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Photoelectric Detection with Two-Photon Absorption*
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A formula for the photoelectron-counting distribution for a two-photon detector is derived quantum
mechanically assuming that the ionising transitions in the atoms of the detector take place through the
simultaneous absorption of two photons. It is assumed that the incident light is quasimonochromatic. It
is shown that the distribution of the photoelectrons is given by the average of a Poisson distribution, the
parameter of the distribution being proportional to the time integral of the square of the instantaneous
light intensity. Counting distributions for the thermal (gaussian) light and for some models of laser light are
obtained for the limiting case when the counting-time interval T is short compared to the coherence time
T: of the light. An approximate formula for arbitrary time intervals for the counting distribution of
thermal light is also proposed.
INDEX HEADINGS: Coherence; Detection; Laser; Photoionization.

The problem of multiphoton absorption of radiation
by atomic systems is one of the simplest processes
involving nonlinear interaction of radiation with matter
and has therefore been of considerable interest for a
long time. The earliest work in this field is due to
Goeppert-Mayer,' who considered the simultaneous ab-
sorption of two photons by an atomic system. But the
interest in the field gathered momentum only with the
availability of extremely intense light fluxes produced
by lasers which made the experimental observation of
these higher-order processes feasible. Since then, a
large amount of experimental2 and theoretical3 -5 work
has been done in this field. The theory of N-photon
photoionization was developed by Gold and Bebb4 by
the use of Nth-order time-dependent perturbation
theory. Keldysh5 has developed the theory by consider-
ing the phenomenon as the tunneling of a bound
electron when it is subject to a static field. However,
most of the works quoted above treat the problem
mainly from the viewpoint of atomic physics without
taking account of the statistical features of the radia-
tion field. Only recently, the effect of the coherence
properties of the field has been taken into account in
calculating the transition rates for photoabsorption in
2-photon6 and in N-photon7 processes. It is found in
these investigations7 that the transition probability
for N-photon absorption depends upon the (n,n)th-
order correlation function of the electromagnetic field.
In particular, the transition rate for absorption of
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thermal light is found to be higher than that for the
laser light of the same intensity. [Editor's note: The
authors insist on using the word "intensity," without
definition, in the sense in which "irradiance" is defined
in the OSA nomenclature, J. Opt. Soc. Am. 57, 854
(1967).]

In the present paper, we develop the theory of photo-
detection in which ionizing transitions take place
through the simultaneous absorption of two photons,
each of which has energy less than the first ionizing
potential of the atoms of the detector, but their com-
bined energy exceeds the threshold of ionization. It is
now well known that in the one-photon detector, in
which the ionizing transitions take place through the
absorption of one photon only, the statistical properties
of the photoelectrons ejected from the surface of the
photodetector provide information about the fluctua-
tions8-14 in the incident field. The basic result of the
theory12 " 3 as developed by Mandel is that the proba-
bility of registering n counts, in the counting-time
interval T, is given by the Poisson transform of the
probability density P(W) of W

Wne-7

p(n;t,T)= | P(W)dW,
n !

(1)

where W is the time-integrated light intensity and is
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TWO-PHOTON DETECTION

t+T

W=af I(t')dt',
electromagnetic field. We write the vector-potential
operator as sum of positive and negative frequency

(2) parts, as usual,

a being the quantum efficiency parameter of the
detector. The formula for p(n; t,T) can be inverted'4

to give P(W) in terms of p(n; t,T). Thus information
about the statistical properties of the field can be
obtained from that of the photoelectrons.

In Sec. I, we use the second-order time-dependent
perturbation theory to obtain the transition rate for
two-photon ionization. Under reasonable assumptions
about the atomic system and the bandwidth of the
radiation field, we find that the counting distribution
p(n; t,T) is again of a similar form as in Eq. (1) except
that the parameter W is now defined as the time
integral of the square of the instantaneous light
intensity. Because of the higher-order interaction
involved, two-photon ionization would be expected to
provide a more sensitive probe of the fluctuation of the
field. As shown in Sec. II, it indeed turns out that for
the short time intervals T, the kth factorial moment of
the photo-counting distribution is related to the 2kth
moment of the field-intensity distribution. We also
consider applications to the thermal light and to some
models of laser light in this section. In the last section,
an approximate formula for the counting distribution
for thermal light, valid for arbitrary time interval T,
is proposed.

I. PROBABILITY DISTRIBUTION OF PHOTO-
ELECTRONS IN A TWO-PHOTON

DETECTOR

In this section, we will first obtain the transition
probability per unit time when a single atom of the
detector interacts with the electromagnetic field
incident upon it. The interaction hamiltonian between
the radiation field and the atom is given by

e e
= =- (t) A (xt) + A'(xt), (3)

mc 2mc2

where A (x,t) is the vector-potential operator for the
electromagnetic field and P(t) is the momentum
operator of the valence electron of the atom. In what
follows, we shall work in the interaction picture and
will use the dipole approximation, i.e., we will neglect
the effect of the spatial variation of A(x,t) over the
dimensions of the atom. We will also neglect the effect
of the term quadratic"5 . 6 in the vector potential of the

16 N. V. Cohan and H. V. Hameka, Phys. Rev. Letters 16, 478
(1966); Phys. Rev. 151, 1076 (1966); See also R. Wallace, Phys.
Rev. Letters 17, 397 (1966); Mol. Phys. 11, 457 (1966).

16 The contribution of the Al term is also easily taken into
account. It may be shown that the final result is still given by Eq.
(30) except that the quantum-efficiency parameter a changes

where

ii (xt)_ (t) = A (+) (t) + A (-) (t),

c Ii)
A W+ (t) = E_ E- (k,S)dk, sept

(4)

(5)

In Eq. (5), dk,, is the annihilation operator and
z(k,s) is the unit polarization vector associated with
the mode (ks) of the radiation field.

Let us assume that the atom is initially in the ground
state I 0) and let If),, be the final state of the atom
after the absorption has taken place. Similarly, we
denote by I i)f and I f)f the initial and the final states
of the field. Then the probability that the system has
made a transition to the final state | fXa of the atom is
given by

(6)P (t) = E, I f(Af I 0| (tlto) I 0). I Of I 2
VV~

Here U2(tto) is the unitary time-development operator
in the interaction picture and is given by the relation

(t,tO)= Texp {- f I(t')dt' , (7)

where T is the Dyson time-ordering operator.
The probability of the two-photon absorption is

obtained by the usual procedure, namely, by expanding
the unitary operator 01(t,to) into a series and retaining
only that term in the expansion which contains a product
of two-photon annihilation operators. This gives the
following result for the transition probability to If).
by two-photon absorption in the time interval to to
to+ At during which the interaction is turned on

to+At t1

P (2)(t = I dtl dt2 EEMj(A1,/Z2)
tMfJso Jg 91142i

Xexp{ -i((0j-cof)t1+iWjt2}

xf(f IA ,,(+) (tQ)A4z2 ()Q (1 2) | i)f 1 
2

. (8)

Here, we have separated the matrix element of the
atomic operators from that of the field operators.

slightly. The new value of a is

a=27rN Y_ fMj (Al,,A2)M2J* (93,,4) plPE2`-3 eA4*

lo) jk (wj-coo) (-0 ) pk-(2w)

+2'rN E ,2 )21 (f I 0) l 2.~li H1*e#2CA2P (2co)-
[ ,I (21hnc'/ *P*pa/2(w

Here ( 0O) represents the scalar product between the ground-
state wavefunction and the final-state (free-electron) wave-
function.

given by
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We have also used the abbreviation

e \2
Mj(I1,cU-,2) - Ifpj j)aa((ifP;aI O)a, (9)

where IO)a, I j)a and If)a stand for the initial, inter-
mediate, and final state of the atomic system, respec-
tively. The summation over the polarization indices has
been denoted by z 1 L2 in Eq. (8).

We must yet sum over the final states of the atom.
Assuming that these states are in continuum and that
p(wf) is the density of these states, we find that the
transition probability per unit time is given by the
relation

1 rX
II (t)= | P(21 (I)p(wf)dcwf. (10)

Let us now assume that the density operator corre-
sponding to the initial state of the field admits a
diagonal-coherent-state representation 7

pi =f J?({'lkes)) | {I,}({ks d 2 ({'ck,s)). (11)

Here the coherent states I ({Uke,)) are the eigenstates of
the positive-frequency part of the field operator

A(x,t)

where
AM (x,t)J {I'OkA;}) =V(xIt) I{ })

V(x,t)-E= -) E(k)S)Vk se i(0kt-

(12)

(13)

The eigenvalues V(x,t) are the so-called complex
analytic signals.1 8 They contain only the positive
frequencies and can, therefore, be expanded,

V(x,t) = A (x,w)e- t 'dw. (14)

Let us now assume that the field is initially in a
coherent state. The more realistic situation is then
taken into account by averaging over the generalized
phase-space ensemble q({Vk, 8 }) at the end. We have
chosen to work in the diagonal-coherent-state represen-
tation of the density operator of the field, because it
brings out the close analogy between the quantum-
mechanical and semiclassical treatment of the prob-
lem.8,"7 Many of the calculations that follow in this
section are similar to the ones employed by Mandel,
Sudarshan, and Wolf'9 in their semiclassical treatment
of one-photon detector.

Summing over the final states of the field in Eq. (8)
and using the relation (12), we obtain

to+A t tj to+A t

p (21(t) = a T Mj(AI,)2)Afk*(43,,4) / dtl |d12
o) jk to

When we insert the expansion (14) into Eq. (15), we get

dli' d12' exp( -i(wj-cof)1+icojt2+i(Wk-Wf)tl

-i~t2/ Vp~tl V1(t2 V~a (l )V#4(t2)-(15)

P(2)(t) = Mj((,Lo)Ma*a3,94) d1 dIf d1'f dW2'A l(o,)A p2(3)A3* (.o')Ay4* ((2')

{}) jk o o o o

to+At tj 'o+At tlt

Xf dif dl2j dli'f dt2' exp{-itl(j-Wf+W,)l)+it2(cJ-W2)+i(coa-wf+COI')tl'-it2'(WA-W2')}. (16)

We now perform the time integrals in Eq. (16). We first note that a finite lower limit of the integrals over t2
and t2' introduces nonresonant, rapidly oscillating terms which do not contribute towards the transition proba-
bility. Hence, we may replace these lower limits by - oo without affecting the results. Lower limits of the integrals
over t1 and t1' are both taken to be t= to. This ensures that the final state was not occupied before the perturbation.
On performing these time integrals, we obtain

21(P) i.? Jo JoW2Jo JoP(2(t)E EMj(1u1,,u2)Mk*(1l3,,94)l dI &21 d1'J dW2'Al,)A;()A*('A,*co)t)

X (At)2 |sinE- (C01+W2-°f)Att/ [I (W1+Wo2-wf)\t]sinE2- (W1'+C02'-wf)A~t] / E (u, 1' + 2'-cof)A/t]

Xexp { i(co'+W 2 ' -C01-W2) (to+-) / { (Ci-co2) ((Sk-w2') - (17)

17 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963). A detailed discussion of the diagonal representation is given in Ref. 11.
See also R. J. Glauber, Phys. Rev. 131, 2766 (1963).

10 M. Born and E. Wolf, Principles of Optics (Pergamon Press, Ltd., Oxford, England, 1965), 3rd ed., Ch. X.
19 L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys. Soc. (London) 84, 435 (1964).
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TWO-PHOTON DETECTION

To obtain 11(t), we integrate P(2 )(t), given by Eq. (17), over the density of final states of the atom. Let us first
consider the integral over cof

I = dofp(wf) {sin[2 (cc+CO 2 -cf)At]/A2 (Cc1+c2 -1)cAt]sinBf (c1c'+&2'-cj) At] /1 (Cz1'+Cc2' -cf)At] . (18)

We will now assume that the incident radiation is
quasimonochromatic, i.e., its effective bandwidth r
is small compared with the midfrequency coo. It is then
possible to choose 1/At small compared to any fre-
quency X inside the narrow band of the radiation, but
large compared with the difference (col+c02)- (ClI'+cc2'),

1

(cci+cc2) - (C1'+c2')<<«<-2cco.
At

(19)

We then note that the expression inside the curly
brackets in Eq. (18) does not contribute unless cc1+c 2

-c1f<r and c1c'+cc2'-ccf<P. For such a short range
of integration over cc, the density of states p(cf)
does not vary significantly and we may replace it
by (p(ccl+cc2)p(ccl'+c2')} 1. The integral (18), under
the conditions dictated by inequality (19), reduces

2
7r At X & 0

11(t) =- drZ, Z; Mj(p1,A2)Mk*m3np4) di &1 dO,2
At Jo is jk J0 J0

then to

27r
I =-{P(cc1+Cc2)P(C1'+Cc2'))1

At
XsinE3 (Ct'±c'C2-CwI-cc2)At]/

13 (cci'+cc'-cci-ccs)A\t]. (20)

Using Eqs. (10), (17), (20), and the identity

sinE[(Ccl'+cc2'-Cl-cc2)A/t]/[4 (C'±lc+c2'-Cc-c 2)At]

1 t
=-exp -i(cci'+c2'-ci-cc2) 1

At2

At

xJ exp{i(co1'+cc2'-co1-C2 )rd7, (21)

we obtain

/ dcol' f &2' A, 1 (ccO)Ap, (c 2)A p3*(clc)Ay4*(c2')

(p (Ccx1+cc)p (cc'+cc2') }
X(cc;-c 2) (cca-c2') exp(i(Ccl'+cc2'-c1-cc2) (t+r)}.

(wi-@2) (WA;-CW2 )
(22)

Because of the assumption of quasimonochromaticity, (P(c+cc 2)p(cc1'+cc 2
t)1} does not vary significantly over

the narrow band of frequencies and can be replaced by its value at the mid-frequency, i.e., p(2cco). Moreover,
according to our assumption, none of the frequencies inside the narrow band of radiation is close to the inter-
mediate frequencies. Hence, with similar arguments, the atomic response function in the denominator of Eq. (22)
can be replaced by its value at the mid-frequency and we obtain

II (i) 2wEE M;Q"1,g 2)M*((u 3,p44)p (2co) I1
{A} iF k (-cco) (c-cco) IAt

So far, we have considered only the interaction of a
single atom with the incident radiation. Let us now
consider the realistic situation where a plane-wave
radiation field is incident on an extended detector
which is in the form of a thin photoelectric layer. If we
assume that the different atoms of the detector are
independent and that the states are not appreciably
depopulated, the transition probability is NXII(t),
where NV is the number of atoms in the detector.

We will now write the vector complex field in the
following way20

Vt)-g (V), (24)
'O The representation of V in the form Eq. (24) assumes that the

incident light is plane polarized. However, the results are easily
generalized to the case of partially polarized light. If the incident
light is of thermal origin, then as well known we may consider it

At

-J VpQ(t+r) Vp2(t+,r) v' 3*(t+r)v,4*(I+r)dr. (23)

where e is a unit vector and 'U (t) is a complex scalar
function. It can also be shown that under our assump-

as the superposition of two linearly polarized, statistically inde-
pendent components with average intensities equal to a(1 +P) (I)
and '(1-P)(I), respectively, where P is the degree of polari-
zation. It is also assumed that the condition of cross-spectral
purity is satisfied. In this case, the final result (30) remains
unchanged. (See also Sec. IIIA.) For the partially polarized light
of nonthermal origin, the expression for the photoelectron count-
ing distribution may be shown to be

p(nT) = f k(k Vd)[ W ((v kz})Jn exp( -W({(do}) d2

wher

and

rT
W ({ fU")) = E- au11-VP,4 do Ves (t) Vp20) V,,3* (t) VA4* (t I

('1 .10

PI P4- 2rN £7 Mj ((22)Mk ( )3,.4)
ik(c-)(o-)
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tion AW141/r, we may write

1 AAt

- f (i~r)V(I+r)}sdrc4*Q)VQ)}. (25)

Using Eqs. (24) and'(25)in Eq. (23), we obtain for the
probability of photoemission of one electron by the
simultaneous absorption of two photons in the time
interval I, l+AI

where

a= 2N7rZ E
(/'] d,)

PQg)AI=a{V*Z)U(t)}'zAl, (21

,MA1(p,,pDAa* (A3A,2) p, eAze. *ep*4*P (2wo)

H. COUNTING DISTRIBUTIONS FOR T<<T0

In this section, we will discuss the photocounting
distributions for a few cases of physical interest,
namely for narrow-band gaussian light and for laser
light. We will assume, in this section, that the counting-
time interval T is much shorter than the coherence
time T, of the light falling on the detector. The counting-
time intervals for which the above approximation
holds can be obtained in practice for laser light and for
pseudothermal light. Under this approximation, we may
write

1+?

TV =c J2 (t)dtfzzzTI 2 (t). (33)

(Cj - 0) (Wak -coo)

is a constant and may be called the quantum efficiency
of two-photon detection.

Now we note that U*(t)'U(t)=V(t).V(t) can be
identified as the instantaneous intensity of the radiation
field if we assume that all of the modes in the expansion
(13) are similarly polarized [see Eq. (24)]. We then
obtain

P(t)Al=aI2(l)ŽI. (27)

If we consider the probability of photoemission as
statistically independent for different time intervals, it
readily follows2 ' that p(n; 4,T) is given by

wnd-T(

p(it; t, T)= ,(28)

where
it!

t+T

TV=a I2(t')di'. (29)

To obtain the probability distribution for photo-
counts, corresponding to the density operator of the
field given by Eq. (11), we must average Eq. (28) over
the phase-space distribution function of the field. We
thus obtain'6 '2 0

p(n;1,T)= 0({z*,S})

[W(j'0k,,s))ne-lr'(j'k, ))
X it! kd,)({}VlV,((ka),

it!

which may be rewritten as

p; Wne-PV
p (n; t, T)= II Pff)dW,

(30)

where

P(TV) = /0 ({Va.)6( W.-a f t+ I2(')dl')

- Xd2((Ca,4). (32)

21 See Ref. 9, Appendix B. Similar arguments are summarized
in L. Mandel, Phys. Rev. 152, 438 (1966).

Assuming that the radiation field is stationary, we
then obtain, for the photocounting distribution,

J(Ctl2T) np ( JT) = ite!(
II!I

(34)

From Eq. (34), we may obtain the factorial moments
(it[k]). They are given by

("I k])= i ntr-1) . . (n-k+1)p(n; T)

= (aT)k(12§>. (35)

Equation (35) implies that the kth factorial moment of
the photocount distribution is proportional to the 2kth
intensity moment of the field.

We will now consider some typical cases.

A. Narrow-Band Gaussian Light

The intensity distribution for completely polarized
gaussian light is given by

1
P (I) =-e7-I/(I)

(I)

Substituting Eq. (36) into Eq. (34), we obtain

2n! ein)
p n(n,2T) = ()D-4 (2n+t) ((n)')-

(36)

(37)

Here (n)-c (12)T is the average number of counts
registered in the interval T, and Dp(Z) are the parabolic-
cylinder functions.2 2 In obtaining relation (37), we have
made use of the integral representation for the parabolic-
cylinder functions'2

Dp(Z) = j x"' exp |---Zx--} dx,

Rep<O. (38)

22 See, for example, I. S. Gradshteyn and I. M. Ryzhik, Table
of Integrals, Series and Products (Academic Press Inc., New York,
1965), p. 1064.
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The result Eq. (37) should be compared with the Bose-
Einstein distribution obtained for the case of the
one-photon detector.

When the light is partially polarized, the intensity
distribution is given by23

1 j -21 __21P(I)=- exp 2 x { - -319l
P('I) "(I)(1+P) (()9(1))

where P is the degree of polarization. From Eqs. (34)
and (39), we then obtain

2n! 4(n)P3+P2
p(iT) =-{ (2.+1)

!2n 3+P21 L(1+P)\(n)
3+1)2 1 ___ ___+2\Xexp 3 -D-(2n+) [Q]

4 n) (1 +P) (1- P)
3+p2 11

Xexp t , (40)
4(wh)(1-P

where

=n)a=:T(I)2( )
2 /.

(41)

B. Amplitude Stabilized Laser

In this case, there are no intensity fluctuations and
hence the probability density P(I) is a delta function

the average light intensity at threshold and the param-
eter co varies from large negative values to large positive
values as the laser is brought from well below threshold
to well above threshold. Straightforward calculations
give for the counting distribution for a two-photon
detector, when the intensity distribution is given by
Eq. (45),

2n! 12 crop

n ( 2 nlr ( 1+o)0 n+

Xexp { 2 /1+2oer

X 1eo- E-t/1 +err(Xo)].

where
o-o= ,r(no) = 7raTIo2.

(46)

(47)

The factorial moments, in this case, are given by

2k!o 12 2

( ])= 2k "- exp -- )/1+err(c) .

XD-(2k÷1) (-co<). (48)

(42)

The probability distribution for the photoelectrons is
therefore a Poisson distribution,

(n) ne {n)
p(n,T)= , (43)

it!
where

(n)>=ciT(1)2. (44)

C. Output of a Van der Pohl Oscillator

In the case of one-photon detector, it has been
observed experimentally that the photocounting distri-
bution for laser light is not strictly poissonian. It has
been found24' 25 that this discrepancy may be removed
if we assume that the intensity distribution for laser
light is given by

2 e-ew2 - [-2 2cWI
PO(I) AL ) exp J ,2 2 I} I>, 10. (45)

7r~ollerr(co)_ 7r\o 7r1

This expression was obtained by Risken2 6 assuming a
Van der Pohl oscillator model for a laser. Here 1o is

23 See, for example, Ref. 8, Eq. (4.41).
2 4A. W. Smith and J. A. Armstrong, Phys. Rev. Letters 16,

1169; R. F. Chang, R. W. Detenbeck, V. Korenman, C. 0. Alley,
Jr., and V. Hochuli, Phys. Letters 25A, 272 (1967).

25 G. Bedard, Phys. Letters 24A 613 (1967).
25 H. Risken, Z. Physik 186, 85 (1965).

III. APPROXIMATE COUNTING DISTRIBUTIONS
FOR ARBITRARY TIME INTERVALS

It is very difficult to obtain an exact expression for
the counting distribution for an arbitrary value of the
counting-time interval T. In the case of thermal light,
it is, however, possible to give an approximate formula,
which is in good agreement with the exact expression
for cases when T is either much shorter than, or much
greater than, the coherence time T, of the light beam.
For the case of the one-photon detector, such an ap-
proximate formula was proposed by Mandel"2 and
subsequently B6dard, Chang, and Mandel" showed
that this formula is in fairly good agreement with the
exact results. For a two-photon detector, following
arguments similar to those of Mandel'2 (see also Ref.
28), we propose the following distribution for W

a2k
P(W) = 2P( k)Wkle-wi, (49)

where the parameters a and k are to be chosen so that
Eq. (49) gives the first two moments of W correctly.
To determine a and k, we note from Eq. (29) that the

27 G. B6dard, J. C. Chang, and L. Mandel, Phys. Rev. 160,
1496 (1967).

28 S. 0. Rice, Bell System Tech. J. 24, 46 (1945).
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mean and variance of W are given by

(50)
and

rT rT
((AW)2) =a2J dtldt2{ (12 (1,)12(t)

-(12 ())(J2 (12))) .(51)

If the field incident upon the two-photon detector is
gaussian, the moment theorem for gaussian random
processes can be used to simplify Eqs. (50) and (51).
It may be shown that

(12) = 2(I)2 (52)
and

(12 Q1)12 (2))- (12(11))(1 2 (2))

= (I)4{ 16 I 7(1i-t2) J 2+41 (t(I-t2) 14}, (53)

where 7Y(11-12) is the normalized complex degree of
coherence."7 From Eqs. (51) and (53), it can be shown
that

( (AW)2 ) =4as2T2L (I)4, (54)
T

where

((T) = (1--){161| 7(T) | 2+4 | 7(T) | 4 d-r. (5 5)

From Eqs. (49)-(55), we find that a and k are given by

1 F/4T \ T 2 T
k=--( --- 1 + 16 - +16-+1 (56)

4 - (T) I (T) i (T)J-

and
a= 2k(2k+1) (57)

From Eqs. (56) and (57), it is easily seen that for
T<KTC, the limiting values of a and k are

(58)k=1 and a (-.

It therefore follows from Eq. (49) that

P(IV) = (2W(W))-12(w V))i (59)

which is the correct distribution for T<<TC. In the same
way, it can be shown that P(W) defined by Eq. (49)
tends to a delta function, b(W-(W)) when T>>T,.
This is what we would expect, because for large
integration time T, the fluctuations of W are smoothed
out.

We may now obtain the approximate expression for
the photocounting distribution by substituting Eq.
(49) in Eq. (31),

p(n; T)= 2 -r(2k) ea2j8D-(2n+2k)(a/V2i). (60)
2-+7kn!'(2/k)

The mean and variance of the photocounting distri-
butions are given by

(a)= (d)
and

(61)

which are obviously exact.
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