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The correction of wave distortions by the technique of optical phase conjugation is examined first on the basis of
a newly derived integral equation for scattering of monochromatic scalar waves in the presence of a phase-conjugate
mirror. The solution is developed in an iterative series, and the first- and second-order terms are analyzed and il-
lustrated diagrammatically. A generalization of the integral equation is then presented, which takes into account
the electromagnetic nature of light. It is also shown that, if the conjugate wave is generated without losses or gains
and with a complete reversal of polarization, a total elimination of distortions may be achieved by this technique
under circumstances that frequently occur in practice.

1. INTRODUCTION

One of the main applications envisaged for the rapidly de-
veloping technique of optical phase conjugation is the cor-
rection of distortions that are imparted on a wave field by its
interaction with a scattering medium.1 A number of experi-
ments have been carried out that demonstrate the possibility
of such a "healing" process,2 but no satisfactory theory of this
phenomenon has been developed so far. This is undoubtedly
so because the physical processes that are involved are very
complex, a fact that does not appear to be generally appre-
ciated; they include two, conceptually distinct, scattering
processes, namely, scattering of the original wave and of the
conjugated wave, as well as a nonlinear interaction. The
simple, intuitive arguments that have been put forward so far
to explain the success of this technique have greatly
oversimplified the problem. Only some special cases have
been treated adequately until now, namely, corrections of
distortions produced by weak scatterers3 ,4 and corrections
under conditions when the phase-conjugate wave is generated
without losses or gains.5

In Ref. 5 we put forward an integral equation for scattering
of monochromatic waves in the presence of a phase-conjugate
mirror (PCM), from which the degree of corrections attainable
by this technique can, in principle, be deduced. The equation
was obtained within the framework of scalar wave theory by
a plausibility argument, on the assumptions that the incident
field contains no evanescent components, that the scatterer
is nonabsorbing, and that the effects of the evanescent waves
are negligible at the PCM-a condition that is likely to hold
in most cases of practical interest. In the present paper some
implications of this integral equation are studied, and a gen-
eralization of the equation is obtained that takes into account
the electromagnetic nature of light.

In Section 2 we recall the (scalar) integral equation for the
scattered conjugated field. In Section 3 we present a formal

solution of this equation in a form of an iterative series. In
Sections 4 and 5 we analyze the first- and second-order con-
tributions to the conjugated field and illustrate the results
diagrammatically. In Section 6 we examine the correction
of distortions for the case when the conjugated wave is gen-
erated without losses or gains, and we show that under these
circumstances a complete correction is obtained to all orders
of scattering. In Section 7 we present a generalization of our
basic integral equation within the framework of Maxwell's
electromagnetic theory, under the assumption that the con-
jugated wave is generated with a complete reversal of polar-
ization.6 We find that if, in addition, there are no losses or
gains on phase conjugation, a complete correction of distor-
tions produced by nonabsorbing scatterers will again be
achieved. In the concluding section (Section 8), the main
assumptions implicit in our theory are summarized, and some
possible generalizations are mentioned.

2. BASIC INTEGRAL EQUATION FOR THE
SCATTERED FIELD IN THE PRESENCE OF A
PHASE-CONJUGATE MIRROR

We consider a monochromatic scalar wave field

U(W)(r, t) = U(i)(r)e-it (2.1)

that is incident upon a scattering medium occupying a finite
volume v in free space. In Eq. (2.1), r denotes the position
vector of a typical field point, t denotes the time, and w de-
notes a (real) frequency. The wave field is taken to be inci-
dent from a half-space R- on one side of the scatterer [see Fig.
1(a)]. The scattering medium is assumed to be linear, time
independent, and nonabsorbing. We denote by n(r) the (real)
distribution of the refractive index throughout the scattering
volume.
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Fig. 1. Schematic diagram illustrating the notation. (a) In the ab-
sence of the PCM, the total field U is given by the sum of the incident
field Us and the scattered field U(5). (b) In the presence of the PCM
in the plane z = z2, the total field throughout the domain z < z1 is
denoted by U,.

When the field interacts with the scatterer, a new field [with
the time-dependent factor exp(-iwt) omitted from now
on]

U(r) = U(W(r) + U(s)(r) (2.2)

is generated, where U(s)(r) represents the scattered field. It
is well known that U(r) satisfies the integral equation7

U(r) = U(i)(r) - -X G(r, r')F(r')U(r')d 3r', (2.3)
4wr h

where

process are negligible10 at the PCM, then the field U,(r)
satisfies the integral equation5' 11

U,(r) = UW(0 )(r) -- L -' C0(r, r')F(r')U (r')d3r',
47r v

where

U10)(r) = UWi(r) + AU(i)*(r)

(2.6)

(2.7)

and Or (r, r') is an operator Green's function1 2 that takes into
account the presence of the PCM.

The operator Green's function 00 (r, r') was shown5 "1' to
be expressible in terms of the following four quantities:

(1) The complex "reflection coefficient" A of the PCM.
(2) The complex-conjugation operator C, defined by the

property that

Cf(r) -- f*(r), (2.8)

where f(r) is an arbitrary function.
(3) The free-space Green's function G(r, r').
(4) The function G> (H)(r, r') associated with the

"homogeneous" part of the free-space Green's function
G(r, r').

More specifically, the function G> (H)(r, r') is related to the
free-space Green's function G(r, r') by the formula

G(r, r') = O(z - z')G>(H)(r, r')
+ O(z' - z)G<(H)(r, r') + G(')(r, r'), (2.9)

where G>(H)(r, r') and G< (H)(r, r') represent the contribu-
tions to G(r, r') from all homogeneous plane waves, G0()(r, r')
is the contribution from all inhomogeneous (evanescent) plane
waves, and 0(t) is the unit step function, viz.,

OM)= I ift> 0,
G(r, r') = exp(iklr-r'1)

Ir -r'I
(2.4)

(h = w/c, c being the speed of light in vacuum) is the outgoing
free-space Green's function and

F(r) = -k 2[n2(r) - 1] (2.5)

represents the scattering potential.
Suppose now that a PCM,8 assumed for simplicity to be

infinite, is placed in a plane z = z1 in the half-space R + on the
side opposite that from which the field UWi)(r) is incident [see
Fig. 1(b)J. Were the scatterer absent, the PCM would replace
the field distribution U(W(r) 1,= in that plane with the dis-
tribution AU(i)* (r) 1=,, that would give rise to an additional
contribution to the total field in the half-space z < z 1 . Here
the asterisk denotes the complex conjugate and y is a (gen-
erally complex) constant that accounts for the losses (A1 I <
1) or gains (IA I > 1) that arise in the process of phase conju-
gation. The assumption of constants represents an ideali-
zation; in practice the PCM may respond differently to plane
waves that propagate in different directions.

When both the scatterer and the PCM are present, a new
field distribution is generated throughout the domain z < z1
that we will denote by U, (r). It represents the total field after
phase conjugation; for the sake of brevity, we will refer to it
as the conjugate field.9 If the incident field U()(r) contains
no evanescent components, and if, in addition, the effects of
the evanescent waves that might be created in the scattering

=0 if«<0. (2.10)

By using the Weyl representation of a spherical wave,13 the
functions G>(H)(r, r'), G <(H)(r, r'), and G ')(r, r') may be
shown to be expressible explicitly as

i1
o > (H) (r, r') -± - expi [ (p -p')

27r JJIIk W

+ w(z - z')]}d 2K, (2.11a)

G<(H)(r, r') - 2 33 [ -expfi[K - (p --p')

-w(z - z')]1d2 K, (2.11b)

and

G(')(r, r') =tJag -expi [K - (p-P')
27r I~>k w

+ wlz - z'j])d2K, (2.12)

respectively. In the integrals on the right-hand sides of Eqs.
(2.11) and (2.12), r = (p, z) and r' = (p', z') (with p and p' being
two-dimensional vectors orthogonal to the z axis), and

w = + (k2 - K2)1I2 when fKJ < k (2.13a)

= +i (K2 - k2)1/2 when IKI > k. (2.13b)
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U";' PCM

scatterer

Fig. 2. Diagrammatic illustration of the zeroth-order term U, (0) in
iterative expansion (3.1) for the conjugate field U,. Uli) denotes the
incident wave, and pU(i)* denotes the wave that is generated by the
PCM in the absence of the scatterer.

In terms of the four quantities listed as (1)-(4) above, the
operator Green's function Q, (r, r') that appears in the basic
integral equation (2.6) may then be expressed in the form

Oc(r, r') = G(r, r') + AG>(H)*(r, r')C. (2.14)

Here the first term on the right-hand side represents the
propagator for scattering in the absence of the PCM; the
presence of the PCM in taken into account by the second
term.

Making use of Eq. (2.9) and the relation

G>(H)*(r, r') = -G<(H)(r, r') (2.15)

that readily follows from Eqs. (2.11), we may write the oper-
ator Green's function 6,) (r, r') given by Eq. (2.14) alternatively
as

Oc(r, r') = O(z - z')(1 + pC)G>(H(r, r')
+ O(z - z)G<(H)(r, r')(1 - it) + G()'(r, r'). (2.16)

This form of the operator Green's function G, (r, r') will prove
convenient later (Sections 6 and 7).

We note that the removal of the PCM is equivalent to let-
ting gLC 0. We see from Eq. (2.14) for Eq. (2.16)] that in this
limit

Gc(r, r') = G(r, r') (A = 0),

and, according to Eq. (2.7), one then also has

U,(1)(r) = U(i)(r) (Y = O).

(2.17)

(2.18)

Since, in the absence of the PCM, U, (r) - U(r), we see at
once, on using Eqs. (2.17) and (2.18), that our integral equation
(2.6) then correctly reduces to the usual integral equation
(2.3).

3. ITERATIVE EXPANSION OF THE
SOLUTION TO THE BASIC INTEGRAL
EQUATION

The basic integral equation for the scattered field in the
presence of a PCM [Eq. (2.6)] may be formally solved in the
form of an iterative expansions

U.(r) = E U.(n)(r),
n=O

where U,0()(r) is given by Eq. (2.7) and

UJ(n)(r) =- - - 4' (r, r')F(r')U,(n-1)(r')d 3 r'

(3.1)

(n = 1, 2, 3,.. .). (3.2)

We note that, in the absence of the scatterer, F(r) - 0 and
all the terms U, (K)(r) in series (3.1) then vanish, except the
first one (i.e., the term n = 0). Hence in this case we have

U.(r) - U, (°0 (r) = U W (r) + guU M *(r)

= (1 + gCD)UW(r), (3.3)

as expected. We emphasize that the result expressed by Eq.
(3.3) holds only when there are no evanescent waves associated
with the incident field15 U(i)(r). The physical meaning of the
right-hand side of Eq. (3.3) is illustrated schematically in Fig.
2. We give later (in Sections 4 and 5) similar diagrammatic
representations for the next two terms (n = 1 and n = 2) of
iterative expansion (3.1).

In applying the technique of optical phase conjugation to
the correction of wave-front distortions suffered by a light
wave on interaction with the scattering medium, one is usually
interested in the field U,(r) in the half-space B- only, i.e., on
that side of the scatterer from which the wave U W (r) is inci-
dent. It follows from Eqs. (2.14) and (2.9) that, if the eva-
nescent waves are neglected in the half-space B?-, the operator
Green's function lC,(r<, r'), with r< E B and r' E C, then
reduces to [cf. also Eq. (2.16)]

0C(H)(r<, r') = G<(H)(r<, r') + FG>(H)*(r<, r')O. (3.4)

Hence, in this approximation, each term U, (n)(r<) in ex-
pansion (3.1) with n > 1 may be represented, throughout the
half-space B-, in the following form:

U =n)(r<) =--of G(H)(r<, r')F(r')U,(n-1)(r')d3r',

(3.5)

where Q (H)(r<, r') is given by Eq. (3.4). The field U0 (I-l)(r')
under the integral sign on the right-hand side of Eq. (3.5) must
be calculated by the use of recursion formula (3.2), which is
valid throughout the domain z <zl. It should be noted that,
although here the effects of the evanescent waves are ne-
glected at the PCM and in the half-space B-, they are in-
cluded inside the scattering medium.

4. DISTORTION CORRECTION IN THE FIRST
BORN APPROXIMATION

We now analyze in some detail a few of the lowest-order terms
of iterative expansion (3.1) in the special case when the ob-
servation point r< is located in the half-space B- and the
evanescent waves are omitted in that half-space. If the
scatterer is sufficiently weak and also thin enough, the total
field U,(r<) in the half-space B- may then be adequately
approximated by the first two terms in expansion (3.1), i.e.,
by

U, (r<) - U (')(r<) = Uc (0)(r<) + U, (1(r<), (4.1)

where U,(°)(r<) is given by Eq. (3.3) (with r = r<) and
U, (1)(r<) is obtained from Eq. (3.5) with n = 1, viz.,

U( =)(r<) =- -1f XC(H)(r<, r')F(r')U (0 )(r')dsr'.
47r o

(4.2)

This approximation represents the first Born approximation
(superscript I) to the field U,(r<) in the presence of the
PCM.
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If we substitute from Eqs. (3.3) and (3.4) into Eq. (4.2), we
obtain at once the formula

U, (1(r<) = - I [GC<(H)(r<, r')
4,7r fnr

+ ,G,(H)*(r<, r')C] F(r')(l ± MC)U(i)(r')d3r'. (4.3)

On expanding the product under the integral sign, we obtain
for Uc(')(r<) the expression

U.(1)(r<) = 1-j- Gj <(H)(r<, r')F(r') UW(r')dWr'
47r GHr

-- A G<(1)(r<, r')F(r')U(0)*(r')d2r'
4ir Ja

(a)

(b)

(a)

F
(b)

(c) (d)

Fig.3. Diagrammatic illustrations of the four contributions [(a)-(d)],
given in Eq. (4.4), to the first-order term U, ()1 (r<) of iterative ex-
pansion (3.1).

U, (')(r<) (1 - 1, |2) Ub8(')(r<), (4.5)

(4.4)

Here we made use of the fact that the scatterer was assumed
to be nonabsorbing and that, consequently, the scattering
potential F(r) is a real function of position throughout the
volume 'V.

We note that each term on the right-hand side of Eq. (4.4)
involves either the function G>(H)(r<, r') or the function
G<(H)(r<, r'), both of which are associated with the "homo-
geneous" part of the free-space Green's function G (r, r') [cf.
Eqs. (2.9) and (2.11)]. This situation is a direct consequence
of the fact that we neglected the evanescent waves both at the
PCM and in the half-space RP. With this neglection itis clear
that, in the first Born approximation, the conjugate field
U, (r<) in the half-space It- contains no effects of the evan-
escent waves that may have been created on scattering inside
the volume 'V.

In the approximation that the evanescent waves are ne-
glected in the half-space J?-, the quantity G<(H)(r<, r')
represents the propagator from point r' inside the scattering
volume 'V to point r< in the half-space I-. Similarly, with
the effects of the evanescent waves neglected at the PCM, the
quantity AG >(H)* (r<, r')C in Eq. (4.3), which gives rise to the
last two terms in Eq. (4.4), may be interpreted as the propa-
gator from r' to r< via the PCM. Hence each of the four terms
(a)-(d) in Eq. (4.4) specifies a well-defined elementary event
associated with scattering in the presence of a PCM, namely,
first-order scattering, which may or may not be followed or
preceded by phase conjugation. These elementary events are
illustrated diagrammatically in Fig. 3. The scattering taking
place at a typical point within the volume 'V is denoted by a
dot in each of the diagrams.

In view of relation (2.15), the terms (b) and (c) in Eq. (4.4)
are seen to cancel each other. The remaining two terms, viz.,
(a) and (d), represent the effects of backscattering 4 in the first
Born approximation; the term (a) arises from the backscat-
tering of the incident wave U(W, whereas the term (d) arises
from the backscattering of the wave gU(i)*. By making use
of relation (2.15), Eq. (4.4) may be expressed in the form

where

UbS(')(r<) --- j G<(H)(r<, r')F(r')U(0)(r')d 3 r'
4-7r fma

(4.6)

is the (first-order) backscattered contribution to the total field
in the half-space R- [represented by diagram (a) in Fig. 31.
We note that the complex "reflection coefficient" A of the
PCM enters expression (4.5) for the field U,(W)(r<) only
through its modulus.

According to Eqs. (4.1) and (4.5), the effect of backscat-
tering prevents, in general, a complete cancellation of dis-
tortions by phase conjugation within the accuracy of the first
Born approximation. However, distortion correction may be
achieved in the first Born approximation if either

(1) Ub.(')(r<) = 0, i.e., there is no backscattering into the
half-space R-, or

(2) IAt = 1, i.e., there are no losses or gains in the process of
phase conjugation.

Under the usual circumstances I I << 1, and Eqs. (4.1) and
(4.5) then yield

U,(1)(r-<) _- U (W)(r<) + Ub.(')(r<) (Al << 1). (4.7)

Hence, if the backscattered field Ubs(')(r<) is physically re-
moved by some experimental means, the wave-front distor-
tions resulting from the interaction of the incident field with
a nonabsorbing scatterer can be corrected in the first Born
approximation by the use of a PCM for which lIul << 1.

5. DISTORTION CORRECTION IN THE
SECOND BORN APPROXIMATION

We now go one step beyond the first Born approximation by
including the next higher term in iterative expansion (3.1), i.e.,
we approximate the field U, (r<) in the half-space It- by

U,(r<) - Uc("1)(rc) = U,(°)(r<) + Uc(')(r<) + Uc(2)(r<).

(5.1)

The first two terms on the right-hand side of approximation
(5.1) were discussed in Sections 3 and 4 above. The term
U4(2)(r<) is obtained from Eq. (3.5) with n = 2. Approxi-
mation (5.1) represents the second Born approximation (su-
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perscript II) to the conjugate field U,(r<) in the half-space
R-.

Setting n = 2 in Eq. (3.5) and making use of Eq. (3.2) to find
an expression for the field U, (')(r') under the integral sign,
we obtain the formula

U (2) = ((±) f f dc((r<, r')

X F(r"')O(r', r')F(r')Uc( 0)(r')d 3r'd3 r'. (5.2)

We note that, unlike in the expression for Uc (1 )(r<), the
"total" free-space Green's function G [contained in the op-
erator Green's function O, (r", r') in the integrand-cf. Eq.
(2.14)] appears in expression (5.2) for U (2)(r<). This fact
implies that, within the scattering volume YV, contributions
carried by both the homogeneous waves and the evanescent
waves are now included [cf. Eq. (2.9)]. However, outside the
scatterer the effects of the evanescent waves have again been
neglected.

If we now substitute for the operator Green's function
Gc(r', r') from Eq. (2.14) and for the zeroth-order field
U, (0 )(r') from Eq. (3.3), Eq. (5.2) becomes

(a)

i, F(b}IM'

(c)

(e)(f

::T t S .
(h)

= ()2 f'5U, (2) (r<) = (4 ), Jf [G<(H)(r<, r')

+ pG> (H)*(r<, r")0]F(r")

X [G(r", r') + G>(<H)*(r", r')C] F(r')
X (1 + MX)U(M)(r')d3r'd3r".

(5.3)

On expanding the product under the integral signs on the
right-hand side of Eq. (5.3), we obtain the following explicit
expression for the second-order contribution U, (2)(r<) to the
total field in the half-space R-:

B0g)

Fig. 4. Diagrammatic illustrations of the eight contributions
[(a)-(h)], given in Eq. (5.4), to the second-order term Uc(2)(r<) of
iterative expansion (3.1).

(5.4) contains the function G>(H) or the function G< (H) (de-
picted, as before, by hollow arrows in the diagrams). Some
of the terms contain, in addition, the free-space Green's

u+(2)(r<) + )2 C G<(H)(r<,r-)F(r-)G(r",r')F(r')U(i)(r')d3r'd3 r' (a)

+ g () 5 X J G<(H)(r<, r")F(r")G(r" , r')F(r')U(U)*(r')d3 r'd3 r" (b)

+'f(4 ) f X G<(H)(r<, r")F(r')G>(H)*(r", r')F(r')U(i)*(r')d3 r'dar" (c)

+ ,l (4-)~ J f G>(H)*(r<, r")F(r")G*(r", r')F(r')U(0*(r')d3 r'd3 rf' (d)

+ I#tJ|2 (4 ) Xf f G<(H)(r<, r')F(r")G>(H)*(r/, r')F(r')U(0)(r')d3 r'd3 r" (e)

+|1M 2 (i-) f X G>(H)*(r<, r")F(r")G*(r", r')F(r')U()(r')d3 r'd3 r" (f)

+ Mul2 (4X) Xf ,f G>(H)*(r<, r")F(r")G>(H)(r", r')F(r')U(i)(r')d3 r'd3 r" (g)

+ M)J12( f4) j' 5 G>(H)*(r<, r")F(r")G>(H)(r", r')F(r')U(0)*(r')d 3 r d3r". (h)

Here we again made use of the fact that the scattering po-
tential F(r) is assumed to be real.

The eight terms (a)-(h) of Eq. (5.4) are illustrated in Fig.
4 in a diagrammatic form. Each diagram represents a single
elementary event consisting of two scattering processes (de-
noted by dots, as before) and m phase conjugations at the
PCM, where m = 0, 1, 2, or 3. We see that each term in Eq.

function G(r", r') (depicted by a solid arrow), which, unlike
G> (H) and G< (H), includes contributions from the evanescent
waves; the appearance of G(r", r') in these terms allows for
the possibility of a conversion of an evanescent wave into a
homogeneous one, which subsequently contributes to the field
U, (2)(r<) in the half-space Yi- [diagrams (a), (b), (d), and (f)
of Fig. 4].

(5.4)
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If we make use of Eq. (2.15) and also of the relation

G M)*(r, r') = G ()(r, r') (5.5)

that readily follows from Eq. (2.12), we find that many of the
terms in Eq. (5.4) cancel one another. The formula (5.4) for
the field U (2)(r<) may then be expressed in the following
compact form:

Uc (2)(r= (1r-< u II 2)[Ubs( 2)(r<) + 'U(2)(rc<)], (5.6)

where

Ub(=)(r<) =(1) 5 G<(H)(r<,r')F(r')

x G(r", r')F(r')Ui)(r')d 3r'd 3r" (5.7)

is the (second-order) backscattered contribution to the con-
jugate field in the half-space B?- [diagram (a) in Fig. 4] and

'U(2)(r<) =- f- S S G(H) -(r <, r't)F (r')

X G>(H)(r", r')F(r')U(i)*(r')d 3 r'd3 r" (5.8)

represents the (second-order) field contribution resulting from
the sum of the three elementary events, each of which contains
only a single phase conjugation at the PCM [diagrams (b)-(d)
in Fig. 4]. It is seen that, in general, the field Uc(2)(r<) does
not vanish throughout the half-space B?- and that it contains
contributions of the evanescent waves created inside the
scatterer through the backscattered term Ubs(2)(r<). How-
ever, in the special case when the conjugated waves are gen-
erated without losses or gains (IgI = 1), the second-order field
contribution U, (2 )(r<) to the total field vanishes identically
in the half-space I- [cf. Eq. (5.6)].

If IAI << 1, as is usually the case, Eq. (5.6) yields

U.Q)(r<) -_ Ub.( 2 )(r<) + 'U( 2 )(r<) (IA I << 1), (5.9)

where the directly backscattered contribution Ub8 (2)(r<) is
independent of p and the term 'U(2Kr<), given by Eq. (5.8),
is proportional to A. It can be seen, on comparing Eq. (5.8)
with the expression for term (h) in Eq. (5.4), that the contri-
bution 'U(2)(r<) is equal to -1/1pj2 times the contribution
shown schematically in diagram (h) of Fig. 4.

6. DISTORTION CORRECTION IN THE
ABSENCE OF LOSSES OR GAINS ON PHASE
CONJUGATION

In view of the complexity of the physical processes implicit
in the technique of distortion correction by phase conjugation,
the theoretical analysis concerning the attainable degree of
correction becomes prohibitive when one tries to carry out the
calculations explicitly beyond the first few terms in the iter-
ative expansion. However, it was found recently5 that, in the
special case when I p I = 1, i.e., when there are no losses or gains
on phase conjugation at the PCM, the analysis can be carried
out to all orders, and it leads to an interesting result. We now
briefly discuss this case.

Let us examine a typical term U,(n)(r) with n > 1 in the
iterative expansion (3.1), making use of expression (2.16) for
the Green's function O,(r, r'). With the field point r = r<
situated in the half-space Yi- and with the evanescent waves
omitted in that half-space, an expression for the term

Uc)l 1(r<) is given by Eq. (3.5). One finds that, irrespective
of the exact value of the complex "reflectance" A of the PCM,
the nth-order field contribution Uc (")(r<) may be expressed
in the form (cf. Ref. 5)

i U(n)(r <) = (- 4 d3 riF(rD... 5 d3r,,F(r,,)
'~~( 4 r q

X G<(H)(r<, r)(1 - gC)P1,2. . . P,-i,,(i + AC)U(0)(rn),
(6.1)

where

PJJ+1- 0(rj, rj+I)

= (1 + gO)Aj, j+ + B., j+r(l - AO) + G('(rj, rj+1 ),
(6.2)

with

and

A;,k = O(Z1 - zk)G>(H)(rj, rk)

BJ,k = O(Zk - zj)G< (H)(rj, rk).

(6.3a)

(6.3b)

We recall that the expressions (6.1)-(6.3) are applicable only
when the scatterer is nonabsorbing. It can be shown that the
nth-order term U, ('4 (r<) represents the sum of contributions
from 2n+1 elementary events. Each of these events involves
n scattering processes and m phase conjugations, with m
taking on the values 0, 1, 2, ... , n + 1; the number of events
containing m phase conjugations is given by the binomial
coefficient (n + ').

It was further shown in Ref. 5 that, in the special case when
= 1, the following identity holds:

(1- C)P 1,2P2,3... Pn-1,n = Q1,2Q2,3 .. ..n-1,n(1 -

(6.4)

where

Qjj+1 = (1 - pC)Bj, j+ + G(t )(rj, rj+1). (6.5)

In deriving this identity, use was made of relation (5.5) and
of the operator identity

(1 - p0)(1 + ge) = (1 - IpI2), (6.6)

which follows readily from definition (2.8) of the complex-
conjugation operator 0.

On substituting from Eq. (6.4) into Eq. (6.1), we obtain the
following expression for U, (n)(r<), valid when I IM = 1:

U.(n) r<) = ( -) 5 d3 r1F(rl) ... d3rnF(rn)~_47r V fv

X G<(H)(r<, rl)Ql,2 . .- .;n-1,n

X (1 - AC)(1 + gC)U(M)(rn) (n = 1, 2, 3 ... ). (6.7)

If we make use once more of identity (6.6) and recall that j Ip
is now assumed to be unity, we see at once from Eq. (6.7)
that

U,(,,)(r<) = 0, n = 1, 2, 3_ ... (6.8)

Hence, with r = r<, the right-hand side of Eq. (3.1) for the
field U, (r<) in the half-space 9t- reduces, in this case, to the
single term U,° 0)(r<) given by Eq. (3.3), i.e.,

Uc(r<) = UMi)(r<) + eikU(i)(r<) (I AI = 1), (6.9)
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where a is the argument (phase) of A. This result implies that,
if there are no losses or gains on phase conjugation at the
PCM (i.e., if I /uI = 1), the field U, (r<) in the half-space 9R -
does not depend at all on the scatterer, and, consequently,
distortions introduced by the scatterer on the incident field
UW are now completely eliminated by the technique of phase
conjugation, it being assumed, as before, that the scatterer
is nonabsorbing and that the effects of the evanescent waves
outside the scatterer are negligible.

7. ELECTROMAGNETIC THEORY OF
DISTORTION CORRECTION BY PHASE
CONJUGATION

Until now we represented the (monochromatic) optical field
by a scalar function of position, and hence we completely ig-
nored its polarization properties. We now briefly discuss
some generalizations of our main results, which take the po-
larization properties into account. For this purpose we must
first know what changes are introduced into the state of an
electromagnetic field on interaction with a PCM.

Let E(i)(r) be the electric field vector [with the time-de-
pendent part exp(-iwt) omitted] of an electromagnetic field
incident in free space (i.e., in the absence of the scatterer) upon
an infinite PCM located in the plane z = z 1. The response of
the PCM will depend on the experimental technique that is
used to generate the conjugate field.6 We consider only the
case when the PCM produces, in the plane of the mirror, the
transformation

(7.1)

where A is a constant that represents the "reflectivity" of the
PCM. Formula (7.1) implies that the state of polarization of
light is completely reversed on interaction with the PCM.
The assumption of constant "reflection coefficient" , implies
that the response of the PCM to a plane wave is independent
of both the angle of incidence and the state of polarization of
the wave. This, of course, is an idealization. However, we
wish to mention that experimental techniques have been de-
veloped, for example, by Zel'dovich and co-workers' 6 for
producing PCM's that give rise to complete reversal of the
state of polarization, at least in the paraxial regime.

One can show by an argument similar to that leading to
Theorem VI of Ref. 15 that, if the distribution E( )(r)lzz
contains no evanescent contributions, the distribution
,uE(0)*(r)1,l on the right-hand side of formula (7.1) will
generate, in the absence of the scatterer, an electric field
ItE(M)*(r) throughout the domain z < zi.

Suppose now that the scatterer is present in the half-space
z < z1. For simplicity we assume that the scatterer is linear,
time independent, isotropic, nonabsorbing, nonmagnetic, and
spatially nondispersive and that it occupies a finite volume
'V. It then follows from Maxwell's equations that the electric
field E(r) satisfies (in the Gaussian system of units) the dif-
ferential equation'7

v X v X E(r) - k 2n 2(r)E(r) = 0, (7.2)

where

n2 (r) = 1 + 47rX(r) (7.3)

and X(r) is the dielectric susceptibility, defined by the for-
mula

P(r) = x(r)E(r), (7.4)

with P(r) denoting the induced polarization. We may rewrite
Eq. (7.2) in the form

where

v X v X E(r) - k2 E(r) = -F(r)E(r),

F(r) = -k 2 [n2 (r) - 1] = -4lrk2X(r)

(7.5)

(7.6)

is the scattering potential associated with the distribution X(r)
of the dielectric susceptibility throughout the volume 'V.
Since we assumed that the scatterer is nonabsorbing, the
scattering potential F(r) is a real function of position.

It is convenient to introduce the dyadic Green's function
G(r, r'), defined as the outgoing free-space solution to the
differential equation' 8

v X v X 03(r, r') - k2or(r, r') = 47r6(3)(r - r')I, (7.7)

where 6(0)(r - r') is the three-dimensional Dirac delta function
and I denotes the unit dyadic. It is well known that G(r, r')
is related to the scalar Green's function G (r, r') [Eq. (2.4)] by
the formula

1~(r, r = +Ivv~G(r, r'). (7.8)

Let us first consider the case when an electric field E(M)(r)
is incident upon the scatterer 'V in the absence of the PCM.
When the field interacts with the scatterer, a new field E(r)
is generated that can be shown, on using Eqs. (7.5) and (7.7),
to satisfy the integral equation

E(r) = E(O)(r) - G(r, r') * F(r')E(r')d3 r'. (7.9)

This equation represents an electromagnetic analog to the
usual integral equation (2.3) for scattering of scalar waves.

Next, suppose that the electric field E(W)(r) is incident upon
the scatterer with the PCM being present. We denote by
E, (r) the total electric field that is now generated. In analogy
with the scalar case, we refer to E, (r) as the conjugate electric
field [cf. Ref. 9]. By arguments similar to those used in de-
riving the corresponding integral equation (2.6) for the con-
jugate scalar field U,(r), one can show that the conjugate
electric field E, (r) satisfies the integral equation

E,(r) = EC(0)(r) - 1 G,(r, r') - F(r')E.(r')d3 r',

(7.10)

where G,(r, r') is a dyadic operator Green's function, to be
discussed shortly, which takes into account the presence of
the PCM. The field E,( 0)(r) is related to the incident field
E(W)(r) by the formula

E,)(r) = E(M)(r) + E(i)*(r)

= (1 + ,0)E(M)(r), (7.11)

where 0 denotes, as before, the complex-conjugation operator
defined by Eq. (2.8). Formula (7.11) is strictly analogous to
Eq. (3.3), and it represents the total electric field in the ab-
sence of the scatterer [F(r) - 0] but with the PCM present.

The dyadic operator Green's function 0C(r, r') may be
constructed in a manner similar to that employed in the der-
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ivation 5 "'1 of the operator Green's function 6, (r, r') [see also
Ref. 19], and it can be expressed in the following analogous
form [cf. Eq. (2.16)]:

G0 (r, r') = O(z - z')(1 + Ag0)G>J(H)(r, r')
+ O(z'-z)O<(H)(r, r')(1- MC) + O(I)(r, r'). (7.12)

Here O(f) is again the unit step function [Eq. (2.10)]

f>(H)(r, r') = + 1 vv) G>(H)(r, r'),

<(H)(r, r') = (I + hvv)G<(H)(r, r'),

and

(') (r, r') = I+ 1 G(')(r, r'),

Equation (7.18) represents an electromagnetic generaliza-
tion of the corresponding result derived in Section 6 on the
basis of scalar wave theory [cf. Eq. (6.9)1. It implies that,
within the framework of the electromagnetic theory, a com-
plete correction of distortions is obtained if the following
conditions are satisfied:

(1) The phase conjugation at the PCM gives rise to a
complete reversal of polarization [see formula (7.1)].

(7.13a) (2) There are no losses or gains on phase conjugation (i.e.,
[It = 1).

(3) The scatterer is linear, time independent, isotropic,
(7.13b) nonmagnetic, and spatially nondispersive and occupies a finite

volume.
(4) The effects of the evanescent waves are negligible at

the PCM and in the region of the half-space B- where the
(7.14) detector is situated.

where the functions G> (H)(r, r'), G< (H)(r, r'), and G ()'(r, r')
are given by Eqs. (2.11a), (2.11b), and (2.12), respectively. We
emphasize that the vectorial integral equation (7.10) is valid
only for PCM's that give rise to a complete reversal of polar-
ization in the plane of the mirror, as implied by Eq. (7.1). The
incident field was again assumed to contain no evanescent
components, and the effects of the evanescent waves have
been neglected at the PCM.

Just as in the scalar case, integral equation (7.10) may be
formally solved by iteration. We express the conjugate
electric field E,(r) in the form

E. (r) = E E, (nZr),
n=O

(7.15)

where the zeroth-order term E, (0)(r) is given by Eq. (7.11) and
the higher-order terms are obtained from the recursion for-
mula

E,(n(r) =- r (r, r') -F(r')E,(n-1)(r')d3 r'
47r r

(n = 1, 2, 3 ... .). (7.16)

Because the mathematical structures of Eqs. (7.11) and
(7.16) and of the dyadic operator Green's function (7.12) are
similar to the structures of the corresponding formulas for the
scalar case [Eqs. (3.3), (3.2), and (2.16), respectively], one may
expect that many of the results that we obtained for the con-
jugate scalar field U, (r) will have strict analogs for the con-
jugate electric field E,(r). In particular, one can show that,
if ul = 1, i.e., if the conjugate electric field is generated
without losses or gains, and if, in addition, the effects of the
evanescent waves are negligible at the PCM and at the de-
tector in the half-space B, then (with the detector located
at r< E R-)

E,(,)(r<) = 0 for n = 1, 2, 3,... (I A = 1). (7.17)

Using Eqs. (7.11), (7.15), and (7.17), it follows at once that
(with r< e B-)

Ec(r<) = E(')(r<) + eiOE(i)*(r<) (IA I = 1), (7.18)

where 0 denotes the phase of the complex "reflectance" g of
the PCM.

If [lyj # Fd 1 and the scatterer is sufficiently weak, the electric
field Ec (r<) in the half-space B? will, to a good approxima-
tion, be given by the first few terms of iterative expansion
(7.15). For example, within the accuracy of the first Born
approximation, one may deduce from our integral equation
(7.10) that

E,(r<) E.( 0)(r<) + E,(')(r<), (7.19)

where E,(0 )(r<) is given by Eq. (7.11) and

Ec(l)(r<) = J-(1- I 1I2) J( + 2 vv) G(H)(r<, r')

* F(r')E( )(r')d3r'. (7.20)

The term Ec (')(r <) represents the contribution to the con-
jugate electric field E,(r<) in the half-space B- that arises
from backscattering, in the first Born approximation [cf. Eqs.
(4.5) and (4.6)]. If the first-order backscattering is negligible,
then Eq. (7.19) gives E,(r<) E_(0)(r<), showing, in view of
Eq. (7.11), that in this approximation the scatterer has no
effect on the conjugated electric field in the half-space BR-, i.e.,
that the distortions in the incident field produced by a non-
absorbing scatterer are then eliminated by phase conjuga-
tion.

8. DISCUSSION

In this paper we have developed a systematic approach, both
within the framework of the scalar wave theory and within the
framework of Maxwell's electromagnetic theory, to the
problem of determining the degree of distortion correction
that may be achieved by the technique of optical phase con-
jugation. This approach is based on new integral equations
for scattering of monochromatic waves in the presence of a
phase-conjugate mirror (PCM). We treated only situations
in which the distorting medium is linear, time independent,
and nonabsorbing, even though the basic integral equations
may be shown to apply also to absorbing media. It was found
that, if the PCM produces in its plane a complete reversal of
polarization, essentially the same conclusions follow from the
scalar wave theory and from the electromagnetic theory.

In the derivation of the basic integral equations [Eqs. (2.6)
and (7.10)], we assumed that the effects of the evanescent
waves are negligible at the PCM. We also assumed that the
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PCM is infinite in extent and that it is characterized by a
constant "reflectivity" It. In practice, the PCM will be finite,
and this may be expected to lead to a reduction in its ability
to produce a field that would compensate for high-spatial-
frequency components of the distortions imparted on the
incident wave by the scatterer. Moreover, ,4 may be a func-
tion of position across the PCM and will, in general, also de-
pend on the angles of incidence of the plane-wave components
that are present in the angular spectrum representation of the
field. These more-complex situations could be treated by
appropriately modifying our integral equations, but such
modifications are not discussed in the present paper.

Perhaps the most striking feature of the present approach
is that the contributions that arise from elementary events
consisting of scattering and phase-conjugation processes of
all orders appear explicitly in the expressions for the conju-
gated fields. Such contributions must, in general, be included
when the wave fields are monochromatic. The situation may
be different when pulsed waves are used or when the macro-
scopic properties of the scatterer vary with time; however, the
analysis of such cases would require a separate investiga-
tion.

Finally, we wish to mention that, although we assumed
throughout this paper that the scatterer is "deterministic,"
our integral equations may be used even when the scattering
medium is random in nature. In such a case the scattering
potential and the conjugate field become random processes,
and our integral equations then refer to single realizations.
Quantities of physical interest, such as field correlations, can
then be obtained from the solutions of these equations by
taking appropriate ensemble averages. 20
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