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Four-wave mixing under conditions when optical Bloch
equations fail
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The nonlinear-optical properties of a system whose collisional dynamics are strongly affected by intense pump fields
are calculated. The four-wave mixing signals can be affected in a dramatic way if the period of the Rabi oscillation
is comparable with the correlation time of the collisional mechanism.

Relaxation processes' play an important role in nonlinear-
optical problems. The structure of the nonlinear suscepti-
bilities depends on the form of the relaxation matrix.2 3 Col-
lisional relaxation has been shown to lead to a variety of
extra resonances in various nonlinear mixing problems.
The form of the relaxation matrix that has generally been
used in nonlinear-optical phenomena is taken to be indepen-
dent of the applied fields. However, when the applied fields
become strong, then the relaxation matrix should depend on
the intensities of the applied fields. Such intensity-depen-
dent relaxation would in turn change the form of the nonlin-
ear-optical susceptibilities. It should be borne in mind that
when the fields become strong, then one needs nonperturba-
tive expressions for appropriately defined susceptibilities.
Thus at high intensities one has to account for saturation
effects and field-dependent changes in the relaxation ma-
trix. These two problems were considered in detail4-8 in the
context of the experiments of Devoe and Brewer 9 on free
induction decay. These authors discovered situations in
which the usual optical Bloch equations with phenomeno-
logical relaxation constants cannot be used. Using micro-
scopic considerations involving the competition between
saturation and relaxation effects, one can derive a modified
version-8 of optical Bloch equations. This modification can
be used to understand phenomena that depend strongly on
the intensity-dependent relaxation matrix. Clearly one
should examine the changes in the nonlinear-optical effects
for field intensities in a regime where the optical Bloch
equations fail. In this paper we report our preliminary
results on four-wave mixing under such conditions. Instead
of using T and T2, we model the relaxation effects in a
stochastic way. We assume that the relaxation arises from a
stochastic modulation4 -8 of the frequency of the two-level
atom, i.e., we take the instantaneous frequency of the atom
as coo + x(t), where x(t) is a stochastic Markov process, with

(x(t)) = 0, (x(t)x(t')) = x exp(-r It - ). (1)

Let the total field acting on the atom be

E(t) = e exp(iko - r)exp(-iwt)

+ e3 exp(ik3 r - iw3t) + c.c. (2)

Then, in a frame rotating with the frequency co of the pump,
the equation of motion can be written in matrix form as

A = C+ iX(t)C + g + p(t),

where

P21 exp(-iwt)1 Fol
= P1 2 exp(iwt) , g = 0 ,

1/2(P11 - P22) L-^Yoi

-1 J C- [iA - Yo

cl = -1 ° X Co = °
0 0O O iae

0 2ia1
-i - o -2iaI,

-ia - 2yo_

A = O-, a =-d -e exp(iko - r),

Cp(t) = L p
igp exp(-i~t) -ioap* exp(i~t)

2iap* exp(it)

-2iatp exp(-i~t) ,

° 

ap = -d - e3 exp(ik 3 - r), = co3 .

Here 2 o is the Einstein A coefficient of the excited state, 11 ).
We will now calculate the four-wave mixing signal valid to all
orders in the pump intensity E1I2 but valid only to second
order in the probe intensity 1E312. The modulation x(t) is also
to be accounted for exactly. The intense field changes the
basic time scales of the system. For example, several Rabi
oscillations are possible within the correlation time of the
modulation, and this is responsible for the breakdown of the
optical Bloch equations. The next step is to eliminate the
stochastic character of Eq. (3), i.e., to obtain the equation for
the ensemble average of . To do so one needs the statistical
properties of x(t). Techniques exist for treating Gaussian
processes0 ; however, this requires extensive numerical
work. A reasonable understanding of the optical phenome-
na when time-dependent changes in the relaxation matrix
are important can be obtained by assuming x(t) to be a
dichotomic Markov process.7 8 In such a case one can get an
exact equation" for ((t)).

The four-wave mixing signal can be obtained if we evalu-
ate to firt order in ap. The first-order contribution W(' to
A is given by

01) = Co!'(') + ix(t)C o(l) + Cp(t)0().
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(5)
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For the dichotomic Markov process x(t), Eq. (5) leads to
the exact result (cf. Ref. 11)

(A(1)) = Co(A') + Cw~o)
t

- 0
2JdrC, exp[Co(t - r) - r(t - r)]Ci(( (r))

-x 0
2 J doCI exp[C(t - a)]CP(o) d3

o foc

X exp[Co(. - #]Cj(Q()(0))exp[-r(t - fi]. (6)

The zeroth-order response is obtained from the solution of

f(°) = cof(°) + i(t)C,1/o) + g,

which leads to the exact equation for K4/M)):

Q'°) = Co(,(t) + g - xo2 f dC

X exp[(Co - r)(t - oiCl ( )(r))-

Note that Cp(t) has the form

Cp(t) = exp(-igt)C+ + exp(igt)C. (9)

By using Eqs. (9) and (6), the steady-state response can be
written as

()(t)= exp(-i~t),k+ + exp(iMt)i/-, (10)

where

= [iQ - CO + x0
2C,(iQ + r - c,)-lc,]-'

x [C (t 0 )(o)) - xo2Cl(iu + r -co'

x c-(r - cor-lciWN°)(-N, (11)

(7)

(8)

with

Op"Ho) = [x0
2Cl(r - Co)-IC, - co]-0 g. (12)

The four-wave mixing susceptibility X(
3 )(W, O, -W3) is ob-

tained from the second component of the column matrix, i.
Note that 1_ depends on all powers of the pump intensity
(this dependence is through Co). In the limit r - a, Eqs.
(11) and (12) reduce to the results 4_ and (O)(-)), ob-
tained from optical Bloch equations:

(b°)(co)) = - CC,) g,

(P_ = (ig - CO + rCjCI)'C (4)(0)(x))

(13)

(14)

The differences between the predictions based on Eqs.
(11) and (14) start becoming more and more pronounced as
the eigenvalues of Co start becoming' comparable in magni-
tude with F. Note that x0

2/r defines the usual transverse
relaxation width. Thus we define

= o+ 1 = 2-yo (15)

and express all the other parameters in units of 1/T2. In
Figs. 1 and 2 we show the real and the imaginary parts of the
four-wave mixing susceptibility (-)2. We also show the
differences in X(

3
)(cv, W, -Ct3) as predicted by the exact result

[Eq. (11)] and the one following from optical Bloch equa-
tions. We see that the nonlinear susceptibility X(

3
) changes

dramatically as the random modulation starts acquiring a
larger correlation time. In Fig. 1 we show the comparison
between the results of the two theories. Even for r = 10 the
differences between the two theories are quite noticeable.
In Figs. 2(a) and 2(b) we display the real and imaginary parts

(W-W3 )

Fig. 1. The real (curves a and c) and the imaginary (curves b and d) parts of the four-wave mixing susceptibility as a function of c - W3, where
w 3 is the frequency of the probe. Curves a and b were obtained from the present theory (Eq. (11)] for r =10, whereas curves c and dare based on
Eq. (14), obtained from the conventional Bloch equations. All the parameters are scaled in terms of l/T 2 = yo + (xO2 /r), a = 0.1, and w-co = 1.
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Fig. 2. (a) The real and (b) the imaginary parts of the four-wave mixing susceptibility [Eq. (11)] as a function of w - w3 for =0.1, pump atom
detuning, w - = 1, and various values of the pump-field strength a: 0.1 for the dashed-dotted curve, 0.5 for the solid curve, and 1.0 for the
dashed curve. All parameters are in units of 1/T2.

of X(3) for the case when the deviations from the predictions
of the optical Bloch equations are most remarkable. This
can be seen from an examination of Figs. 1 and 2 for a = 0.1.
The nonlinear susceptibility exhibits many new resonances.
These new resonances can be understood in terms of the
roots of the determinant of the matrix [z - Co + xo2 C,(z + r

- Co)1'Ci]. For large a, small r, and A = 0, such roots, to
order r

2 /e 2, are given by

+2ioa - F + i-, +2ia + ir , -. (16)

Thus the signal would be dominated by very narrow lines at
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Fig. 3. The four-wave mixing signal as a function of w- cOfor a = 0.1 and o - w= 1. The solid line is the signal obtained from the conven-
tional Bloch equations. The dashed line and the dashed-dotted lines are those obtained by the present theory for r = 10 and r 0.1,
respectively.
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Fig. 4. The four-wave mixing signal as a function of c - W3 for r = o.1 and co - = 1, as obtained from the present theory. Dashed and solid
lines are for a = 0.5 and a = 1.0, respectively.

±2ia and 0 with widths -(P 2 /a 2
). There is a splitting of the

side peaks if A 0. The full four-wave mixing signal S 
Ix(3)12 is shown in Figs. 3 and 4. Figure 3 shows that, even for
(/a) = 1, the deviations from the predictions of optical
Bloch equations are quite significant. The new resonances

become better resolved with an increase in a, as shown in
Fig. 4.

Thus, in conclusion, we have shown in the framework of a
model calculation the changes in the coherent signals gener-
ated by four-wave mixing in pump fields that are strong
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enough to invalidate the optical Bloch equations. Similar
changes are expected for the other nonlinear processes and
for more-complex media.
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