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Effect of nonlinear boundary conditions on nonlinear
phenomena in optical resonators
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The question of proper boundary conditions at the surface of a nonlinear medium is discussed. It is shown that the
nonlinearity of the boundary conditions could have a significant effect for large fields. Thus the nonlinear
boundary conditions significantly affect the transmission behavior near the upper bistability threshold.

In this Letter we examine the effects of the nonlinear-
ity of the boundary conditions at the surface of a
nonlinear medium on nonlinear phenomena such as
optical transmission. In particular, we study the sig-
nificance of the nonlinear nature of the boundary con-
ditions. It should be noted that the correct boundary
conditions that follow from Maxwell's equations are
the continuity of the tangential components of the
electric and magnetic fields at the interface. Howev-
er, the usual treatments' of nonlinear transmission
through a Fabry-Perot resonator are based on the
linear reflection and transmission coefficients of the
interface. The two approaches can lead to results in
rough agreement with each other if the nonlinearity of
the medium is small. In this Letter we demonstrate
the significance of the nonlinear boundary conditions
by examining the dispersive bistability using the two
approaches. We are using the term nonlinear bound-
ary condition in the sense that the boundary condi-
tions involve magnetic fields that are nonlinear func-
tionals of the electric fields in the medium.

Consider the geometrical arrangement of Fig. 1. On
each side of the nonlinear medium there is a linear
layered medium that serves to define the linear reflec-
tion and transmission coefficients of the interface.
Moreover, the linear layered media, for suitably cho-
sen parameters, enable one to have sharp Airy reso-
nances, which are essential for low-threshold nonlin-
ear optical phenomena. The electric field in the non-
linear medium can be expressed as

E(x, t) = e-iWt(Efeikx + Ebe-ikx),

k = kon, ko = w/c, (1)

where n is the linear refractive index of the nonlinear
medium and Ef and fEb are the slowly varying envelopes
of the fields propagating in forward and backward
directions, respectively. For a medium with nonlin-
earity of the form

DNL = n2x[AE(E * E*) + BE*(E -E)], (2)

and for a TE-polarized incident wave, the slowly vary-
ing amplitudes ef and Eb are given approximately by

ff,b = c, exp(iq~x); q± = 2a (if12 + 21e 12);

a= X(A+B). (3)

In using the slowly varying amplitude approximation
in obtaining Eqs. (3) we have ignored the contribution
of fast phase factors such as exp(+i3kx). Such terms
are important for media with strong nonlinearities. It
may be further noted here that for a lossless medium
(real n) and real values of x, A, and B the nonlinearity
of the medium contributes only to the phase, and there
is no exchange between the amplitudes of the forward
and backward waves.

The transmission and reflection coefficients for the
composite medium of Fig. 1 are given in terms of the
elements mij of the characteristic matrix2 by

2ni 2

(4)

(5)
R= (Mil + m12ni)nj - (M21 + m22ni) 12

(Mil + Mz12ni)nj + (M21 + M22n) I

where ni is the refractive index of the medium from
which the wave is incident and of the medium in which
the wave is transmitted. The characteristic matrix M
is given in terms of the characteristic matrix of each
layer M(Lj) as

r', t'

ni na nb nal nb nafnlab na nb no ni

LO Ln ° Ln
r,t

Fig. 1. Schematic diagram of the Fabry-Perot resonator
with reflection coatings on each face of the nonlinear medi-
um.
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M = M(L1 - LO)M(L2 - L1)... M(Lo - L) ... M(L0 -L-)

Ik- exp(-ik+L) + k+ exp(ik-L) exp(-iA
M(L) = ko 1 ko 

k+ + k I kkk+
L k0 + [exp(+ik+L) - exp(ik-L)J - exp(

k, = k + qj.

If one of the layers is linear, then the corresponding
characteristic matrix is well known3 and can be ob-
tained by setting q± = 0. It should be borne in mind
that the characteristic matrix for each nonlinear medi-
um depends on the intensities of the waves in that
medium. In our earlier work2 we used a fixed-point
iteration method to calculate T.

Next, we consider the usual approach to the prob-
lem of optical transmission through a nonlinear
Fabry-Perot resonator. Let r, r', r" and t, t', t" be the
linear reflection and transmission coefficients, respec-
tively, of the structures loaded on each side of the
nonlinear medium. The usual boundary conditions at
the two faces of the nonlinear medium are

et = t" exp[ik0(nL0 -nLlef(LO)

eb(Lo) = r" exp(2ikLO)ef(LO),

ef(Ln) = t exp[iko(n 0Lo - nLd)ei

+ r' exp(-2ikLn)eb(Ln)- (7)

2 [=iiexp(-ik+L)
2 n[exp(-ik+L)

On using Eqs. (3) and (7) we find the transmitted
field in terms of the incident field as

et = tt" exp[ikoni(Ln - L0 )] [exp(-ik+L)

- rr" exp(ik+L)j1C1i.

,+L) - exp(ik-L)

(6)

where mij are the elements of the characteristic matrix
M, defined as follows:

M = M(L1 - LO) ... M(Ln -L-,)

= M(L1 - LO) ... M(Ln-Ln-1) (10)

Here we have assumed that the nonlinear medium is
loaded on both sides by the same structures.

In what follows we discuss the differences in the
optical transmission that are due to the use of the
approximate Eq. (8). Before we present our numeri-
cal results we would like to point out an important
property, viz., Eq. (8) is obtained from our result [Eq.
(4), which has been derived by using the nonlinearity
of the boundary conditions] if we replace the charac-
teristic matrix M [Eq. (6)] for the nonlinear medium
by

I+ exp(ikL)] - [exp(-ik+L) - exp(ikL)]n
- exp(ik-L)] [exp(-ik+L) + exp(ik-L)] I

* (11)

The use of Eq. (11) is equivalent to using the follow-
ing approximate expression for the magnetic field in

(8)
T

1.0
Here L is the length of the nonlinear medium. The
linear reflection and transmission coefficients can be
expressed in terms of the elements of the characteris-
tic matrix of each layered structure:

r = [iM1 1 + M12n)nj - (M2 1 + M2 2n)],
Dt

t = 2nj/Dj,

r'= I [(M22

r" = D [(M1l

+ M12ni)n - (M2 1 + mllni)]

+ M12ni)n -(M21+ M2 2ni)]

D, = (M11 + M12n)ni + (M21 + M22n),

D2 = (M 1 1 + M12ni)n + (M 2 1 + M2 2ni),

0.5 [

3

0.001

2

0.01 0.1 Uij

Fig. 2. The transmission coefficient T as a function of the
t' = 2n/D1, incident intensity U1. The solid curves are the exact results,

whereas the dotted curves are obtained by ignoring the non-
linearity of the boundary conditions. Different curves are
labeled by the values of N that in turn refer to the number of
coatings. The other parameters have been chosen as na =

t = 2n/D2 , 2.3, nb = 1.3077, ni = 1, n = 1.7149, and k0nL = (2 - 2A)7r.
A = 0.113 forN = 1, A = 0.04 forN = 2, and A = 0.018forN =
3. Here A essentially gives the half-width of the linear
transmission resonances, i.e., the width of the resonance

(9) obtained by ignoring the nonlinearity of the medium.
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the nonlinear medium:

Hy= - + exp(ik+x) e+ + exp(-ih-x)E-
ko ko

;zt-n[exp(ik+x)e+ - exp(-ik-x)e-]. (12)

To illustrate the difference, we consider a nonlinear
slab coated on both sides by alternating N low-index
(nb) and N + 1 high-index (nfl) X/4 plates. Let the
coating materials be linear. We show the bistability
in transmission in Fig. 2, with the incident intensity
defined as

Uj = alile2. (13)

We present the results obtained by using both ap-
proximate theory based on Eq. (8) and our exact the-
ory. It is clear from Fig. 2 that a higher bistability
threshold leads to higher deviations from the exact
theory. The corrections are almost insignificant for N
= 3, when the threshold is rather low. Note further
that for a given N the deviations are more prominent
near the upper bistability threshold.

In conclusion, the full nonlinearity of the boundary
conditions is important whenever one deals with rela-

tively large intensities in the medium. This conclu-
sion obviously also holds not only for a medium with
cubic nonlinearity but also for other types of nonlin-
earity of the medium.
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