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The transmission properties of coupled nonlinear Fabry-Perot resonators with reflection coatings are studied. A
general characteristic matrix approach for nonlinear layered media is developed for the case of normal incidence of
linearly polarized light. Use of reflection coatings and coupled systems results in the lowering of the bistability

threshold.

1. INTRODUCTION

The bistable behavior of a nonlinear Fabry—Perot resonator
with cubic nonlinearity has been the subject of considerable
theoretical and applied interest. Felber and Marburger!?
have given a thorough investigation of the bistable and mul-
tistable operation of a nonlinear Fabry-Perot resonator.
Calculations in connection with ring cavities® have shown
that the bistability threshold can be lowered by using a
system of coupled ring cavities. In general, the threshold is
determined by several parameters such as the reflectivity of
the mirrors and the domain of the nonlinear material. It is
important to investigate what happens in layered structures
‘that are now extensively used in various switching devices.
So far as a single nonlinear Fabry-Perot cavity is concerned,
the theory is well developed.!?4 However, a general theory
for a sequence of nonlinear Fabry-Perot cavities is still miss-
ing. Itis clear that for arbitrary polarization and angles of
incidence it is rather difficult to have a general theory. If
one restricts oneself to the case of linear polarization and
normal incidence, it is possible to generalize the characteris-
tic matrix approach?® for a linear medium to the case when
some or all of the layers in a layered structure are nonlinear.
Once the characteristic matrix for the nonlinear layered
structure is obtained, one can calculate the transmission
coefficient.

It is known that the narrower the transmission resonances
are, the easier it is to achieve bistable operation.® The Airy
resonances in a Fabry-Perot resonator can be narrowed
down by making use of reflection coatings. Keeping this in
view, we investigate single and coupled nonlinear Fabry—
Perot resonators with reflection coatings.

Thus, in Section 2, following Ref. 4, we discuss the reduced
wave equation for a cubic nonlinear medium and its solu-
tions. In Section 3 we develop the characteristic matrix for
anonlinear layered medium for TE polarization and normal
incidence. Moreover, we present the results for the trans-
mission coefficients in terms of the elements of the charac-
teristic matrix. In Section 4 we present the numerical re-
sults for a single and two coupled nonlinear Fabry—Perot
resonators with reflection coatings. Our results reveal the
possibility of the realization of low-threshold bistable sys-
tems. The method developed here is also useful in the study
of related problems concerning nonlinear mixing.”8
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2.. DERIVATION OF THE WAVE EQUATION
AND ITS SOLUTION

Let us consider a nonlinear medium with an arbitrary type of
third-order nonlinearity. Assuming the time dependence to
be of the type e™if, the wave equation for such a medium
can be written as

AE + k%E = — [k, DN + v v . (DNVY/¢)], (2.1)

where ky = w/c is the vacuum wave vector, E is the linear
dielectric constant, and DNL is the nonlinear component of
electric displacement. For an arbitrary mechanism of non-
linearity DNL can be expressed as®

D™ = ¢y [AE(E- E*) + BE*(E-E)], (2.2)

where A and B are nonlinearity constants and x is a constant
of nonlinear interaction. Equation (2.2) suggests a field-
induced anistropy of xN and can be written in a tensor form:
DiNL = ExikNLEk, (2.33)
with
XN = X[BEE,* + E#E,) + (A — B)5,).  (2.3b)
Here

I=IEJ+IE) + B

and §;, is the Kronecker delta symbol.

We now consider the one-dimensional case of two counter-
propagating beams in the nonlinear medium and write the
total field as

E(x) = E,(x) ** + By(x)e™*, (2.4)

By using the slowly varying amplitude approximation
(SVEA) with respect to E; and E; and dropping the V - DNL
term, Eq. (2.1) with Eq. (2.2) can be reduced to two coupled
nonlinear equations:

4k
ke ?1371
= ~ky? ex{A[E(E, - E* + By - Ey*) + E,E, - Ey*]
+ B(E*E, - E, + 2E,*E, - E,)), (2.50)
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Ry fd

= —ky? ex{A[B,(E, - By* + E, - E;) + E,E, - E,*)]
+ B(E,*E, - E, + 2E,*E, - E))}. (2.5b)

If both the waves are linearly polarized (say, TE polarized
with Ey o, # 0, Ey 9, = 0, E1 5, = 0) the system of equations
(2.5) can be simplified drastically and written as

dE
2ik, Ve E:—" = —kyZex(A + B)E,(IE,)? + 2E,.1?), (2.6a)

dE
—2 ik e dx?’ = —koZex (A + B)Eo,(E, P + 2|E, |»). (2.6b)
In the case of TE polarization ;N also has a simpler form,
and by using Egs. (2.3) one can infer that there is no field-

induced anisotropy or dispersion of axis. In this case V -
DNL = 0,
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1 1
2 = ’ (3.13)
() _n))
ko ko
explik, L) exp(—ik_L)

AL k A
(—Hy L —k—+exp(ik+L) — o exp(=ik L) [\A-
0 0

(3.1b)

Eliminating A; and A- from Egs. (3.1a) and (3.1b), we can
relate the tangential field components at x = 0 and x = L:

B\ mf ® (32
(—Hy)x-'() - (_Hy)x=L ' )

where M is the characteristic matrix for the nonlinear slab
with width L:

ky+Ek_| Rk,

M=

k k_
[exp(—ik,L) — exp(ik_L)] f- exp(—ik. L) + 5= exp(ik_L)
0

k_ . k .
— exp(~ik,L) + — exp(ik_L) exp(~ik,L) — exp(ik_L)

k
0 (3.3)

0

The solution of Eqgs. (2.6) can be readily obtained, and it
can be used to express the total field [Eq. (2.4)] as

E, = A, exp(ik,x) + A_ exp(—ik_x), 2.7

where A; and A_ are the forward- and backward-wave am-
plitudes, respectively; k+ and k_ are the wave vectors of the
forward and backward waves determined by the following
expressions:

Ry = kove[l + (a/2)(1A, 12 + 21A_1®)], (2.8a)
k_ = ko e[l + (a/2)(JA_I? + 2(A,1%)], (2.8b)

where o = x(A + B).

It may be noted here that, for TE polarization, Eq. (2.1)
can be solved without SVEA, yielding for k., and k_ the
following relations!®:

Ry =Ry Ve[l + (A2 + 214_1%)]2, (2.9a)
ko= ko e[l + « (A_I? + 2|4, %)) 2, (2.9b)

3. TRANSMISSION THROUGH COUPLED
NONLINEAR FABRY-PEROT RESONATORS

In this section we first obtain the characteristic matrix for a
nonlinear slab and then use it to obtain the transmission
coefficient for a combination of any number of linear and
- nonlinear layers.

Let us consider two planes x = 0 and x = L perpendicular
to the direction of propagation in the nonlinear medium.
Making use of Eq. (2.7) and Maxwell’s equations, one can
express the tangential field components E, and Hy at x = 0
and x = L as

It may be noted here that Eq. (3.3) in the linear case (x =
0, k4 = k— = kg Je) reduces to the standard form of character-
istic matrix® for TE waves. Henceforth the standard char-
acteristic-matrix formalism can be applied to calculate the
reflection and transmission coefficients for a medium con-
sisting of N linear or nonlinear layers. If the jth layer has a
width L; and linear dielectric constant ¢;, the characteristic
matrix M for the composite medium can be as follows:

N
M= M), (3.4)

=1
where M/(L;) is given by Eq. (3.3), with L replaced by L jand e

by ¢;. The transmission and reflection coefficients are then
given by

9. 2
T= Pi (3.5)
(myy + myppp; + (mgy + myyp)) :
(myy + myop)p; — (mgy + mgop)) |2
R= (3.6)
(myy + mypp; + (Mg + myypy)

where p; = Ve, pr= \/E,:; ¢; is the dielectric constant of the
medium from which the wave is incident and ¢ refers to the
medium in which the wave is transmitted; m;; are the ele-
ments of the characteristic matrix M. Though formulas
(3.5) and (3.6) may appear straightforward, there are certain
difficulties in the actual calculation of T and R. To be
precise, let us assume that a particular jth medium is nonlin-
ear. This implies that the wave vectors k;+ and kj- will
depend on the forward- and backward-wave amplitudes A+
and A;-. Therefore, to have the explicit form of M;(L;), one
first has to solve two coupled nonlinear equations with re-
spect to A+ and A;- for a given incident field amplitude A;4.
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In Section 4 we show how this can actually be done by
treating the transmitted field amplitude as a parameter.
We consider two specific cases: (1) one nonlinear slab with
high-reflection coatings and (2) two nonlinear slabs with
reflection coatings separated by a high- or a low-index A/4
slab.

4. NUMERICAL RESULTS

A. Single Nonlinear Fabry-Perot Resonator with
Reflection Coating

We consider a system (see Fig. 1) in which a nonlinear slab
occupying —L < x < 0is coated on both sides by alternating n
low-index and n + 1 high-index materials, each of optical
thickness A/4. Let the coating materials be linear and the
total width of the coatings be L,. Let the initial and final
media be also linear and have dielectric constants ¢; and ¢,
respectively.

It is well established that, with an increase in the mirror
reflectivities, the Airy resonances become sharper. Hence
an increase in n will result in narrower resonances. As was
noted in our earlier work,® the sharper the resonance, the
easier it is to have bistable operation. Keeping this in mind,
we first examine the linear characteristics of the systems for
different n, namely, n = 1, 2, 3.

The characteristic matrix for the composite medium in
this case can be written as a product of three matrices:

M=M,XMXM, (4.1)

where M is the characteristic matrix for the medium occupy-
ing —L < x <0, with x = 0, and

M,=| . 0 —(iNeg) (= Jer/e,)" (4.2)
—L‘/ga(—\l ea; ‘:‘b)rL 0

is the characteristic matrix of the coatings occupying 0 < x <
L,or—(L,+ L) <x <L. Heree,isthe dielectric constant of
the high-index material and ¢, that for the low-index coat-
ing material. A straightforward calculation using Egs. (3.5),
(4.1), and (4.2) yields the transmission coefficient. The T
versus kg \/E L curves for n = 1, 2, 3 are shown in Fig. 2(a).
The resonance half-widths are found to be A = 0.113 forn =
1, A =004 forn = 2, and A = 0.018 for n = 3. The
resonances are indeed sharper for larger n.

If the middle slab is nonlinear (x # 0), then we express all
the field amplitudes as parametrically given functions of the
transmitted field amplitude. Let the transmitted electric-
field amplitude at x = L,* be equal to A The tangential
field components at x = L,* can be written as

Fig. 1. A single Fabry-Perot resonator with reflection coatings
with parameters ¢; = 5.29, ¢ = 1.71, ¢, = ¢¢ = 1, ¢ = 2.5408.
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Fig.2. (a)Linear transmission coefficient T as a function of ko/e L/
# for the system in Fig. 1. Different curves are marked by different
values of n. (b) Transmission coefficient T as a function of the
incident intensity Uz a, koyeL = (2— 2A)m; b, kgJe L = (4 — 2 A)m.
Different curves are labeled by different values of n, and A values

_are given in the text following Eq. (4.2).

(i)our(a)
—i, x=L,* \/?f-Af R

Let the forward and backward electric-field amplitudes in
the nonlinear medium be A and A_, respectively. For the
tangential field components at x = 0~ we can write

E, AL+ A_
_Hy x=0" N (Ryfh)A, — (R_[Rg)A_ )
Making use of the characteristic matrix (4.2), one can con-

nect the tangential components at x = 0~ and x = L,,*. This
when combined with Egs. (4.3) and (4.4) leads to

A, +A_ oy f
(k+/k0)A+ - (k_/ko)A_ B n ‘/;fAf ’

Equation (4.5) can be rewritten in terms of the intensities
Uy (=alA+?) and Uy (=alA/?) in the form

Uy = [1/(py + pNIp_(myy + myopp) & (myy + mopp]I2 Uy,

(4.4)

4.5)

(4.6)
with
Py =Ve(l+ U, +2U_)12 (4.7a)
p_=e(l+ U_ +2U )2 (4.7b)

Here my; are the elements of the characteristic matrix M,,.
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Fig. 3. Two coupled Fabry-Perot resonators with reflection coat-
ings separated by a A/4 layer of dielectric constant € with ¢, = 5.29, ¢,
= 1.71, and ¢ = 2.5408.

Equation (4.6} with Eqs. (4.7) defines the intensities Uy in
the nonlinear slab in terms of the transmitted intensity Uy
We solve the nonlinear coupled Egs. (4.6) by using fixed-
point iteration for a given value of Ur. Wetake UL = 0Oasthe
initial value for finding the fixed points. Once the U.. are
determined, k.. can be calculated by using Egs. (2.9). The
next step is a straightforward calculation of the total charac-
teristic matrix, using Egs. (3.3) and (4.2). Once the total
characteristic matrix is evaluated, the incident field can be
expressed as a function of Uy as follows:

U, =l(m,, + mysp)p; + (my; + moyp)I? Uy, (4.8)

and the transmission coefficient T can be directly evaluated
by making use of Eq. (3.5). Next we plot T as a function of
U,, treating Uy as the parameter.

With a view to obtaining bistable behavior of T as a func-
tion of the input intensity U;, we detune the system slightly
by an amount —2A from the peak position of the linear
transmission curve of Fig. 2(a). The nonlinear transmission
is shown in Fig. 2(b). As is evident from Fig. 2(b), with an
increase in the number of coatings the bistability threshold
decreases. We have also presented in the same figure T'
versus U; curves when the width of the nonlinear slab is
increased twofold. An increase in the region of nonlinear
interaction of forward and backward waves results in lower
values of the bistability threshold. It may be noted here
that a nonlinear slab with width 2L with the coatings is
equivalent to two periods of the system of Fig. 1. This is so
because, for the chosen parameters of the coating materials,
the characteristic matrix between the nonlinear slabs is a
unit matrix (M,, X M,, = —=I). Therefore the results for the
system with width 2L are identical to the case when we have
two coupled nonlinear Fabry-Perot resonators (each with n
low-index and n + 1 high-index alternating coatings on both
sides) placed side by side.

B. Two Coupled Nonlinear Fabry-Perot Resonators with
Reflection Coatings
Next we consider the system shown in Fig. 8. The system
consists of two nonlinear slabs of widths L; and L, respec-
tively, separated by a A/4 plate of width L with dielectric
constant €. The left end of the first and the right end of the
second nonlinear slab are coated with alternating n low-
index and (n + 1) high-index A/4 layers with total width L.

We adopt a similar approach, as outlined in Subsection
4.A. First we investigate the linear characteristics of the
system. Detuning the system slightly, we investigate the
dependence of T'on U;. We examine two specific cases when
the middle slab has (1) high refractive index and (2) low
refractive index.

The linear curves for cases (1} and (2) are shown in Figs.
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4(a) and 4(b), respectively. In calculating the linear trans-
mission curves, we have fixed the width of the second resona-
tor Lg (ko yeLo = w/2) and varied Ly. Here, as in the case of
one Fabry-Perot resonator, the resonances are sharper with
larger n. Figures 4(a) and 4(b) differ; for example, in their
peak values showing a lower (higher) peak for a low- (high-)
index middle layer.

In the present context the calculation of the transmission

T

1.0

05t

0.5 r

s y

(b

Fig. 4. (a) Linear transmission coefficient T as a function of kg e
Ly/x, with fixed ko ye Ly = 2.57 for € = 2.58 and different n values,
(b) Same as in (a) but for e = 5.29.

0.5

oax10? 0. Ui

Fig. 5. Transmission coefficient as a function of U; for two differ-
ent values of & g, ¢ = 2.58; b, € = 5.29. The values of k¢ ye Ly are
taken to be ko e Ly = (2 ~ 2A)7 and kg e Ly = 2.5 7. Detunings A
are chosen from the curves in Figs. 4(a) and 4(b): a, A = 0.13, 0.04,
0.018 for n =1, 2, 3, respectively; b, A = 0.082, 0.032, 0.012 forn =1,
2, 3, respectively.
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coefficient and the incident intensity for given transmitted
intensities is more complicated because of the presence of
two nonlinear slabs. One has to carry out fixed-point itera-
tion twice. As a first step one must evaluate U, the for-
ward- and backward-wave intensities in the second nonlin-
ear slab for a given U, A knowledge of U, defines the
forward- and backward-wave vectors kg. in the second slab
and hence the characteristic matrix of the second slab.
Knowing the total characteristic matrix for layers occupying
—(L1 + L) € x < L,, one can obtain the coupled nonlinear
equations with respect to the forward- and backward-wave
intensities Uy in the first nonlinear slab. This defines k..
as well as the characteristic matrix of the first nonlinear slab.
The rest of the procedure is identical to the preceding case.

We present the results of our study for two coupled non-
linear Fabry-Perot resonators in Fig. 5. Initial detuning is
chosen to be —2A. As in the previous case, the bistability
threshold is lowered for higher reflectivities of the end mir-
rors. It may be noted that, for high value of the refractive
index of the middle layer, the thresholds are even lower than
in the case of one Fabry-Perot resonator with width 2L.

In conclusion, we have presented a study of single and
coupled nonlinear Fabry-Perot resonators and shown the
feasibility of low-threshold bistable systems by making use
of reflection coatings. We have used the complete set of
boundary conditions at the nonlinear interface. Our ap-
proach differs from most of the existing treatments, which
use only the continuity of the electric field at the boundary.
We have developed a general characteristic matrix approach
for nonlinear layered media for normal incidence and linear
polarization. Our study reveals the possibility of further
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lowering the threshold by using various combinations for the
layered structure. In the future we hope to develop the
general characteristic-matrix approach and present an anal-
ysis of the nonlinear layered media for oblique incidence and
arbitrary polarization.
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