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Fluorescence in frequency-modulated beams: a probe of the
correlation functions of atomic inversion
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A general formulation of the fluorescence signal in frequency-modulated beams is given. Such a signal is shown
to probe the two time-correlation functions of atomic-inversion operators. Explicit results for the modulated fluo-
rescence are given for the two-level model under arbitrary conditions.

1. INTRODUCTION

The correlation functions of the dipole-moment operators play
a key role' in physics, as the absorption line shapes are de-
termined by such correlations. A considerable body of lit-
erature has been devoted to the study of dipole-dipole cor-
relations.2 3 In resonant optics, however, there are other
physical variables that characterize the system, for example,
atomic inversion. However, atomic inversion does not couple
directly with the external field, unlike the case of a spin in a
magnetic field, in which the longitudinal field couples with
the z component of the spin. Questions that do not seem to
have received any attention are: What are the correlations
of the atomic-inversion operators, and how can such correla-
tions be probed? One might be tempted to think that the
fluorescence spectra 3 might be related to such correlations,
since the intensity of fluorescence is proportional to the atomic
inversion. However, that is not the case. In this paper we
show how the fluorescence in frequency-modulated (FM)
beams4-6 provides answers to the above questions. This is
again in contrast to the case of spin in a magnetic field for
which the longitudinal susceptibility probes the correlations
of the type ([Sz(t), Sz(0)]). The organization of this paper
is as follows: In Section 2, we present a general formulation
and show how the fluorescence in FM beams provides a useful
probe of the correlation functions of the atomic-inversion
operators.7 In Section 3, we calculate explicitly the modu-
lated component of the fluorescence for the case of a two-level
system interacting with the FM field. Numerical results for
the resulting line shapes are also presented in Section 3.
Generalizations to other situations are briefly discussed.

2. GENERAL FORMULATION OF
FLUORESCENCE IN FREQUENCY-
MODULATED BEAMS

Consider a quantum-mechanical system interacting with a FM
field:

E(t) = o exp[-iwt - i(t)] + c.c., (2.1)

where

Here, M is the modulation index and Q is the frequency of the
modulation. Assuming arbitrary relaxation (in impact ap-
proximation), the density matrix p satisfies the equation of
motion

aplat = Lop - i[Hi(t), pl, (2.3)

where, in the terms of the dipole-moment operator d, one
has

Hi(t) = -d- E(t). (2.4)

In Eq. (2.3), Lo is the relaxation operator having the struc-
ture

(Lop)ij = (-ioj - rj)pi; i s5 j,

(Lop)ij = - L jiPii + L yijPjj,
j i

(2.5)

where various parameters rij, yij have the usual meaning.
Phase-interrupting collisions are included in rij. We will also
make the rotating-wave approximation,8 so that we approxi-
mate Eq. (2.4) by

Hi(t) = - E dij eoi) (jlexp[-iwt - i(t)] + H.c.
ii

= h exp[-icot - i)(t)] + H.c., wij > 0 (2.6)

where the summation is only over those energy levels such that
I wij I o. On making the transformation to the rotating
frame

pij(t) = Pjj(t) expl-i[ot + 4'(t)]l i X j, wij > 0, (2.7)

we obtain from Eq. (2.3)

aPat = -i[h + h+, p] + Lop + i[w + QM cos Qt][B,p].
(2.8)

Here, B is a diagonal operator having nonvanishing elements
such that

[B Pij = +Pij
= -Pij

c(t) = QM cos t.

if wij > 
if cij < 0.

i # j,
(2.9)

(2.2) We are now in a position to obtain the system's response to
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-various orders in the modulation index M. For this purpose
we rewrite Eq. (2.8) as

dpl& = ap + iQM cos Ot[B, ]. (2.10)

Hence, in the long-time limit, we will have to first order in
M

A(t) , P() + M exp(i2t)(iM - a)-1[Bp(°)j
2

+ exp(-if2t)(-i2 - a)-l[B, p()]J. (2.11)

Therefore, to first order in the modulation index M, the
population of the level I i) is given by

pi(t) = M cos QtCi(Q) + M sin QtSi(Q), (2.12)

where

Cs(Q)=-Q m((il(-idcz)-[B~p()]}l) ),(2.13)

Si(Q)= +Q Re((i| (-iQ- a)-[B,p(O)]IIi)). (2.14)

The expectation values on the right-hand sides of the above
equations can be expressed as the time-correlation functions
of the inversion operators. One obviously has

(il(-i - WIA[BP(0110i

= dr (i lexp(+iQT + aT)[B, p(O)l i)

= f dT Tr ({exp(iQr + ar)[B, PM()]l i) (ii)

= dr exp(iQr) ([(I i) (i X), B]). (2.15)

Note that the fluorescence from the ith level will be propor-
tional to pii(t). We have thus shown the relationship of the
modulated component of fluorescence in FM beams to the
correlation functions of the operators corresponding to the
population of the various levels

Ci(Q) = -Q Im dr exp(iQr)([Ii) (ir, B]),

(2.16)

Sj(Q) = +QRe go dT exp(iQr)([Ii) (ij,B]).

We now discuss some special cases.

A. Two-Level Transition
Consider a two-level system with states I1i) and 12) with en-
ergy separation wo interacting with a FM beam. In such a case

one obviously has

B = 11)(11, Ii)- 11), (2.18)

and hence

Ci(Q) =-Q Im dr exp(iQr)([(1)(1), (I1)(1I)oI)

S(Q) =+Q Re fr drexp (i Q)(Ill) 1,l,
(2.19)

The correlation functions of Eqs. (2.19) can also be expressed
in terms of the inversion operator

SZ -/ 2(1) (1 - 12) (21) (2.20)

with the result that

CA) = -Q Im | dr exp(iQr)

([SZ(r), SZ(o)I),

Si(Q) = +Q Re 3' dT exp(iQb-)

([SZ(-), Sz(0)).
(2.21)

We thus obtain one of the key results of this paper: The flu-
orescence in the FM beams probes the autocorrelation func-
tion of the inversion operators of the system.

B. Three-Level (A) System
As another example of the modulated fluorescence in FM
beams, we now consider a A system with energy levels 11), 12),
and 13) andwithallowedtransitions 11) 12) and 11) - 13).
Here I1) represents the topmost state. For this A system, one
again obtains the result [Eqs. (2.19)] for the modulated fluo-
rescence. The correlation function in the present case will
have contributions from both decay channels 11) 12) and
11) - 13).

3. MODULATED FLUORESCENCE FROM A
TWO-LEVEL SYSTEM IN FREQUENCY-
MODULATED BEAMS

In this section we calculate the modulated fluorescence from
a two-level system interacting with a field of arbitrary
strength. Bjorklund et al.5 have already demonstrated the
usefulness of the modulated fluorescence in such a situation.
This calculation can be easily done using the Bloch equations
and Eqs. (2.21). The Bloch equations read

i/\- 0
T2 1

1

0- iA -

-ig +ig

A = - .

d
dt

(S+)

(S-)

(SZ)

-2ig

+2ig

1

Ti.

0

0

(S+)

(S-)

(SZ)

+ 9 (3.1)
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If one uses Eqs. (3.1) and, say, the regression theorem, one can
show that9

d(z) Jof dr exp(-zr)([Sz(T), SZ(O)])

T. -4A (0 )P P(Z) (Z + (3.2)

where

P(Z) 2 A2 + i)21. ~~~~~~(3.3)p)= 4g2 Z+ T + Z+ Il Z+(T2 

The in-phase and the quadrature components of the signal
are then

Ci (Q) =Q Im R (-i Q),
S(Q)= +Q Re (-iQ). (3.4)

In Figs. 1 and 2 we display the behavior of C' (Q) and Si (Q) as
a function of the modulation frequency Q and the detuning
A. The results are given for both weak and strong fields. T,,
T2, and n are taken to correspond to the radiative relaxation.
Figure 1 shows the usual absorption- and dispersion-shaped
resonances around Q = 0 for weak fields, whereas for strong
fields we find that the resonant structures correspond to the
dynamical Stark splitting. Figure 2 gives the scan as a func-
tion of detuning. The signals are odd functions of A, as is
evident from Eq. (3.2). The resonances correspond to Q2 =

A2 + 4g 2.
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Fig. 1. The in-phase C(Q) and out-of-phase S(Q) components of the
modulated fluorescence as a function of the modulation frequency
for the radiative relaxation for weak fields (g = 0.1) and for strong
fields (g = 10.0) with detuning A = 2. All parameters are in units of
1/T 2 .
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Fig. 2. C and S as a function of the detuning for large modulation
frequency Q = 50 X and for g = 10.

Similar results can be obtained for the A system by using
the dynamical equations of Ref. 10. Finally, we mention that
the fluorescence from a two-level system with the two levels
connected by a two-photon transition can also be studied by
similar methods. It is well known'" that the dynamics in this
situation can also be described by Bloch equations with

E(t) - E
2

(t) = E0
2 exp[-2iwlt - 2i4b(t)] (3.5)

and with the inclusion of the Stark shift, which depends on
l e(t) 2. The Stark-shift term is independent of the modula-

tion. Hence the FM fluorescence that probes two-photon
transitions of a two-level system in FM beams will be given
by Eqs. (3.4) with A - coo- 2w 1- (Stark shift), M - 2M, and
g - 2 photon matrix element.

In conclusion, we have shown how the correlation functions
of the atomic inversion can be probed by using fluorescence
in FM beams. This result is especially important as the
atomic-inversion operator does not couple directly with the
external field.
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