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Quantum theory of interferometers with phase-conjugate
mirrors
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The quantum-statistical characteristics of the field at the output port of an interferometer with a phase-conjugate
mirror are evaluated. The explicit form of the density matrix of the field at the output port is given. The effect of
an attenuator in the other arm of the interferometer is also discussed.

1. INTRODUCTION

Phase-conjugate mirrors (PCM's) have unusual properties';
for example, these devices enable one to correct for the
distortions introduced by a medium. Recently, characteris-
tics of the interference pattern produced by a PCM have
been studied both experimentally2 and theoretically.3-5 For
example, one finds that the fringe pattern depends on the
phase of the field that is incident upon the PCM's and on the
phase of the reflection coefficient of the PCM's. Since the
interference pattern depends on the phase, it is obviously
expected to be sensitive to the phase fluctuations and to the
statistics of the incident fields. The PCM's are also known
to have remarkable quantum features6 ; for example, the
conjugate field can be generated even in the absence of the
incident field, i.e., when the incident field is in the vacuum
state. It is thus important to study quantum-mechanically
the interference phenomena produced by a PCM. We
therefore formulate in this paper the quantum theory of
interferometers 7 in which one of the mirrors is replaced by a
PCM.13 The classical results are obviously contained in our
quantum theory. We show in Section 2 the relation between
the input and the output fields. The output contains a noise
term that arises because of a PCM. The explicit form of the
photon-number distribution is given when the input field is
in a coherent state. Our analysis reveals that a Michelson
interferometer with a PCM has more noise than the conven-
tional interferometer. In Section 3 we demonstrate that the
interference pattern disappears if the input field is a chaotic
field unless part of the input field is used to pump the PCM.
Finally, we discuss in Section 4 the effect of an attenuator
that one would typically use to improve the visibility.

sponds to a field in the vacuum state. The fields in the two
arms of the interferometer are characterized by the annihila-
tion operators and P. At the beam splitter, these are given
by

I= t + r, k = r + t6 . (1)

The reflection and transmission coefficients are assumed to
satisfy

Ir12 + 1t12 = 1, rt* + r*t = 0. (2)

The field incident at the PCM is eikL. The PCM changes6"14
the input field into a field ,

d A~e-ikL + B. (3)

Here the coefficients A and B depend on the characteristics
of the PCM. These also depend on the way in which the
PCM is pumped. In Eq. (3) c is the annihilation operator for
the conjugate field. The field at the beam splitter in the arm
(2) of the interferometer is de-ikL. The field at the beam
splitter in arm 1 of the interferometer is Re-2il. Therefore
the total field at the detector is given by the operator h,

h = rde ikL + tre-2ikl,
which, when Eqs. (1) and (3) are used, reduces to

(4)

i = rAe-2 ikL(t*&+ + r*6+) + te-2ikl(ra + t) + BNre-ikL.
(5)

The field statistics at the detector can be obtained from
the statistics of the fields a, 6, and . Fields 6 and c are in
the vacuum state. We assume that input field a is in a
coherent state Iz). Clearly, the mean amplitude of the field
at the detector is

2. RELATION BETWEEN THE FIELDS AT THE
OUTPUT AND INPUT PORTS-QUANTUM
STATISTICS OF THE OUTPUT FIELD

In order to obtain the quantum statistics of the field at the
output port, we first derive the relation between the field
operators at the input and output ports. Figure 1 represents
schematically a Michelson interferometer in which one of
the mirrors has been replaced by a PCM. Let the fields at
the input ports be denoted by & and 6, respectively, which
satisfy boson commutation relations. In general, 6 corre-

(h) = rAe 2ikLt*z* + rtze-2ikl. (6)

This expression is the basis2 3 for studying the classical inter-
ference effects produced by reflection from a PCM.

It should be borne in mind that the interference pattern
depends on the phase of A(t*/t) (z*/z)exp[-2ik(L - 1)]. The
phase of A depends on the way in which the PCM is pumped,
i.e., on the phase of the square of the pumping field. Thus
the relative phase between the pumping field and input field
must be fixed. If this relative phase is a random quantity,
then the interference pattern will be washed away.
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Fig. 1. Schematic illustration of Michelson interferometer with
one mirror replaced by a PCM.

The fluctuations in the fields are easily computed by using
the properties of the coherent states and vacuum state. Our
calculations show that

(h2) - ()2 = (rt* + r*t)rtA exp[-2ik(L + )] = 0, (7)

(h+h) - (+)(h) = IAl
2 Ir12 , (8)

where Eqs. (2) have also been used. The fringe visibility v
can be computed by using Eqs. (6) and (8):

v = 2ItI2IAI I[t2(1 + IA12) + IAF , (9)

which, when the quantum correction is ignored, reduces to
the classical result

v = 21AI/(1 + A12). (10)

Clearly, the fringe visibility can be significantly affected by
input fields with very low photon number. It is interesting
to note that the field at the detector has no phase-sensitive
fluctuations, e.g., ((AF)2 ) = 0, which is due to the unitary
property of the beam splitter used to divide the input beam
and to combine the beams. In contrast, the total field in
arm 2 of the interferometer has phase-sensitive fluctuations.
The quantum fluctuation (h+FAh) is dependent on the
properties of the PCM.

The higher-order mean values can be calculated in terms
of the Wigner function15 1 6 associated with the field h. The
Wigner function (b(Zh, Zh*) is defined by

4 (Zh, Zh*) = (1/7r2 ) J d2a exp[(azh* - a*Zh)]

(13)

Thus the Wigner function for the field at the detector is
Gaussian centered at the mean value () of the field. High-
er-order fluctuations in the field follow from the Gaussian
property of the Wigner function. The field at the detector
can be viewed as the one obtained by superposing a coherent
field with amplitude () and a chaotic field with mean
photon number IAI2IrI2. The photon-number distribution
for such a field is well known17:

p ((n) (IAr 2)n exp( I h) 12
(+I 2 )n~1

l IArI + I

I (h)12

[ IArI 2
(IAr1

2
+ 1)1]

where Ln is the Laguerre polynomial of degree n.
tuations in the photon number are given by

(14)

The fluc-

(h+h)2) - (+h) 2 = Ar 2(lAr 2 + 1) + l() 12(2IArl2 + 1).

(15)

These results, viz. Eqs. (13)-(15), are to be compared with
the corresponding results for the usual Michelson interfer-
ometer:

(16)4(Zh, Zh*) = (2/r)exp(-2lzh (1 2),

(F) = rtz(e- 2 l + e-2ikL),

((h+h)2 ) - (+h) 2 = (+h),

nnen

n!
-= (h)12.

(17)

(18)

(19)

Thus the field at the detector is in a coherent state with
amplitude (), if the input field is in a coherent state. The
phase-conjugating device in the interferometer not only
changes the interference pattern but also adds quantum
fluctuations to the field.

3. INCOHERENT LIGHT AS INPUT TO THE
INTERFEROMETER WITH PHASE-CONJUGATE
MIRRORS

We next discuss some unusual properties of an interferome-
ter with a PCM. We show that the output field shows no
interference effects if the input field is an incoherent field,
for example, the input field may be a chaotic field or a field
in Fock state In). This is in contrast to the usual Michelson
interferometer. To see this, let us consider a chaotic field,
with an average number of photons n, incident upon the
conventionfal interferometer. The field operator at the de-
tector is

X Tr~p exp[-(ah' c*h)II (11)

The Wigner function associated with the input field a in a
coherent state I) is

I)(za, Za*) = (2/r)exp(-2Iza - z12).

h = rt(elikl + e-ikL)a + (rlelikL + te- ikl)b.

From Eq. (20) and the properties of the chaotic field, it is
straightforward to show that

(12) (h) = 0, (h2) = 0,

(hh) = IrI2 It2n Ie-2 ikl + e-2iLI2.Using Eqs. (5) and (12) in Eq. (11), we have proved that

(20)
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Expression (21) leads to the usual interference pattern, al-
though the input field is incoherent. The interference pat-
tern is preserved because the two parts of the field in the two
arms of the interferometer arise from the same source.

Let us next consider the interferometer in which one of the
mirrors has been replaced by a PCM. The field operator at
the detector is now given by Eq. (5). Using Eq. (5) and the
properties of the chaotic field, one can show that

(F) = o, (F2) = 2An tI2 r2 exp[-2ik(L + 1)],

(Fi~F1) = IrI2IAI2 + nItI2IrI2(1 + A2).

Here G is the attenuation coefficient, and is related to the
attenuator characteristics. The Wigner function of the field
before and after the transformation is also simply related.
If the Wigner function of the input is

b(P(Z Z*) = 1
7r4T -4yA*

X exp -

(22)

The intensity distribution [Eqs. (22)] does not exhibit any
interference pattern. Thus the interference pattern of the
type predicted by Eq. (6) is washed out because of the inco-
herence of the source and the phase-conjugation process.
This suggests that the PCM makes the field in arm 2 of the
interferometer statistically uncorrelated with the field in
arm 1 of the interferometer for the case of an incoherent
field. The fields became statistically uncorrelated in a re-
stricted sense since (2) 0, i.e., if we write

(Ak 2 ) = -2p*,

-(Z-ZO) + ,*(Z* - Z0*)2 + r0 IZ - Zo12

To2 - 4pu* 1
(W'Q) = o- /2, (26)

then the Wigner function of the output is

4'(z, z*) = 1
Wr2 4*G 2

X expl-[,uG(z - ZoFG)2 + *G(z* _ Zo* )2

+ TlZ - Z0JUI2]/(1 2 - 41Lt*G 2 )}, (27)

F = 4(l) + (2), 4(l) = te- 2i , ,(2) = rae-ikL, (23)

(28)then T G(o-'1/2) + (1-G) + 1/2.

((')+h(2) ) = 0, (Fh(")h(2)) is 0. (24)

This can also be understood at the classical level. The phase
of the field, apart from factors such as hl, in arm 1 (arm 2) is
so (-p owing to the phase-conjugation process). Thus the
relative phase is 2<p, which is a random (deterministic) quan-
tity for an incoherent (coherent) field. This is why the
interference pattern disappears. For the conventional in-
terferometer the relative phase is independent of sp, and
hence the interference pattern survives even for an incoher-
ent input field. This analysis presumes that the phase of
the reflection coefficient of the PCM is a deterministic quan-
tity. The phase of A is partly determined by the field used
to pump the PCM. Our analysis suggests that interference
effects with PCM can be observed only if there is some
correlation between the input field and the field used to
pump the PCM. Thus the interference pattern can be re-
stored if the same field is used both as input and as the pump
for the PCM, as in the case when the combination A(z*/z)]
has no random phase.

4. EFFECT OF AN ATTENUATOR IN ARM 1
OF THE INTERFEROMETER

We saw that the fringe visibility [Eq. (10)] depends on the
reflectivity of the PCM. Since the reflectivity of a PCM is
generally quite small, the visibility is very low. The visibili-
ty can be improved by inserting an attenuator into arm 1 of
the interferometer. The attenuator not only attenuates the
field but also adds noise terms to the field in arm 1. The
transformation of the field after it passes through the atten-
uator is well known.'8 The values of a and a+a before and
after the transformation are related by

(Q+9) = G(9+9)0 + /(1 - G).

Note that the field in arm 1 passes through the attenuator
twice, and hence the transformations [Eqs. (25) and (27)] are
to be applied twice. From Eqs. (25) we also have the follow-
ing result for the deviation from the mean value:

(Ak+Q) = G(Q+Q)O + O(1 - G) = O(1 - G) (29)

if initially (Q+Q) 0 = 0. So if such a field passes twice
through the attenuator, then

(4k+Q) = GO(l- G) + (l -G)
= (1- G2). (30)

The mean value of F and the fluctuation in F can be comput-
ed by using Eq. (4) and Eqs. (26)-(30). We cite the result of
such a calculation:

(31)(F) = rAe 2ikLt*Z* + rtzG 2 e-2ikl

(AP2 ) = 0,

(AhFi+A) = IA12IrI2 + ItW2O(1 - G2). (32)

The Wigner function of the output is now given by [cf. Eq.
(13)]:

4 (Zh, Zh*) =
1

7r['/2 + IAI'rI2 + 1It12(1 - G2)]

IZh -() 12

X exp{- [1/ + IA12IrI2 + /31t12(1 - G2)]}

(33)

It is clear from Eq. (31) that the fringe visibility can be
improved by choosing G suitably.

In conclusion, we have presented a first-principle quan-
tum theory of an interferometer with a PCM, and we have
answered practical questions concerning the effects of the
attenuator and the phase fluctuations of the input field.

where
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