemma 17. Let ./ be a dense subalgebra of a unital C* algebra </ closed under
holomorphic function calculus, then </ is simple provided </ is so.

Proof. Let J<.o7 be an ideal. Then J = .7, since .7 is simple. There exists x e J such
that ||x — I||<1. Then x~!' €.o7, hence in .o/ because ./ is closed under holomorphic
function calculus. Therefore 1 = xx~'eJ. O

Assumption 18. Henceforth, we will assume {1, iy, v} is rationally independent. In
that case .27 is simple [12], hence so is .7;°.

Definition 19 (Connes). Let (o7, #, D) be a spectral triple. Let

N [5%)
() = {Z ahdd, ...od. | neN,a}e&/},Q'(ﬂ) =P ()
=1 0
be the unital graded algebra of universal forms. Here 6 is an abstract linear operator
satisfying 6% = 0,5(ab) = d(a)b + ad(h). Q°(=/) becomes a *-algebra under the
involution (da)” = —d(a*) for all ae.o/. Let n: Q*(o/) > B(A) be the *-representa-
tion given by n(a) = a,n(éa) = [D,a] Let Jx = ker n|g.,). The unital graded
differential *-algebra of differential forms Q% (.e7) is defined by

0 () = D L(A),  Do(t) = () Ui+ 3J1-1) =n(Q()) [(3Ti)-

0@8

Let us introduce some notations before we proceed further. Let ¢ eS¢, then
[D,¢] = > 0i(¢) ®a; where 9;(¢) = id;(¢) (see proof of Proposition 9 for d;) but
looked upon as derivation on .«7;°. Also note that [0, 03] = [J2, 3] = 0, [0}, J2] = J3.
In the sequel, we will need a special class of elements of .«/;° whose symbols are given
bY @ (X, 3,p) = e(mx +ny)dp.

n times
Lemma 20. Let o/ be a unital simple algebra, M= 4 @ ... DA a sub oF—of
bimodule. Suppose there exists az, 1<n,1<j<i such that (i) a;#0, (ii) b; =
((lil, ...,(1,',',0, ,O)EM
Then M is isomorphic to ~ oA @ ... ®.o as an o/—o/ bimodule.
—_———

n times

Proof. By induction on n,
For n=1,0#M is an ideal in .o/, hence M =./. let n:M—>.o/ be
n(ay, ...,ay) = ay.
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Then by hypothesis, 7(M) is a nontrivial ideal in .o/ and hence equals 7. So, we
have a split short exact sequence

0—ker(n) > M — .o/ 0.

Therefore M = ker(n) ®@Imn =ker(n)®.of = 4/ @ ... ®.o/ . In the last equality we
——————

n times

have used induction hypothesis for ker(n). O
Proposition 21. (i)
Q})(Q/,f) = {Z a;®o;|aie o}, 6;’s are spin matrices}
= DAL DA .
(i) n(Q* (A7) = A @M (C) = AL ® AT DAL ® AL for k=2.

Proof. Q) (/) = n(Q'(/{°))<= RHS.

Let ¢,,,(x,y,p) = dp0e(mx + ny) and ¢ € S¢ be such that ¢(x,y,p) = 6,1¢(x,»,p).
Then applying the previous lemma to [D,¢y,],[D, ¢y, [D, ¢]en(Q' () we get
result (i).

For (ii) use (i) along with @“(7;") = Q"(A/}")® 7 ... ® = Q' (=;7). O

k times

Proposition 22. (i) n(6J,) = /;°.
(i) Q) = A AT @A

Proof. (i) Let @ = )" a;0(b;)eJy. Then n(w) =" a;0;(b;)o; = 0 gives > a;0;(b;) =
0,V].

] 2
—2(25 )m
+ Z Z — O(ai)d; (b))0/0k> (4.1)

> 100l (@) Z 8;(0k(ai)bi) — 3r(5;(ar)by) [Since S aidi(by) = o,vj}
= Z 5}'7 5]( Cl[ b,’ + Z (5k(a,-)5j(b,-) - 5]'(611')5]((171')). (42)
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Also note
Z [0/, dx)(aibi) = Z (6, 6ic|(a:)bi JFZ ai[6;, 0] (bi)
= Z 5175/( a, B (4'3)

Comparing right-hand side of (4.2) and (4.3) we see that the second term on the
right-hand side of (4.1) vanishes, thus proving 7(6J;) = «/;°. For equality in view of
Lemma 20 it is enough to note that @ = 2dyd(dy) — Go10(Pp) €1, n(dw) =
2¢0; ® 1, #0.

(ii) Suppose ¢eS satisfies ¢(x,p,p) =d1,d(x,y,p). Let w1 =0(¢19)0(¢),
@y = 0(¢10)0(d), w3 =(dg;)0(¢p). Now Lemma 20 together with (i) implies the
result. [

Lemma 23. 7(6J,) = {>_a;Qo0jlaje A} = A4 @A DAL .

Proof. Let w = > a;0(b;)(c;) €,

e ) )

=adi(b)3(a) + 3 ald(b)dula) = dcb) )0

Comparing the coefficients of the various spin matrices we get

> a8 (bi)3j(cr) = 0, (4.4)
D aid;(b)dr(e) — o(bi)dy(e) =0, Vj#k, (4.5)
from (4.5),
0=">"01(ai(d2(b)d3(c;) — 83(bi)da(cy)
=" 81(a) (82(b)d3(e;) — 03(bi)da(ci))
+ Y a0 (ci) = 03(b:)da(cr)).-
Therefore,

> 01(ai)(32(bi)d3(cr) — 3(bi)da(ci))
== ai01(2(bi)3(c;) — 33(bi)32(ci).- (4.6)
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Similarly we get two more equalities. Let A be the coefficient of I in n(dw). Then

Zé bi)d3(c;) — 3(bi)oa(ci))
+ Zég(ai)(53(bi)51(ci) — 01(bi)03(ci))
+ Y 83(a) (01(bi)d2(ci) — 62(bi)di (ci))

= — (D aid1(02(5)03(cr) — 3(bi)d2(c1))
+ Y aita(33(bi)d1(ci) — 61 (bi)da(er)
+ 3 ai01(81(b:)da(ci) — 52([71‘)51(01‘)))
= — (D aullo1,021(b)0s(cr) + 2(b7) 61, 63](c1))
+ > ai([83,81](bi)da(ci) + 83(bi)[02, 1] (ci))
+ Y (162,531 (B () + 01(6)[0, 21 )
=0.

Here second equality follows from (4.6) and the last equality follows from (4.5) since
0;’s form a Lie algebra. This shows,

n(8J2) < {Z ajo;| aje oA F };JJ;’J QAL DAL (4.7)

J

Let ¢ €S be such that ¢(x,y,p) = d1,¢(x,»,p). Then,

o1 = 2020(o1)d(do1) — P010(02) (o) € /2,
@2 = 2¢200(19)0(P10) — P106(20)0(¢10) €2,
w3 = Pp26(h01)0(P) — $010(2)d(¢) €2,
satisfies
1(601) = 2940,
m(6w2) = 24901,
m(6w3) = 2¢0301(P)a1 + 2362(h)02 + 2¢303(d)03

Therefore by Lemma 20 we get equality in (4.7). O
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Corollary 24. Q) (/") = /" .
Proof. Immediate from the previous lemma and Proposition 3.5(ii). [

Lemma 25. (i) Q}(/;") = 0.
(i) Q5 (#)) = 0,Vk>4.

Proof. (i) It suffices to show n(dJ3) = .#," @A @A) ©.A)°.
For that note

w1 = 2¢020(P01)3(do1)0(b01) — Po19(P02)d (1) (bg1) €3,

@2 = 2050(01)3(01)0(do1) — Do1(d02)0(01)d (o) €73,

w3 = 2¢020(P01)3(do1)0(¢) — b01(P02)0(bg1)0(¢) €73,

w4 = 2¢0;0(¢01)0(h10)0(P) — Do1(P02)0(¢h10)3 () €3,
satisfies

1(50n) = 2¢0s @ I,

n(0wy) = 2¢ 40201,

m(0w3) = 20402(P) @ L2 + 2¢0401(¢) 0201 + 260403 () 0203,

(0wg) = 2¢1301(P) o + 2¢1302(p)a102 + 2¢01303(P) o 03.

Now an application of Lemma 20 completes the proof.
(i) The same argument as in (i) does the job with the following choice:

Q)j,:a)[é(d)()l)...é(d)()]), lzl,,4 D
—————

(k—4) times

5. Torsionless and unitary connections

Definition 26Frohlich et al. [7]
(i) [ determines a semi-definite sesquilinear form on Q°(.«/;”) by setting

(w,n):/n(w)n(n)* Vo,neQ® ().
(ii) Let

Ki = {0e @ (P |(0,0) =0}, K=K
k=0
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K, K + 0K are two sided *-ideals, the later is closed under differential.

@A) = D Q) D) = @) K
k=0
(iii) #* denotes the Hilbert space completion of f)k(szf,‘jo) with respect to the

scalar product. H =@ o O%k, H#* is to be interpreted as the space of square-
integrable k-forms.
(iv) The algebra multiplication of Q°(.«;”) descends to a linear map

m:Q () ® Q (A ) > Q ().

(v) The unital graded differential *-algebra of square-integrable differential forms
is defined by

~ L ~
QA7) = B (i) Q) = QA7) /(K + K1),
k=0
(vi) 6: Q% (/) > Q" (/") descends to a linear map &: Q3 (/) — Q3 (£7).
(vii) A connection V on a finitely generated projective ./;° module & is a C linear
map

V QW (AR E-Q N (AP)®E,

such that V(ws) = d(w)s + (—1) @V (s) for all 0 e Q¥ (/") and all se 2} (#/ ) @ &.
(viii) The curvature of a connection V on & is given by
R(V)=-V2:6->Q5(4y) & 6.
d/h
Remark 27. Each wef)k(ﬂf ) determines two operators my(w),mg(w) from
SNQ”(&{;:O) to é”*k(y/,fc) given by my(®)(n) = m(w®n), mp(w)(n) = m(n@w). These
operators extend to bounded linear operators my(w), mg(w) : A" = A" for all n.

Proposition 28. For k=2 we have
W) (A7) = A7 @M C) =t @ AT D AT DA,
(i) #* = L2(4) 1) @CH,
(iii) @ (477) = (7).

Proof. (i) Faithfulness of A— [ A, defined on #n(Q*(/;")) = o/, ® M>(C) gives
Jir = K.

Hence Ez"(,;z/;O) = Q") [ker(n) =n(Q(4°)) = o @ My(C).

(i1) Follows from (i) and Proposition 14.

(ii1) This follows from (i) and the definitions. [
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Remark 29. Since Ez})(;ﬁ) is free with 3 generators, we can and will identify
ﬁ})(&{,‘w)@ﬂ; ﬁ})(&i;f) with «/;° ® M3(C) and a connection V is specified by its
value on the generators.

Definition 30. A connection V : EZ})(UQ{ ) fz})(&/ 0 )® .y f?})(,sz/ ) is called torsion-
less if T(V) =0 — moV :éb(gﬂf)—»fz%(&/,‘f‘) vanishes.

Proposition 31. A connection is torsionless iff its values on the generators o1, 03,03 are
given by

O a b O d e O p—-1 ¢
Vie)=|[a 0O ¢, Vi)=|d O f | Vie)=|p O r|
b ¢ e f O q r O

where all the matrix entries are from o/;° with restrictions on them as indicated above
and O denotes an unrestricted entry.

Proof. Note that
0 <Z aﬁ,(b)oy) = —-v-1 (Z (51 (ai)52(bi) - (32(&,‘)5] (bi))03
i i

+ Y (32(a)d3(bi) = 33(ar)oa (b))

+ > (93(a)or(by) — 51<ai)53(bf)>az>,

moV (Z :0;(b ) <Z 0(a;0; ®0]> +Za, i)moV(a;)

—m(Z Ok (a;d; 6k®61> + Z a;0;(b;)m>V (a;).

ij.k ij

Torsion of V vanishes iff (6 —moV)(>" a;6;(b;)a;) = 0, or equivalently,

Y (3i(a)d(bi) — dxlar)d; (b))

i

=" (Sj(aidr(br)) — ox(aid;(bi))) + Z a;61(b;) (meV(ay)),

i
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whenever j#k and n satisfies o010, = v —1. This happens iff
0:Za, 51,(3/( -‘rZCl(S[ mov 0'1))
i

whenever j#k and n satisfies 0,040, = vV —1.
Using the Lie algebra relations between the J;’s we get equivalence of the above
system of equations with

0= Z a;63(b;) + Z a;01(b;)(moV(ay))s,

0=">" af5/(bi)(mov(01))z,
i
0= Z a;0;(b;)(moV (a7)),.
il
Taking b; = ¢, a; = 1 we get 0,(b;) = d3(b;) = 0,0,(b;) = b;. Substituting these in
the above relations we get (moV(s>)); =0 for j=1,2,3. Similarly taking b; =
¢19,a; =1 we get (moV(ay)); =0 for j=1,2,3. Substituting these values in the
above equations we get
> aids(by)(meV(a3)), =0,
Z a;63(b;)(m=V(03)), = Z a;03(b;)(1 4 (m°V(03)); = 0.
Note that J = {>_a;03(b;)|neN,ay, ...,a;,b1,...,b;e o/} is a nontrivial ideal in
</, and hence it equals .«/;°. Therefore (moV(o3)); =—1 and (m-V(s3)), =

(moV(a3)), = 0. Now the result follows from the anticommutation relation between
the spin matrices. [

Definition 32. A connection on a finitely generated projective .«/;° module &,
endowed with an «/;° valued inner product <-,-) is called unitary if

0{s,ty = Vs, ty —<{s5,Vt), Vs, teé,

where the right-hand side of this equation is defined by <o ®s,7)> = w{s,t), and
<S7’7®t> = <Sat>’7*'

Proposition 33. A connection V on EZ},(&{ W) is unitary iff its values on the generators
a1,02,03 are given by
X Y Z Yy U ¥V
Vie)=|Y U P, V() =|U R S|,
zZ VvV o P S F
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Z P Q
Vie3)=|V S F|,
0O F G

where all the matrix entries are self-adjoint elements of /" .

Proof. Taking s = a;0;,t = bjo; in the defining condition of a unitary connection
we get

6(05aiby) = ai({N (i), 07 — <, 01, V(0;) ) )bj + 65(3(ar)b — ai(d(b;))")  (5.1)

implying that {V(g;),0;> = <{0;,V(0;) ), which means the jth row of V(g;) is the
star of the ith column of V(a;). This completes the proof. [

Corollary 34. A connection V cannot simultaneously be torsionless and unitary.
Proof. If possible let V be one such. Comparing the forms of V(g;),j =1,2,3 in

Propositions (5.6) and (5.8) we get that V' = ¢ = P and also V' — P = —1. This leads
to a contradiction. [

6. Connections with nontrivial scalar curvature

Definition 35 (Frohlich et al. [7, Theorem 2.9]). There is a sesquilinear map
oDt Q) ®Qp (A7) — N
satisfying (x, <w,n)p) = [xnew*, for all xe.oZ).
In the following proposition we identify Q¥(.«7") with .«/;° ® M,(C).
Proposition 36. <w,n), =3I ®r)(wn*).

Proof. Let v = wy® 1 + Z?:I iR, =40, + Z?:1 7;®ao;. Then %(I@tr)
(on’) =30 omf  and  (x, 0 wm;) = X elme;) = (v, (o,n)p) for all
xe.o/;. This completes the proof since .7 is dense in #°. O

Remark 37. Let e Q) (7;°). Since K + 0K is an ideal in Q},(.</;° ) we get two maps
induced by m: Q° (/") ® 7 Q*(4)— Q" (/). These maps denoted by the same
symbol
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m: QY (ALY e QAT ) > QN AT, M QAT )@ e Ry () > Q" (o)

induce bounded maps m (), mg(w): H* > A as in Remark 27.

Since Ez},(ﬂ,? ) is a free bimodule with three generators the curvature R(V) of a
connection V, R(V) = —V?: f)})(ﬂ,fc) ﬁﬁ%(ﬂf)@,gif f?},(&/,f) isgiven bya3 x 3
matrix ((Rj)) with entries in f)%(&/,‘f) Let Py, : #2 > A" be the projection onto
closure of n(3K,)=Q3 ("), and R = (I = Psk,)(Ryj). Let ej,ex,e5 be the
canonical basis of Q) (/). If we denote by Ricj =3, mL(e,-)T(Rij)e%l then
Ricci curvature of V is given by

Ric(V) =Y Rici®e;e #' ® yp (A7),
J
where T denotes Hilbert space adjoint. Finally, the scalar curvature r(V) of V is

given by

(V) =Y mg(e]) (Rici)e #° = L2 (7).
Proposition 38. Let f,g: T —R be smooth maps. We visualize them as elements of
S¢ in the following way, f(x,y,p) = donf (x), g(x,y,p) = 00pg(y). Let V be the
connection given by V(a1) =/"d(g)o1 +¢'6(f )o2, V(02) = ¢'6(f )o1,V(03) =0,
then r(V) is —2f2g>.

Proof. It is clear that the derivative functions f”, ¢’ also can be visualized as elements
of §¢ exactly in the same way as f and g. By direct computation one gets

V(1) = —Ri101 — Rinoa, V3(02) = —Rajay, V3(o3) =0,
where

Ry =f"g63, Rix=V-1(f%¢*—g'f")os,

Ry = —V—=1(g"f" + 1403,

and the other R;’s are zero.
Then

Ric; = —f"gar — ("' + g H)a1, Ricx = (¢"f —f*g?)o

implying the desired conclusion (V) = —2f2¢%. O
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Remark 39. (i) All the above notions of Ricci curvature, scalar curvature was
introduced in [7]. This is one infinite-dimensional example where one can have
connections with nontrivial scalar curvature (see also [4]).

(i1) Note that our choice of the spectral triple depends on a parameter o. However,
for the connections we have considered the scalar curvature does not depend on the
parameter o.

7. Nontriviality of the Chern character associated with the spectral triples

The spectral triple we constructed depends on a real parameter o. In this section we
show that the Kasparov module associated with the spectral triple are homotopic
[3,6]. We also argue that they give nontrivial elements in K'(.<Z) by explicitly
computing pairing with some unitary in the algebra representing elements of K, (.7).

Lemma 40. Let A be a self-adjoint operator with a bounded inverse and B a symmetric
operator with Dom(A)< Dom(B) on some Hilbert space A . Also suppose that

\|Bu||<al|Au||, Yue Dom(A). Then |A|"B|A|" """ e B(A) and |||A|7"B|4)"" )|
<a for 0<p<l1.

Proof. Essentially the argument in [11, p. 33], gives a proof. [

Lemma 41. Let A,B be as above with a<l. Let A, = A+ tB,te[0,1]. Then the
assignment t— tan~! (A,) gives a norm continuous function.

Proof. Let us denote |4|~"/>B|A4|~'/* by C. Then by the previous lemma ||C||<a. We
also have |[|4](4 — )< for JeiR.

A — 2 =(A—2) +1]4]"*C|a|'
= [4]"*((4 = DA™ +1C)| 4]
=A4]"2(1 + 1C(4 = 1) |A])(4 = )] 4] ]4]'".
Now note ||1C(4 — 2)"'|A|||<a<]1 for 0<r<1. Therefore
(A=) = 147144 = )7 (14 eC4 = )7 a) a2

So, if we denote by R,(1) = (4, —4)"" and F(J) = |A|(4 —7)"" then the above
equality becomes

R,(2) = |A|"P|ARy(2)(1 + tC|A|F(2)) ' |4] '

=Ro(2) + |A]7V*F (%) f: (=tCF(A))"1A|"">. (7.1)

n=1
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Let 1eR, t,5€[0,1],u,ve D(A). Observe (i)

—tCF (i)' | A" Pu =" (=sCF(i))"| A" u

n=1 n=1

8

< STl = Y CFa)|CIIFG2) AL

n=0
<Y = Y aal|F (i) Al
n=0
o0
<[(t=9)| Y n+1a"||F(iR)| Al ul|
n=0
a . _
<|(t = )| —— |[F(i2)| A" *ul],
(1—a)

(i
[ i apais [T o) awas
:;/Ow A2+ 8y, |A|u>jéE
:%n<A2—l/2u, [Aluy = Jul*

(iii) Using (7.1), (i), (ii)) we get
/ IR = R, v

V2p)\d

: - i 12y
<[ 1 = Al =i

o) /2 0 1/2
_ a . —1/2. 112 o —1/2 12
<|(¢ s)|7(1 - a)2</0 |FGEM|Al ul| di) (/0 [|[F(=il)|A]” || d)u)

a T
<|(t—=8)|——= Y|l ||v]|-
(=) gz Ml

This shows lim.y_,,||f0OC R,(i1) — Ry(iZ))dA|| = 0. Similarly one can show
limy|| fo" (R/(—iZ) — Ry(—i2)) d2|| = 0. Now the result follows once we observe
tanflA, fO Rt l)l.) + R[( l;t.)) da. |

Lemma 42. Let A, B be as above except now we do not require A to be invertible.
Instead we assume A to have discrete spectrum. Then there exists k=0 such that
t—tan~!'(4, + k) is norm continuous.
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Proof. Without loss of generality, we can assume 0 is an eigenvalue of 4. Otherwise
we are done by the previous lemma. Choose 2<neN such that b = a,"5<1. Choose
x>0 such that,

(i) smallest positive eigenvalue of A is greater than r,

(i1) if p is the biggest negative eigenvalue then f <nk.

Let A=A+ K, A, = A+ B. Then by choice of

(1) A is an invertible self-adjoint operator.

(ii) [|BA~Y[|<allA(4 + 1) || <azi<1.

That is B is relatively bounded with respect to A with relative bound »< 1. Now an
application of the previous result to the pair Z, B does the job. O

Combining these two we get

Proposition 43. Let A, B be operators on the Hilbert space # such that

(1) A is self-adjoint with compact resolvent.

(ii) B is symmetric with Dom(A) = Dom(B), and relatively bounded with respect to A
with relative bound less than 1.

Then there exists a continuous function f:R—R satisfying, lim,._, o f(x) =1,
limy_, _o, f(x) = —1 such that t+—f(A + tB) is norm continuous.

Proof. If 4 is invertible then by Lemma 41 f(x) = 2tan™'(x) serves the purpose. In
the other case by Lemma 42 f(x) = 2tan™!(x + «) does the job. [

Let the Hilbert space ## and the operators Dy, B, D be as in Corollary 11.

Corollary 44. The Kasparov module associated with (/;°, A, D) is operatorial
homotopic with (</,°, #, Dy).

Proof. Let D, = Do+ (B for t€[0,1]. Then D= D; and as in remark (3.4)
(o), A, D,) are spectral triples. Let f* be the function obtained from the previous
proposition for the pair Do, B. Then ((Zp, #,f(D;)))cppy gives the desired

homotopy. [

As remarked earlier the operator Dy depends on a real parameter o> 1. Now we
will make that explicit and denote Dy by D"

Proposition 45. The Kasparov modules associated with (/[ , A ,D(()a)) are operato-

rially homotopic for o> 1.

Proof. By Proposition 6, # = L*(T x T x Z)®C?. Let B be the operator
—2ncM, ®o3. Here p denotes the Z variable in the L? space. Then B is self-adjoint

with D(D(()“)) = D(B). Also B is relatively bounded with respect to Dé“) with relative
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bound less than 1< 1. Let D" = DY + tB for 1€[0,1]. Then D\ = D™ Let f be

the function obtained from Proposition 5.4 for the pair D(()“), B. Then from the norm

continuity of 7/ (DJ™") we see the Kasparov modules ((7;°, #, D{"™")) rej0.1) ATe
homotopic. Since o is arbitrary this completes the proof. [

Remark 46. Proposition 45 and Corollary 44 together imply the Kasparov module
associates with the spectral triple (.«7;°, o, D) is independent of o.

In the next proposition we show (<7;°, 5, D) has nontrivial chern character.

Proposition 47. The Kasparov module associated with (o/,°, # , D) gives a nontrivial
element in K'(.of}).

Proof. By Corollary 44 (o/;°, #, D) and (/;°, #,Dy) give rise to same element
(), #, Do) €K' (1) Let e/} be the unitary whose symbol in S¢ is given by
¢(x,p,p) = dppe™™. This gives an element [P]eK;(<Z;). It suffices to show
@), (4, A, Dy)]> #0 where the pairing (-, : Ki(o/;) x K'(/y)>Z is the
one coming from the Kasparov product. ¢ acts on L*(.o/;) @ C*=L*([0,1] x T x
Z) ®C? as a composition of two commuting unitaries U; = M,y ® DL, Uy =
M,y ® L. Then note U, commutes with Dy. Let E be the projection E =
I(Dy>0). U, also commutes with E. Now by Proposition 2 [6, p. 289] EU, U,E is a
Fredholm operator and {[@], (", #, Dy)]) = Index(EU, U,E) = Index(EU,E),
last equality holds because U, commutes with E. Now Index(EU, E) #0 because this
is the index pairing of the Dirac operator on T* with the unitary U;. O

8. Invariance of Chern character in entire cyclic cohomology

Now we will show that Chern character associated with the spectral triples
considered above is same. We begin with a general proposition of invariance of
Chern character under relatively bounded perturbations, which is an adaptation of
the arguments given in proposition (2.4) in [9].

Let o/ be a Banach algebra, and (#, %) be an odd theta summable Fredholm
module in the sense of [8] i.e, # is a Hilbert space, there is a continuous
representation ©: .o/ - B(H), Yy is an unbounded self-adjoint operator such that (i)
ar—>[Zg,n(a)] defines a bounded derivation from .o/ to (), (i) for all >0,
Trexp(—tZ}) is finite. Suppose we are given another self-adjoint operator 4 such
that a+ [4,n(a)] defines bounded derivation and 4 is relatively bounded with
respect to &, with relative bound f strictly less than one. Then we have:

Lemma 48. (#, 2, = 9y + tA) for 0<t<1 define odd theta summable fredholm
modules.
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Proof. Clearly 2, defines a self-adjoint operator and a+— [Z,,n(a)] defines a
bounded derivation. It only remains to show that Tr exp(—s%?) is finite for all s> 0.
For that note for bounded operators B;, B, with B; compact, we have

.un(BlBZ)<ﬂn(Bl)||BZ||a (81)

where p,(-) stands for the nth largest singular value. Letting g, , = nth smallest
singular value of Z,, (8.1) along with the resolvent identity

(@, =) = (20— i) "0 +14(29 — i) )7} (8.2)
gives

p-1

2
7 ) <t + 1. (8.3)

0+ 1)

Now we are done by the finiteness of Y~ exp(—su; ) = Tr exp(—s2;). O

Remark 49. From the proof of the previous lemma it also follows that 7r exp(—@f)
is uniformly bounded.

Let # be the Z/2 graded Hilbert space given by H =" @A#~, where
~ W~ ~ : : ~_ G _ (0 iz
HT = H = H#". Let 7 be the representation given by 7 = n@n. Let Zo = (4@0 100>7
similarly define A and @l, then 9, = 9, + tA. Let ¢, be the odd operator given by
= (? (1)) Then ¢; graded commutes with Z,’s and 7(.#). Consider the multilinear

maps (-, -, >y, 0 B(H)E Y 5 C given by
{Ag, ooy An )i :/ Str(clee””@'zAle*“@fz~~-Ane*“'"gfz)d”s,
: "

where 4, denotes the n-simplex and the integration is with respect to the lebesgue
measure on that simplex. S#r stands for super trace, explicitly given by Str(4) =
TrA|,+ — TrA|,,-. The Chern character of the theta summable Fredholm modules
(#,9,) is given by the entire cyclic cocycles on o7 given by the formula

Ch'(2)(ao, ...,a,) = ao, [é,,al], . [@t,an] Din

Note that in the right-hand side a; actually stands for 7(a;). Our objective is to prove
the following theorem.

Theorem 50. The chern characters Ch*(2,) associated with the Fredholm modules
(AH,9,) are cohomologous for 0<t<1.

For ease of reference let us recall some results (Lemmas (2.1), (2.2) from [9]).
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Lemma 51. (i) If the operators A;, G;,j =0, ..., n are bounded and at most (k + 1) of
the A;’s are nonzero, then for 0<e< (2¢)7!

< A0D: + Gy ooy 4D+ Gy >

r(1/2)!
r(n—k+1)/2)

< (2e5) " (+D/2 Tre 97 (|| 4| + |Gyl

(i) In each of the following cases we assume that the operators A; are such that each
term is well defined |A| = 0 if A is even, |A| =1 if A is odd.

@) Ay ooy A Y 1y = (=) AT ADUATE D g Ay Aoy ooy A D e
(b) CAgy oy Any = (= 1) APt DIA D g Ay, A,
Aj1) psr-

(©) Zg(—l)‘AO'*;'AH‘ CAgy ey [D0, 4], o Ay 1y = 0.
d) <Aoo, (27, A4, . An) = {Aoy ooy Ajr Ap, Ajiry oy Ay Y 1y — (Ao, oy
Aj_l,A/‘Ai+],... Al‘l>ln 1-

(e)%<A0,... n>tn+20 <A07... j?[@h@] Aj+17"'7An>t.n+l:0'
Proof of the Theorem. Let A4y, Ay, ..., A,, G be bounded operators. Then,
(a) |<A07"'7A/7GZ7A/+17"'aAl’l>t,l’l+1|

:|<A07aAl7GZ(@t+l) (91 ) l+17"'?AVl>IJ1+1|

- Ir(1/2 ~,
<2 LGl g W e 0

Therefore,

&*(Q[,Z)((am "'aaﬂ))
_Z 1) <(l07 9““1] 7[étaaj]7z>[éhaj+l]7"'7[é”a”]>ta"+l

defines an entire cochain.

() Ao, ddj, Ay = (Ao o (D D)( Do+ 1) AAy, Ay,

Left-hand side is well defined by (i) of Lemma 51 implying that the right-hand side is

well defined too. Therefore,

o (D, M) (a0, -.ran)) =Y Lao,[Doar), ..., [A,a), ... [Dran] Y,

0

defines an entire cochain.
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(c) Again as in (b) it is easily seen that <A0,...,Aj,Zét,Aj+1,...,An>,7n+1,

and <{ Ao, ..., A4j, @,Z Aj+1, woey An Y 1 pr1 make perfect sense. So, that we can talk
about (Ao, ..., ],[@,, ] Aty ooy An )y Which is nothing but (Ao, ..., 4;,

[%,ét],Aﬁl, coes An ) 1n1- Now we are in a position to apply (ii)(c) of Lemma 51
to the following choice:

ay, for j =0,
4 @,,aj] for j<k,
714 forj=k+1,

(D1, a;1] for j=k +2.
This gives
X1+ X+ X3 =0, (8.4)

where
X] - (_1)k<[élaao}a [@[7611], ~"7[élaak]7z7[étaak+l}a ~--7[élaal’l]>t,n+l7

X2 - Z (_1)i+k_l<a07 [él‘aal]a 7[9?7‘1]]7 "'7[élaak]az7 °"7[él‘aan]>17n+l

j<k

+ Z k+/<a0a @tval} ,[é[,ak],Z,..-[é?,aj],«..,[é[,an]>[7n+17
j>k

X3 = <a07 [éhal]a ceey [éhakL [étaz]a [éhakJrl]? ceey [@han] >t,n+l'

We now sum (8.4) over 0<k<n. By Lemma 51(ii)(b) we see after reordering terms
that

> Xi=—~(BCK (21, 4))((av, ... an)). (8.5)

k

Similarly, using Lemma 51(ii)(d),

ZXZ —(bCH* (2, 4))((ag, ..., an)) + o (Dy, ) ((ag, ..., ay)). (8.6)
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Here b, B are the boundary operators in entire cyclic theory [9]. Combining (8.4)—
(8.6) along with the expression for X3 we get

dCh~(7,)
dt
= Z <Cl(), [gnal}a [REE} [élaak]a [éhz]a [ghak-&-l]v L) [ghan]>t7n+]
k

(a07 "’7an)

+ oc*(gt; Z)((ao, ""a”))

= (B+b)Ch* (2, D) (a, ...,a,)). O

Let the Hilbert space # and the operators Dy, B, D be as in Corollary 3.3. %,ll
defined as {ae.oZy|[ Dy, al,[B,ale B(#)} becomes a Banach algebra with the norm
llal|,, = max{||a|| + ||[Do, d]ll, ||al| + ||[B,d]||}. Let Zo = Dy, 4 = B, then with these
choice &/},, H, Dy, A satisfy all the hypothesis required for applying Theorem 50 by
which we get

Corollary 52. The Chern character associated with the spectral triples (/)" , A, D),
and (1}, H, Dy) are cohomologous.

Remark 53. The spectral triple (.o7;°, #, D) depends on a real number a>1. An
argument very similar to Proposition 45 will show that Chern character associated
with this whole family of spectral triples is independent of «.
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