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Quantum analysis of optical bistability and
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We discuss the approach to equilibrium and the fluctuations of a bistable system under dynamical conditions such
that the field variables can be eliminated adiabatically. The atomic system evolves under the action of the coher-
ent pumping of an external field and of collective and incoherent relaxation processes. The competition between
pumping and relaxation effects causes the atomic steady-state configurations to depend discontinuously on the
strength of the driving field. We derive an explicit expression for the spectrum of the forward-scattered light,
which exhibits hysteresis and a discontinuous dependence on the driving-field amplitude.

The occurrence of instabilities and discontinuous
transitions in optical systems has been under discussion
for some time, most notably in connection with the be-
havior of saturable absorbers and dye lasers.! Of spe-
cial current interest are the transmission properties of
a Fabry-Perot cavity filled with an absorptive or dis-
persive medium and driven by an external optical
field.2* Under appropriate conditions, the light in-
tensity transmitted by this system has been predicted
to undergo discontinuous variations and to exhibit
hysteresis effects. Successful switching of an optical
cavity from a state of low to one of high transmission
and vice versa has been demonstrated with sodium
vapor® and ruby®; other approaches have also been
considered with an eye toward numerous potential ap-
plications.”™®

In addition, the bistable operation of a passive system
has raised numerous theoretical questions: in the
language of statistical mechanics, a bistable device is an
open system driven away from thermal equilibrium by
the action of an external field. It is of interest to in-
vestigate the steady-state properties of this system, its
fluctuations and relaxation around steady state, and the
possible existence of cooperative effects.

A simple quantum-mechanical model of absorptive
bistability has been discussed extensively by Bonifacio
and Lugiato.l® These authors have considered the case
of perfect matching between the excited cavity mode,
the atomic absorption line, and the carrier frequency
of the driving field. They have derived analytical
conditions for the observation of bistability and pointed
to the existence of remarkable fluctuation properties
in the vicinity of the switching thresholds.

In this Letter we present additional features of the
quantum-mechanical model of bistability.!! We ana-
lyze the approach to equilibrium for different values of
the driving-field amplitude and propose a calculation
of the steady-state spectrum of the transmitted light.
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As anticipated in Ref. 10, the spectrum consists of a
single peak centered at the resonant atomic frequency
along the cooperative (highly absorbing) atomic
steady-state branch. Along the single-atom branch
instead, the spectrum develops a pair of sidebands that
are displaced from the central peak by an amount pro-
portional to the Rabi frequency of the driving field.
The abrupt occurrence of this dynamic Stark shift
above the upper bistability threshold corresponds to the
atomic system’s becoming highly transparent. Along
the high-transmission branch and for decreasing driv-
ing-field amplitudes, the two sidebands merge contin-
uously into the central peak. In addition, in the
neighborhood of both upper and lower bistability
thresholds, the atomic system exhibits critical slowing
down, as evidenced by the spectral narrowing of the
transmitted light. :

The atomic evolution is described by the reduced
density operator W solution of the following master
equation:

ddl;/ = —iLW + AsW + AW, (1a)
where
LW = iQ;(S* + S, W), (1b)
2
AgW =282 (s—ws+ Ly -1-S+S—W),
K 2 2
(1c)

AW = J_Zv:l v1 (SimWSi*) + (S;i-W,5H)]. (1d)

Equation (1a) has been derived under the Born-Mar-
koff approximations and after adiabatic elimination of
the cavity field operators. The term ;LW describes the
reversible coherent interaction of the atoms with the
external classical field, while AsW and A4 W describe
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Fig. 1. Evolution of S3(r) as a function of the scaled time,
7= vt for ¢ = 10 and different values of the driving field,
y. The three curves correspond to: (1) y = 11.05, (2) y =
11.1, (3) y = 13.0. The threshold value for optical bistability
is close to y = 11.055 for ¢ = 10.

the collective and the single-atom relaxation, respec-
tively.12 The operators S* = }; S;* are the collective
polarization operators, and @y is the Rabi frequency.
The parameters g, v | , and « are the atom-field coupling
constant and the atomic and field decay rates, respec-
tively.

The exact evolution equations for the expectation
values of the polarization and atomic energy operators
can easily be derived from Eqg. (1a). The result is the
well-known infinite hierarchy of coupled-moment
equations. On introduction of the usual factorization
ansatz (e.g., (S*S3) = (S*)(S3)), the equations of
motion for the atomic expectation values become!©

ds _ 4e

=S~ VaySa+ S8, (22)
dSs_ _ N _de g
2= =2 (Ss ) +VEYS=8% (@)

where S = —i (S*) =i(S7),S3={S3),and 7=, L.
The parameter y = V2 Qy., | is proportional to the in-
cident-field amplitude, and ¢ = g2N/2y | « provides a
measure of the density of atoms in the cavity.

Equations (2a) and (2b) have been solved numeri-
cally. An interesting feature of the time-dependent
solutions is their discontinuous dependence on the in-
cident-field amplitude for sufficiently large values of
¢, a feature that has already been discussed in Ref. 10.
An example is given in Fig. 1, where S3(7) is plotted as
a function of time for different incident-field ampli-
tudes. A small change in y around its threshold value
can alter the dynamics of the atomic population quite
drastically by forcing nonmonotonic behavior and by
altering its steady-state value.

The steady-state solutions for S and S3 take the
form

3)

where the transmitted-field amplitude, x = V2 (2 —
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g2S/k)/v 1, is related to the incident-field amplitude,
v, by the cubic equation

2cx
1+x2

For ¢ < 4, Eq. (4) predicts a single-valued relation be-
tween x and y for all values of the incident amplitude,
y. For ¢ > 4 and ymin < ¥ < ¥max, the output-field
amplitude is a multivalued function of the output field.
The parameters ymin and ymayx give the upper and lower
bistability thresholds.

The discontinuous behavior of the transmitted field
and its hysteresis properties as a function of the input,
y, are related to the multivalued nature of x. The be-
havior can also be understood in terms of elementary
catastrophe theory where it is seen that optical bista-
bility is just another example of cusp catastrophe and
that the hysteresis of the transmitted field is a conse-
quence of the so-called delay convention.!3

We now discuss the spectrum of the transmitted light,
which is proportional to the Fourier transform of the
atomic correlation function, (S*(#’ + t)S—(¢")). In
particular, we are interested in the steady-state value,
limy o (ST +¢)S—(")) =(S*()S~). Tothisend
we define the set of correlation functions, x; =
(S*()S™) = (ST)(S7), xa= (S™(£)S™) — (S7)%,
and x5 = {(S3(t)S~) — (S3}{(S~). With the help of the
regression theorem,!5 and assuming that the atomic
fluctuations in steady state behave as random Gaussian
fluctuations, the above correlation functions satisfy the
set, of linear equations,

y=x+ 4)

d
X" My, (5)
where
F— (1 +7 icxz) 0 —iv/2x
M= 0 —(1+1J2r"x2) ivax |

i i
L \—/—E(y—-Qx) —v_é(y—2x) -2 |

= (6)
and X= (XI)XZ’X?))'
The solution of Eq. (5) requires knowledge of the

steady-state fluctuations, x;(® (i = 1, 2, 3). This in-
formation must be provided independently of the above
development. To this end, we have constructed a set
of coupled equations for the first- and second-order
moments and factorized the third-order moments ac-
cording to the same factorization ansatz that was used
in deriving Eq. (5). After solving the coupled-moment
equations in steady state, we have derived the following
initial conditions:
=N x2 x(2xA + 2x — y)

XU T 941+ 222 + A)A + x(2x — y)]
N x2 x@2x—y)+AQ2+A)—Axy
241+x2 (2+A)A+x(2x —y)]
; N x2 2xA+ 2x —y

221 4+ x2(2+ A)[A + x(2x — )]

where A =1 + 2¢/(1 + x2).

o © =

(7
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Fig. 2. The spectrum of the atomic fluctuations [Eq. (9)] for
¢ = 10 and several values of the driving field: (1) y =10.0, (2)
y =104, (3) y = 10.6, (4) y = 10.8. The threshold value for
optical bistability is y = 11.055. The stationary states of the
atomic system belong to the cooperative branch.

Fig. 3. The spectrum of the atomic fluctuations [Eq. (9)] for
¢ = 10 and several values of the driving field: (1) y =11.0, (2)
y =8.82,(3) ¥ = 8.77, (4) y = 8.73. The stationary states of
the system belong to the single atom branch.

The solution of Eq. (5) is now carried out. In par-
ticular, the Laplace transform of x;(7) is given by

N 2 1

2A14+x2A4 x(2x - y)

% 22+ A)z+ 2+ A)+x(2x — y)[A + x(2x —y)]’
(z 4+ A)D(z)

%1(z) =

(8)

where D(2) = (z 4+ A)(z + 2) + 2x(2x — y).
The required spectrum of the atomic fluctuations is
directly given by

S(w) = Re 1(2)|2=iw- C)]

It is easy to see that in the limit of vanishing atomic
density, (¢ — 0), Eq. (9) leads to the well-known sin-
gle-atom resonance-fluorescence spectrum.'® For the
interesting case ¢ > 4, typical spectra are shown in Figs.
2 and 3. As the incident field increases from y = 0 to
Y = Ymax (Fig. 2), the spectrum consists of a single
broadened line with a monotonically decreasing
halfwidth, which vanishes in the vicinity of the upper
threshold as (Ymax — ¥)/2. For y > Ymay, the spectrum
develops sidebands discontinuously, and, for increasing
fields, it approaches the usual single-atom spectrum of
resonance fluorescence. When the driving field is de-
creased along the single-atom branch (Fig. 3), the
sidebands merge continuously into the central peak,
which becomes narrower and narrower as the bistability
threshold is approached. For y < ymin, the atomic
system jumps back to the cooperative branch, thus ex-
hibiting discontinuity and hysteresis.
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