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Coherence matrices of light beams at dielectric interfaces and Goos-Hinchen effect
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The general relations among the coherence matrices of the incident, reflected, and transmitted beams at
the surface of a dielectric are obtained for incident fields of arbitrary statistics and polarization. The
Poynting vector is also expressed in terms of the coherence matrices and the general conditions for the
nonvanishing of the lateral Goos-Hiinchen shift are obtained.
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The concept of partial polarization is well known in co-
herence optics. 1 It has been formulated in terms of
2X 2 matrices2 , or in the general case by 3X 3 matrices.
Many properties of the coherence matrices, 4 such as
transformation due to passage through an optical device,
relation to Stokes parameters, and relation to the degree
of optical coherence, have been studied in some detail. 5 '6

In this paper, we obtain the relations between the co-
herence matrices of the reflected and refracted beam at
the surface of a dielectric when an electromagnetic beam
of arbitrary statistics and polarization is incident on the
dielectric. In the special case of nonfluctuating light
beam, this provides an alternate method of discussing
the well-known polarization effects at the dielectric in-
terface. We also comment on the polarization effects in
the present problem when electromagnetic correlations
of order higher than two are considered. We then work
out several identities that relate the Poynting vector to
coherence matrices. Such identities enable us to obtain
both longitudinal and transverse Goos-Hanchen shifts,
because as noted by Imbert" such shifts are closely re-
lated to the Poynting vector. We thus generalize the
usual treatment of Goos-Hglnchen shifts to light beams
of arbitrary statistics and polarization. Our relations
clearly exhibit the conditions under which lateral shifts
can occur.

RELATIONS AMONG COHERENCE MATRICES OF INCIDENT,
REFRACTED, AND REFLECTED BEAMS

Let us consider the case that when a plane wave of
frequency co and wave vector Ko is incident on the sur-
face (z = 0) of a dielectric, for the geometrical situation
the region - ao < z a 0 is occupied by a dielectric with di-
electric function 00(w) and the region 0 ' z a a is occu-
pied by a dielectric with dielectric function E(tO). We
will write the field in the analytic-signal form as

E t)(r, e = 8f) etNi.o t (1)

Our incident beam is in general a fluctuating beam
(i.e., &) is a stochastic variable); its statistics will
be given by a set of probability-distribution functions. 12
We first discuss the second-order correlation theory of
such beams. Because the beam is propagating in the di-
rection Z,, we introduce a set of two orthogonal vectors
defined by

where K is the component of the wave vector parallel to
the surface z =0. The vectors g}l, S), K7o/ko0
form a right-hand coordinate system. These vectors
are represented in Fig. 1. In this coordinate system,
the coherence matrix of the incident beam will be a
2 x 2 matrix, 2,

3
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where
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In order to obtain the coherence matrices of reflected
and refracted beams, we have to use the solution of the
Maxwell equations for fluctuating incident beams with
arbitrary polarization. The classical solution for non-
fluctuating beams is well known. 1 So we take the classi-
cal solution and average it over the probability distri-
bution of the incident field. Usually, the classical solu-
tion is obtained by resolving the beam into two polariza-
tion components. This is not necessary. Maxwell
boundary conditions could be used directly, to obtain

E (R)(r' t) = <S (R) e" 0';i w t EP M)(j; t) = 8 (T) EdKrlts(5a)

(5b)0 -w 0 2, K=k+WZ, W2 =k~o-K',

(eT) = 2wo i) 2wo - - - i))
(w+wo) kg(w, c + wc0 )

().(1 w wo0)8) + 2(w-) - ww(wwoZ)(z. 8 )
w + WO / 2 k(woe + wco)

(7)

In deriving Eqs. (5)-(7), we have also used the trans-
verse nature of different fields. When E0 = 1, such re-
sults could also be easily obtained from the Ewald-
Oseen extinction theorem.' 3 In analogy to Eq. (2), we
introduce the unit vectors for reflected and transmitted
beams

-() (R -f -T (ST) XK - He) I~~(T)4-(RL S(f) S (rL=.S 2XK S R _______
S2 in 2 E 2. , ( koa-( e find th a

Using Eqs. (2) and (6)-(8), we find that

(8)

(6)

(j) ZXK 0 == S2 XKO
2 - K w 1 kgE01 E-, k /

Ro ='k+ Wo, IW02=k2,E,-K2 k,=wlc,
(2) (s T .* 8)) = ( (8 )X

w + w0
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(12( , s R)) = 10f ME( CM ., seD)( (R)) w0E + WE0 S

(10) The coherence matrices of reflected and transmitted
beams are defined by

)/ (&R))*& R)) ( CR)*&(R))

2(g()S(R)) ( 2(R )*2)) /'

where
R) =gjtR). (R), 3(T) = gT) r), (

Using Eqs. (9)-(l1) and averaging over the distribution of " (,we obtain
transmitted beams:

. WOE WCo 12J(

IWOE + WE I 1
r (R)=

- (Wos 10 IV-W 0E+w WE(w+ WO 2 1

/ Ipv Eo0 l 2 j()

I WoE + WE 0 I

T +) = 4 wE 0 (2w+w0 * M

.(wac + Wfd (W + MO)

(12)

the coherence matrices of the reflected and

( WOE WO )* (w W) N)

all I22 )
(13)

(14)
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Equations (13) and (14) can also be written as

J(R) - U(R)J(0U(R)t J(T) = U(T)J(0)U(T)t, (15)
j(T) 4A w1 2 J&,

11 --IW 0 E +WE, I 11

where U(R), U(") represents the transformation ma-
trices of the optical device (in the present case dielec-
tric), given by

WOE - WE0

W04E + WE(
U(R) -

0 i

WOE + WE(

UeT) =2wo

\ 0

W + W0o
W- O \

1 +
W + W0

The matrices U(R) and U(T) are nonunitary. If these
matrices were unitary, then both the trace and determi-
nant would have been conserved under the transformation
and hence the polarization would not have changed. Note
that the treatment given is valid for arbitrary wave vec-
tors Ro (therefore, evanescent waves are included); ar-
bitrary polarizations and alsodampings of the dielectric
functions are included throughout. We first discuss
several special cases.

(1) Linearly polarized incident light with coherence
matrix given by

JM =J° =J =°, JM*O $

Using Eqs. (13), (14) and (17a), we obtain

WOE - W=Ep M

Jo = 6i'ij'j1 , j R)= WOE+ WE0 i

(17a)

FIG. 1.
Eq. (2).

i. e., the reflected and transmitted beams are also lin-
early polarized. If WOE = WE0 (assuming E, Ea = real),
then there is no reflected field (Brewster effect), for
angles of incidence that satisfy wOE =wE0 .

(2) Unpolarized incident light

(18a)

(16)

52)
2

Representation of various vectors introduced in

(e2R o 3 CB) = W -W (92" * 3 () ,
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/I WOE - WE1
WOE + WEo

j(R) = I(

/ 41 WO1
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J(T) = I (I)
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The degree of polarization
therefore

(R)2 1 _4 det J R)
TT r Jms)2

W O 2

IW+WOI

41wo 12 
2
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(18b)

If higher-order correlation properties of the field are
taken into account, then unpolarized light is character-
ized by the probability distribution9

p ("1 _2 -=p 1 1 ) + 2 (24)

therefore, for unpolarized incident light, the distribu-
tion function for the reflected field is

(18c)

for the reflected beam is

p(R)(8(R) S(R))=

[ I l & 1I 61R) I2+ I WEO°W \2 lsg(R)12]

XI W+ MO 121 WEO+WOE 12
w - MO WEO - ZVOe

, (25)

( I W-wO 121 WoE+w ME I
= W +WO w04E - W°\

I + ad I 121 WOE 2 WE 2

xl W+ Z WO /E (19)

Thus, the reflected light is in general partially polar-
ized. For the Brewster-angle case p(R) = 1.

(3) Normal incidence

Eo --1 . (20)

Thus, the degree of polarization does not change; how-
ever, the ellipticity of polarization of the reflected beam
changes.

(4) Total internal reflection (E0 =real>l, E=1, K2>1),

WOE - W 2O I2-11

I WOE +WI I1

and hence the coherence matrix for the reflected beam
is

J(R) = 1 1l
(i) V i 6(R)- JT21 e

- J(i) ei6(R)

2i) )
(21)

i 6 (R) / W 0 -WEO \*(W....Wo

WO+WEO W+WO /

Thus, the ellipticity of polarization of the reflected
beam changes, whereas the degree of polarization does
not change.

In the general case, we have, from Eq. (13),

detIJ (R) = WOE _ WE 0 12 | W w | detJe);
WOE+ WE0 W+WOI

(22)

therefore, in the case when damping E is included,
detJ(R) will be zero if detJ() =0. Thus, the fully po-
larized beam will remain fully polarized. However, its
plane of polarization will change.

Because the relations between (R) (T) are
linear, the probability distributions of the different
fields are simply related, e. g.,

p(R) (
8

R) S) i) = p(i) (
8

Mi)) I d
2
&(i)dB8) (3

(1 ,a-( , 2 ) I 1Zi~2(~ (23)

The distribution function for the case of fully polar-
ized incident light can be obtained similarly if we use the
fact'0 that for polarized light the probability distribution
is given by

p 1)(&" 2" )-p(I8 1 Iseca)seca
(2) [6 (') - 's(") tannes"t, (26)

where a, 7j are related to the coherence matrix JP) and
p is an arbitrary distribution.

RELATION BETWEEN POYNTING VECTOR AND THE COHERENCE
MATRIX

We now derive the relation between the Poynting vec-
tor and the coherence matrix of a fluctuating light beam.
The Poynting vector, as usual, is defined by

8= c Re(E xH*), (27)

which, when the relation I = (KxE)/ik, is used, becomes

(28)

(29)

(30)

s 8kRe[R*(| 8 | 2) + (w - w*y898=*)].

If we express 8 as

8 =91SI + 8S2

then

2 1s 1 2+ 1 6212

6Z8 = * 1(s9 1 + 82 ),

and hence

8= 8 lk Re K*(jSgj2J11 + J22)

-(W W*) K (S1 +J21)- (31)

It is clear from Eq. (31) that the component of the
Poynting vector parallel to the surface is given by

i" = o[~K II StI j1i + J22 + 2JU (ImW)2}

- i(2k*) (Imw)(k*J2, - kJ12)
kk*I (32)

Let us first examine the case of an evanescent wave
in vacuum. We substitute in Eq. (32)
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k=k0 =real, w=ioa, ac=real

and obtain

-C ( K
2

+3a
2  

1

9 ' =87ko I L k2 Jam + J22I

(40)

+ -(2 X.Z)c(J 1 2 - Ji) }-

(33)
Moreover, if we consider the evanescent waves that
propagate along the x axis and decay along the z axis
( = XK), Eq. (33) reduces to

cC K K
2
+3T2 J

Sx= 9 Zl KitJfl+J2 2 5,(
CK = K .

From the work of Imbert, 1t it follows that the longi-
tudinal and transverse Goos-Hinchen shifts will be given
in terms of the integral of the Poynting vectors 3,, and
3,, respectively. Note that Eqs. (34) and (35) give the
values at z =0. For an evanescent wave, the propaga-
tion of the Poynting vector can be expressed as

S(z) - (0) e-27z. (36)

From Eq. (35), it can be seen that in order for the lat-
eral shift to be nonzero,

ImJ12 * 0 . (37)

The coherence matrices that appear in Eqs. (34) and
(35) refer to the transmitted beam; therefore, from Eq.
(14), we get

ImJ12 =41 w0 2 ImV J (w2)/(ww0)(w0 +wE0)**, (38)

where we assume that the region 0 < z 4 00 is in vacuum.
Hence the condition for the nonvanishing of the lateral
shift becomes

Im(wO - ic)(W0 - icaq0)*VJ* J () $ 0 * (39)

Obviously, if the incident beam is linearly polarized
(along S1 or along S2) or if unpolarized, then the lateral
shift vanishes. Any other polarization will lead to lat-
eral shifts that depend, of course, on the parameters co,
k0, etc.

In deriving Eqs. (34) and (35), we have restricted our
consideration to beams that propagate along the x axis.
This we now relax. For lateral shifts, we want to show
that 3. S2 0. It is easily seen from Eq. (33) that

which is the most-general condition for the nonvanishing
of the lateral shift. One obvious sufficient condition is
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