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LINEAR DISJOINTNESS OF POLYNOMIALS

SHREERAM S. ABHYANKAR

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. It is shown that any two bivariate polynomials can be made linearly
disjoint by applying a linear transformation to one of the variables in one of
the polynomials. From this it is deduced that the algebraic fundamental group
of an affine line is closed relative to direct products.

1. INTRODUCTION

Let k be an algebraically closed field, and let there be given any two non-
constant monic separable polynomials f(X, Y) and g(X,Y) in Y with co-
efficients in k(X). Then I shall prove:

Disjointness Theorem. For most a, b in k with a # 0, the splitting fields of
the polynomials f(X,Y) and g(aX +b,Y) over k(X) are linearly disjoint
over k(X).!

Let L, be the affine line over k, and let n4(L;) be the algebraic fundamen-
tal group of L, ,i.e., m4(L;) is the set of all finite Galois groups of unramified
coverings of L, . Given any two members H and J of m4(Ly), we can find
f(X,Y) and g(X,Y) in k[X, Y] such that H and J are the respective
Galois groups of the splitting fields of f(X, Y) and g(X, Y) over k(X), and
such that no valuation of k(X)/k , other than the valuation X = oo, is ramified
in these splitting fields. Clearly J is also the Galois group of the splitting field
of glaX+b,Y) over k(X) and no valuation of k(X)/k, other than the valu-
ation X = oo, is ramified in the said splitting field. It follows that no valuation
of k(X)/k, other than the valuation X = oo, is ramified in the splitting field
of f(X,Y)g(aX +b,Y) over k(X), and hence the Galois group of the said
splitting field belongs to 7 4(L;) . Finally, if the splitting fields of f(X, Y) and
glaX +b,Y) over k(X) are linearly disjoint over k(X), then Galois group
of the splitting field of f(X, Y)g(aX +b,7Y) over k(X) is the direct product
H x J . Thus the Disjointness Theorem implies the following statement (FG8)
for which different (unpublished) proofs were also obtained by Mulay, Sathaye,
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and Serre; for the companion statements (FG1) to (FG7) concerning m4(Ly)
see [A]; it may be noted that (FG8) is vacuous in case k is of characteristic
zero because then L; has no nontrivial unramified extension.

(FG8) m4(Ly) is closed with respect to direct products.

Turning to the proof of the Disjointness Theorem, in §2, I shall first prove
the following lemma and then, in §3 I shall deduce the Theorem from it.

Lemma. Let K be a finitely generated field extension of k of transcendence
degree one, and let x € K with x ¢ k. Assume that either the genus of K/k is
nonzero or K/k(x) is not purely inseparable. Then for most a, b in k we have
ax+b ¢ {t(x): 1€ Au K} where Aut K is the group of all k-automorphisms
of K.

2. LEMMA
To prove the lemma, let v, v;, ..., v, be the poles of x in K, ie.,
vy, VU, ..., Uy are the distinct valuations of K/k for which the value of x is

negative. Note that then m is a positive integer. Also note that every 7 € Aut; K
permutes the set of all valuations of K/k, and if 7(x) =ax + b with a, b in
k then 7 must map the set {v;, V2, ..., Un} onto itself.

It is well known that if the genus of K/k is nonzero then, for any valuation
v of K/k,the group of all 7 € Aut; K that map v onto itself is a finite group;
for instance see [IT]. It follows that if the genus of K/k is nonzero then the
group of all 7 € Aut, K that map the set {v;, vy, ..., U} onto itself is a finite
group, and hence for most a, b in k we have ax +b ¢ {1(x): 7€ Au; K}.

Henceforth assume that the genus of K/k is zero, and K/k(x) is not purely
inseparable. Now K/k is simple transcendental and, by applying a suitable
fractional linear transformation to a given generator of K/k, we can find ¢t € K
such that K = k(¢), and the valuation ¢ = co of K/k is v;, but the valuation
t =0 of K/k is notin the set {v|, v2, ..., Un}. It follows that x = r(t)/s(¢)
where r(t) and s(¢) are nonzero coprime polynomials in ¢ with coefficients
in k such that s(z) is monic and upon letting d and e to be the respective
degrees of r(t) and s(¢) we have 0 < e < d. Now clearly s(z) = []-,(t — Bi)%

where ¢, €3, ..., &y are positive integers and B,, B3, ..., B are pairwise
distinct nonzero elements in k such that v;(t — ;) =1 for 2 <i < m. Also
r(t) = agt? + oyt~ + ... + a4 where ag, a, ..., ag are elements in k with
ag#0.

Let 7 € Aut; K be such that 7(x) = ax+b forsome a, b in k with a #0.
Then 7 must send v; to v; for some j with 1 < j < m. Since every k-
automorphism of K sends ¢ to a fractional linear expression in ¢, we must
have 7(t) = (At+pu)/v; where vj =1 or t— f; depending upon whether j =1
or j > 1, and where 4 and u are elements in k, at least one of which is
nonzero, such that Az + u does not divide v; in k[¢]. If j =1 then obviously
A#0.If j#1 then there is a unique j/ with 2 < j* < m such that 7t sends
v;j» to v; and hence such that v;(z(t — B;:)) = 1; since

(e~ fy) =) - py = SR B,

we get A = B #0. Thus always 41 #0.




LINEAR DISJOINTNESS OF POLYNOMIALS 9

Now
ar(t) + bs(t)

s(t)
where num (= numerator) and den (= denominator) are nonzero coprime mem-
bers of k[t] such that den is monic and deg(num) = d > ¢ = deg(den), and
also

(x)=ax+b=

r(z(t)) _ virz(®)
s(z(?)) V;‘s(t(t))
where nnum (= new numerator) = 1/}‘ r(z(¢)) and nden (= new denominator) =

ufs(t(t)) are nonzero members of k[¢] such that deg(nnum) < d. Therefore,
upon letting y to be the leading coefficient of nden we have

T(x) =

nnum _ nden _

07 num  den =7¢€k.
Now
(t—Bj)*=e(u— BiBi)""
nden = ) 23i$mgith i;éj'[(ﬂj' TR Bl A #
[T (At+u—B)* if j=1,
2<i<m
and hence

yz{m(/t) ifj#1,

A¢ ifj=1,

where forall /, !’ with 1 </<m and 1</ <m and for all ' € k we have
put

Y (W) = (1" = BiBr)* T B =B~

2<i<m with il
If j#1 then
S oi(Bpt+p)~ it B))" _ nnum _
aTioatd= + I, (t - fi)s um
and hence for this case it suffices to note that, given any /, /' with 1 </ <m
and 1 < /" < m, obviously there exists 0 # ¢;,(X, Y) € k[X, Y] such that
éu(a’, b')=0 forall a’, b in k for which a’ # 0 and
oyt + )i - By
a Y4 g aitd=i + b TI7, (L = i)
If j=1<m then

=ypjy(u') for some u' € k.

T
o | [t - ETE] _nden _ .,
[T, (¢ — Bi)% den ’
and hence for some ¢ with 2 < ¢ < m we must have £, = (B, — u)/4, ie.,
= B.—AB,, and therefore

Yoo+ B —AB)*" _ nnum _

le.

aYaitd=i + b7, (t — B;)s  num
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hence in this case it suffices to note that, given any / with 2 </ < m, obviously
there exists ¢;(X, Y) € k[X, Y] such that ¢;(a’, d’) =0 forall a’,d" in k
for which a’ # 0 and

> (Mt + B — N By)
a' S aitd=i 4 b [T, (t - Bi)
Thus if m # 1 then upon letting

m m m

$(X,Y)= [H $1(X, Y)} [H I éu(x, Y)] ,
I=1 [=11'=1

we see that 0 # ¢(X, Y) € k[X, Y] is such that ¢(a’, ') =0 forall a’, b’ in

k for which a'x +b' € {7(x): 1" € Au; K}.

So henceforth assume that m = 1. Then we must have j =1 and e = 0.
If chark =0 thenlet ¢ = 1, and if chark = p # 0 then let g be the largest
power of p such that r(¢t) = R(¢9) for some R(T) € k[T]. Let 6 = d/q.
Then ¢ is a positive integer and r(¢) = R(¢9) where R(T) = Zle A; T " isa
polynomial in an indeterminate 7 with coefficients Ay, 4;, ..., 4s in k such
that 4y # 0. Since K/k(x) is not purely inseparable, we must have J > 2.
Let 0 # A € k be such that A? = A, and let M € k be such that M9 = u.
Then

=" forsome 0 # A €k.

R(At" + M) r(Ai+pu) nnum _ 1
aR(t9)+b ~ar(t)+b num 7’

and hence

R(AT + M) =aR(T) + b.
Equating the coefficients of 7° on both sides of the above equation we get
A% = a, and differentiating both sides with respect to 7 and letting R*(T)
stand for the T-derivative of R(T) we get

(¥) AR*(AT + M) = aR*(T).

By the definition of ¢ we have R*(T) # 0, and upon letting 6* = deg R*(T) we
see that J* is an integer with 0 < J* <J — 1, and by equating the coefficients
of T on both sides of the above equation we get A!*%" = a. Therefore
Ad-1-6" — 1.

If 6 # 1+J* then obviously there exists 0 # ¢(X, Y) such that ¢(a’, b') =0
for all a’, b’ in k for which a’ # 0 and

RNT+M)=dRT)+b, A°=d, A7 =1

for some A’, M’ in k, and hence ¢(a’, b’) =0 for all a’, b’ in k for which
ax+b e{t(x): 7 eAuK}.
So henceforth also assume that 6 = 1+ J*. Then 6* > 1 and R*(T) =

B]'[f’zl(T — B;)% where h,d,,0,,...,0, are positive integers, 0 # B € k,
and B,, B, ..., B, are pairwise distinct elements in k. By (x) we get
h h

[I(T + MA=" = BA=YY = T[(T - B,

i=1 i=1

and hence for some 6 with 1 < 0 < h we must have MA~! — BJA~! = —By,
i.e, M = B, + ABy. Given any [/ with 1 </ < h, obviously there exists
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0# w(X,Y) € k[X, Y] such that w(a’,d’) = 0 for all a’, b’ in k for
which &’ # 0 and

RINT+ M) =adR(T)+b', AN’ =4, M' =B, +A'B

for some A’, M’, and k. Now upon letting

h
(X, Y)=[[wx,Y)
=1

we see that 0 # ¢(X, Y) € k[X, Y] is such that ¢(a’, b') =0 forall a’, b’ in
k for which a’x +b' € {t/(x): 7 € Au; K} .

This completes the proof of the lemma. More precisely, we have shown that
in all cases there exists 0 # ¢(X, Y) € k[X, Y] such that ¢(a’, b’) = 0 for
all a’,b' in k for which a'x +b' € {7/(x) : 7 € Aut; K}. Now let L be
any overfield of k(x), and let Isoi(L, K) be the set of all k-isomorphisms of
L onto K. If 77, 7* in Isor (L, K) and da”, b”, a*, b* in k are such that
’(x) =a"x+b" and t*(x) = a*x +b* then upon letting 7/ = 7/~!1* we have
7' € Auy K and 7/(x) = a’x+b’ with a’ = a""'a* € k and b’ = a"~ 1 (b*-b") €
k , and moreover, if 0 # ¢'(X, Y) € k[X, Y] is such that ¢'(a’, b') = 0 then
upon letting ¢*(X,Y) = ¢'(a”""'X,a"" (Y — b")) weget 0 # ¢*(X,Y) €
k[X, Y] such that ¢*(a*, b*) = ¢/(a’, b') = 0. Soif Isor(L, K) is empty then
taking ¢*(X, Y) = 1, whereas if 7/(x) = a”’x+b" for some 7" in Isox(L, K)
and a”,b"” in k then letting ¢*(X,Y) = ¢'(a"'X, a"~(Y - b")), we get
0# ¢*(X,Y) € k[X, Y] such that ¢*(a*, b*) = 0 for all a*, b* in k for
which a*x+b* € {t*(x) : 7* € Isox (L, K)}. Thus we have proved the following

Corollary. Let K and x be as in the lemma. Then given any overfield L of
k(x), there exists 0 # ¢*(X,Y) € k[X, Y] such that ¢*(a*, b*) = 0 for all
a*, b* in k for which a*x + b* € {t*(x) : 1* € Isox (L, K)}.

3. THEOREM

To prove the Disjointness Theorem, let K and L be any finite separable
algebraic field extensions of k(X). Then there are only a finite number of
subfields K;, K5, ..., K, of K that contain k(X) but are different from it.
Likewise there are only a finite number of subfields L;, L,, ..., L,y of L that
contain k(X) but are different from it. By the above corollary there exists
0#¢j(X,Y)ek[X, Y] such that ¢;;(a, b) =0 forall a, b in k for which
aX +b e {1(X) : v € Isog(L;, K;)}. Let ¢(X,7Y) = f’le?:ldnj(X, Y).
Then 0 # ¢(X, Y) € k[X, Y] is such that ¢(a, b) =0 forall a, b in k for
which aX + b € {t(X) : 7t € Isox(L;, K;)} for some i, j with 1 <i< p and
1<j<o.

Now assume that K and L are the respective splitting fields of f(X, Y)
and g(X,Y) over k(X) in an algebraic closure W of k(X). For any a, b
in k with a # 0, we clearly have a k-monomorphism 7, , : L — W such that
T4,5(X) =aX+b and 1, ,(L) is the splitting field of g(aX+b, Y) over k(X)
in W.If K and 7, (L) are not linearly disjoint over k(X) then for some i, j
with 1 <i<p and 1 <j <o wemusthave 7, ,(L;) = KNL =K, and then
7(X) =aX+b where 7 € Isox(L;, K;) is given by taking 7(z) = 7, ,(z) forall




12 S. S. ABHYANKAR

z € L;, and hence ¢(a, b) = 0. This completes the proof of the Disjointness
Theorem.

4. CHARACTERISTIC ZERO

Here is an alternative proof of the Disjointness Theorem in case chark = 0.
Let f(X,Y) be the product of the distinct irreducible nonconstant monic
factors of f(X,Y) in k(X)[Y], and let R be the Y-degree of f'(X, Y); then
we can find 0 # I € k[X] such that upon letting F(X, Y)=IRf'(X,I7'Y) we
have F(X, Y) € k[X, Y]. Likewise let g’(X, Y) be the product of the distinct
irreducible nonconstant monic factors of g(X, Y) in k(X)[Y], and let S be
the Y-degree of g'(X, Y); then we can find 0 # J € k[X] such that upon
letting G(X,Y) = JSg'(X,J~'Y) we have G(X,Y) € k[X, Y]. Let D(X)
and E(X) be the Y-discriminants of F(X,Y) and G(X, Y) respectively.
Then 0 # D(X) € k[X] and 0 # E(X) € k[X], and clearly there exists 0 #
#(X,Y) € k[X, Y] such that ¢(a, b) =0 forall a, b in k for which a # 0
and D(X) and E(aX+b) have a nonconstant common factor in k[X]. Now let
a, b be any elements in k with a # 0 such that D(X) and E(aX +b) have no
nonconstant common factor in k[X]. Let K and L* be the respective splitting
fields of f(X,Y) and g(aX+b,Y) over k(X) in an algebraic closure W of
k(X). Then obviously K and L* are the respective splitting fields of F(X, Y)
and G(aX +b,Y) over k(X) in W . Now no valuation of k(X)/k, other
than the valuation X = oo, is ramified in K N L* and hence K N L* = k(X).
Therefore K and L* are linearly disjoint over k(X).
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