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A fundamental result of scattering theory, the so-called optical theorem, applies to situations where the field
incident on the scatterer is a monochromatic plane wave and the scatterer is deterministic. We present gen-
eralizations of the theorem to situations where either the incident field or the scatterer or both are spatially
random. By using these generalizations we demonstrate the possibility of determining the structure of some
random scatterers from the knowledge of the power absorbed from two plane waves incident on it. © 1997
Optical Society of America [S0740-3232(97)02912-8]
1. INTRODUCTION
One of the central results of scattering theory is the so-
called optical theorem.1 It relates the rate at which en-
ergy is scattered by a finite-range potential or by a finite
object and the amplitude of the scattered wave in the for-
ward direction (the direction of incidence). The theorem
has a long and interesting history, which has been re-
viewed by Newton.2 In its quantum mechanical context
it appears that the theorem was first formulated by
Feenberg.3 In the context of classical theory it was de-
rived by van der Hulst4 for scalar waves and by Jones5

(see also Born and Wolf 6) for electromagnetic waves.
In the usual formulation of the optical theorem, the

field incident on the scatterer is assumed to be a mono-
chromatic plane wave and the scatterer to be strictly de-
terministic. Neither of these two assumptions is appro-
priate in many practical situations. The incident field is
sometimes a partially coherent wave, and the scattering
potential that characterizes the response of the scatterer
to the incident field is often a random function of position
and sometimes also of time. It is, therefore, desirable to
obtain generalizations of the optical cross-section theorem
to situations where either the incident field or the scat-
terer or both are described statistically. In this paper we
present such generalizations,7 and we show how the re-
sults can be used for determining structure of some media
from measurements of the power extinguished by the
scatterer when two plane waves are incident on it.

We begin with a brief account of the usual formulation
of the theorem. Let us consider scattering of a monochro-
matic plane wave C (i)(r, t) by a medium characterized by
a time-independent finite-range potential assumed, to be-
gin with, to be deterministic. We take the plane wave to
0740-3232/97/123366-06$10.00 ©
be of unit amplitude, propagating in a direction specified
by a unit vector u0 , so that

C~i !~r, t ! 5 c~i !~r, v!exp~2ivt !, (1.1)

c~i !~r, v! 5 exp~iku0 • r!. (1.2)

Here r denotes the position vector of a point in space, t
denotes the time, v denotes the frequency, and

k 5
v

c
(1.3)

is the free-space wave number, c being the speed of light
in vacuum. In the framework of classical theory the scat-
tering potential, F(r, v), say, is defined by the expression

F~r, v! 5 k2h~r, v! (1.4a)

5
k2

4p
@n2~r, v! 2 1#, (1.4b)

where h (r, v) is the dielectric susceptibility and n(r, v)
is the refractive index of the scattering medium.

We will assume that the scattering is elastic (no change
of frequency on scattering), and we denote by c (r, v) the
time-independent part of the total field, generated by the
interaction of the incident wave with the scatterer. At a
point P in the far zone, at distance r from an origin O that
is chosen in the region D occupied by the scatterer, in the
direction specified by a unit vector u (see Fig. 1), the field
may be expressed as

c~ru, u0 ; v! 5 c~i !~u0 ; v! 1 c~s !~ru, u0 , v!, (1.5)

where the scattered field c (s) has the form
1997 Optical Society of America
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c~s !~ru, u0 , v! 5 f~u, u0 ; v!
exp~ikr !

r
, (1.6)

f (u, u0 ; v) being the scattering amplitude.
The optical cross-section theorem asserts that the total

cross section s (u0 ; v) (also called the extinction cross
section), which is the sum of the scattering cross section
s (s)(u0 , v) and the absorption cross-section s (a)(u0 , v),
is given by the expression

s~u0 ; v! 5
4p

k
Im f~u0 , u0 ; v!, (1.7)

where Im denotes the imaginary part.

2. OPTICAL CROSS-SECTION THEOREM
WITH RANDOM SCATTERERS
Let us now consider the generalization of the optical
cross-section theorem to situations where the medium is
spatially random but the incident field is, as before, a
monochromatic plane wave. More specifically, we as-
sume that the dielectric susceptibility h (r, v) and, conse-
quently, the scattering potential F(r, v), are, for each
frequency v, random functions of position, characterized
by appropriate statistical ensembles. The scattering am-
plitude f (u, u0 ; v) and the total cross section s (u0 ; v)
will then be random variables. The optical cross-section
theorem (1.7) will hold for each realization of the en-
sembles, and one obtains, on taking the expectation value
of Eq. (1.7), the following natural generalization of the op-
tical cross-section theorem for scattering on a spatially
random medium:

^s~u0 ; v!& 5
4p

k
Im^ f~u0 , u0 ; v!&. (2.1)

The angular brackets denote, of course, the averaging
over the ensemble of the scatterer.

Fig. 1. Illustration of the notation.
As in the deterministic case, it is clear that for any re
alistic situation the scattering cross section for scattering
on random media cannot be determined exactly. We will
sketch out a perturbation procedure for calculating it ap-
proximately.

One readily finds from the basic integral equation of
potential scattering8 that for each realization of the sta-
tistical ensemble of the scatterer, the scattering ampli-
tude is expressible in the form (if, for the sake of simplic-
ity we now suppress the explicit dependence of the
various quantities on the frequency v)

f~u, u0! 5 (
n51

`

fn~u, u0!, (2.2)

with

f1~u, u0! 5 k2E
V

h~r1!exp@2ik~u 2 u0! • r1#d3r1 ,

(2.3a)

f2~u, u0! 5 k4E
V
E

V
h~r1!h~r2!G~r1 , r2!

3 exp@2ik~u • r1 2 u0 • r2!#d3r1d3r2 ,

(2.3b)
–

–

–

–

fn~u, u0! 5 k2nE
V
E

V
•••E

V
h~r1!h~r2!•••h~rn!

3 G~r1 , r2!G~r2 , r3!•••G~rn21 , rn!

3 exp@2ik~u • r1 2 u0 • rn!#

3 d3r1d3r2•••d3rn , (2.3c)

where

G~r1 , r2! 5
exp~ikur1 2 r2u!

ur1 2 r2u
(2.4)

is the outgoing free-space Green’s function at frequency v
and V denotes the scattering volume.

On substituting from Eq. (2.2) into the optical cross-
section theorem (2.1) for scattering on spatially random
media, we readily find that

^s~u0!& 5 (
n51

`

^sn~u0!&, (2.5)

where

^s1~u0!& 5 4pk Im E
V

C1~r1!d3r1 , (2.6a)

^s2~u0!& 5 4pk3 Im E
V

C2~r1 , r2!G~r1 2 r2!

3 exp@2iku0 • ~r1 2 r2!#d3r1d3r2 ,

(2.6b)
–

–

–

–
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^sn~u0!& 5 4pk2n21 Im E
V

•••E
V

Cn~r1 , r2 ,•••rn!

3 G~r1 2 r2!G~r2 2 r3!•••G~rn21 2 rn!

3 exp@2iku0 • ~r1 2 rn!#d3r1d3r2•••d3rn ,

(2.6c)

where

C1~r1! 5 ^h~r1!& (2.7)

is the mean of h and

Cn~r1 , r2 ,•••rn! 5 ^h~r1!h~r2!•••h~rn!& (2.8)

is the n-point spatial correlation function of the dielectric
susceptibility of the scattering medium. We stress that
the susceptibility h and consequently the correlation func-
tions Cn depend not only on spatial variables but also on
the frequency, which, for the sake of simplicity, we do not
show explicitly.

The formula (2.5), together with expressions (2.6),
makes it, in principle, possible to calculate the total cross
section for scattering of a monochromatic plane wave on a
spatially random medium from the knowledge of the
mean of the dielectric susceptibility of the scatterer and
its n-point spatial correlation functions Cn .

3. GENERALIZATION TO STOCHASTIC
INCIDENT FIELD
Suppose next that the scattering medium is deterministic
but that the incident field is random; more specifically,
suppose that the incident field is statistically stationary
and has arbitrary state of coherence. Under these cir-
cumstances the concept of cross section no longer applies,
for the cross section expresses the rate at which energy is
scattered or extinguished in terms of (i.e., normalized by)
the rate at which energy is incident on the scatterer per
unit area perpendicular to the direction of propagation of
the incident wave. If the incident wave is not a plane
wave, such normalization is not possible, because there is
no longer a unique direction of incidence.9 In such situ-
ations it is more appropriate to consider the (nonnormal-
ized) rate at which energy is scattered or extinguished.
We will denote these quantities by P (s) and P (e), respec-
tively.

Suppose first that the field incident on the scatterer is a
deterministic free field,10 which propagates into the half-
space z . 0. It may be represented as linear superposi-
tion of plane wave modes, viz.,

c~i !~r! 5 E
uu'8 u2<1

a~u8!exp~iku8 • r!d2u'8 , (3.1)

where u8 [ (ux8 , uy8 , uz8) is a real unit vector, u'8

[ (ux8 , uy8 , 0), and uz8 5 1A1 2 u'
2 . Each plane wave,

labeled by a particular value of the vector u8, will give
rise to a scattered field whose (weighted) scattering am-
plitude is a(u8)f(u, u8), and, consequently, the weighted
scattering amplitude of the total field is
F~u! 5 E
uu'8 u<1

a~u8!f ~u, u8!d2u'8 . (3.2)

More explicitly, the scattered field in the far zone gener-
ated by scattering of the incident field (3.1) is given by the
expression

c~s !~ru! 5 F~u!
exp~ikr !

r
, (3.3)

where F(u) is given by Eq. (3.2).
Now the rate at which energy is extinguished by scat-

tering and absorption of the plane-wave mode labeled by
a particular value u8 is, according to Eq. (2.1), equal to
(4p/k)Im a* (u8)F(u), and hence the power extinguished
by scattering and absorption of the incident field [Eq.
(3.1)] is given by the expression

P ~e ! 5
4p

k
Im E

uu'8 u<1
a* ~u8!F~u8!d2u' . (3.4)

On substituting from Eq. (3.2) into Eq. (3.4) we obtain for
P (e) the expression

P ~e !

5
4p

k
Im E E

uu'8 u<1 uu'9 u<1

a* ~u8!a~u9!f ~u8, u9!d2u'8 d2u'9 .

(3.5)

Suppose now that the incident field is not deterministic
but varies randomly with position. Then the spectral
amplitude a(u) is a random function, and we obtain, on
taking the ensemble average of Eq. (3.5), the following ex-
pression for the averaged power extinguished (i.e., scat-
tered and absorbed) by interaction of the incident random
field with the scatterer:

^P ~e !&

5
4p

k
Im E E

uu'8 u<1 uu'9 u<1

A~u8, u9!f ~u8, u9!d2u'8 d2u'9 .

(3.6)

Here

A~u8, u9! 5 ^a* ~u8!a~u9!& (3.7)

is the angular correlation function that characterizes the
second-order coherence properties of the incident field
(Ref. 11, Sec. 5.6.3). The average in Eq. (3.7) is now
taken over an ensemble of space-frequency realizations in
the sense of coherence theory in the space-frequency
domain.12

The formula (3.6) is the required generalized analog of
the usual optical cross-section theorem when the field in-
cident on the scatterer is random.

In the special case when the incident field is a (deter-
ministic) plane wave of unit amplitude, which propagates
in the direction specified by a unit vector u0 , the angular
correlation function has the form
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A~u8, u9! 5 ua~u0!u2@d ~2 !~u8 2 u0!d ~2 !~u9 2 u0!#,

(3.8)

where d (2) is the two-dimensional Dirac delta function.
On substituting from Eq. (3.8) into Eq. (3.6) we obtain at
once the formula

^P ~e !& 5 ua~u0!u2
4p

k
Im f ~u0 , u0!. (3.9)

In this case ^P (e)& may be identified with the extinction
cross section s (u0), and we see that except for a slight
change in notation, the formula (3.9) is just the ordinary
optical cross-section theorem [Eq. (2.1)].

Finally we note that if not only the incident field but
also the scatterer is spatially random, the expression for
the averaged power extinguished on scattering can
readily be obtained from Eq. (3.6). It is necessary only to
average that expression over the statistical ensemble of
the scatterer. Denoting this average by an overbar, we
obtain the required formula:

^P ~e !& 5
4p

k
Im E E

uu'8 u<1 uu'9 u<1

A~u8, u9!

3 f~u8, u9!d2u'8 d2u'9 . (3.10)

It is of interest to note that the two averaging procedures
are taken independently, over the ensemble of the inci-
dent field and over the ensemble of the scatterer.

We will refer to the formulas (3.5), (3.6) and (3.10) as
power extinction theorems.

4. USE OF THE POWER EXTINCTION
THEOREM FOR STRUCTURE
DETERMINATION OF RANDOM
SCATTERERS
We will now show that the power extinction theorem (3.5)
may be used to obtain, in a novel way, information about
the structure of some random media.

Suppose that the scatterer is nonabsorbing, so that

Im h~r! 5 0 (4.1)

and that it is d correlated:

^h~r1!h~r2!& 5 Gh ~r1!d ~3 !~r1 2 r2!. (4.2)

The (real) function Gh (r) evidently characterizes the
strength of the spatial fluctuations of the dielectric sus-
ceptibility. We will carry out the calculations within the
accuracy of the first Born approximation. The scattering
amplitude for each realization of the ensemble of the scat-
terer is then given by Eq. (2.3b). Hence the average of
Eq. (3.5) becomes, if we take the amplitude of the incident
wave to have any prescribed value (denoted by a, rather
than being unity),

^P ~e !& 5 4pk3uau2 ImE
V
E

V
^h~r1!h~r2!&G~r1 , r2!

3 exp@2iku0 • ~r1 2 r2!#d3r1d3r2 . (4.3)
On interchanging the variables of integration and making
use of the symmetry property of the integrand in Eq.
(4.3), we obtain for ^P (e)& the expression

^P ~e !& 5 4pk4uau2E
V
E

V
^h~r1!h~r2!&

sin kur1 2 r2u
kur1 2 r2u

3 cos@ku0 • ~r1 2 r2!#d3r1d3r2 . (4.4)

Using assumed expression (4.2) for the correlation of the
dielectric susceptibility, Eq. (4.4) reduces to

^P ~e !& 5 4pk4uau2G̃h~0 !, (4.5)

where

G̃h~K! 5 E
V

Gh~r!exp~iK • r!d3r (4.6)

is the spatial Fourier transform of Gh(r).
The formula (4.5) shows that, in the present case, the

total extinguished power is proportional to a particular
spatial frequency component of the strength Gh(r) of the
correlation function of the scatterer, namely the zero-
frequency component.

Next let us consider an incident field that consists of
two monochromatic plane waves of the same frequency v
and of complex amplitudes A1 and A2 , propagating in di-
rections specified by unit vectors u1 and u2 (Fig. 2). The
amplitude function in Eq. (3.1) is then given by the ex-
pression

a~u8! 5 A1d ~2 !~u8 2 u1! 1 A2d ~2 !~u8 2 u2!, (4.7)

and Eq. (3.5) becomes, after taking the average over the
ensemble of the scatterer,

^P ~e !& 5 ^P11
~e !& 1 ^P22

~e !& 1 ^P12
~e !& 1 ^P21

~e !&, (4.8)

Fig. 2. Illustration of the notation used in Section 4 in the
analysis relating to structure determination of random scatterers
from measurements of the power extinguished on scattering. u1
and u2 are unit vectors in directions of incidence of two mono-
chromatic plane waves of amplitudes A1 and A2 .
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where

^Pij
~e !& 5

4p

k
Im E

V
E

V
Ai* Ajd

~2 !~u8 2 ui!d
~2 !~u9 2 uj!

3 ^ f~u8, u9!&d2u'8 d2u'9

5
4p

k
Im Ai* Aj f ~ui , uj!. (4.9)

We see at once from Eqs. (4.9) and (3.9) that ^P11
(e)& and

^P22
(e)& are just the extinction power for scattering of each

of the two incident plane waves. The other two terms
^P12

(e)& and ^P21
(e)& represent contributions to the total ex-

tinction power ^P (e)& arising from interference of the two
scattered waves. We can readily evaluate this contribu-
tion. We have, on taking the average of Eq. (2.3b) over
the ensemble of the scatterer,

Im Ai* Aj f ~ui , uj!

5 k4 Im E
V
E

V
Ai* Aj ^h~r1!h~r2!&G~r1 , r2!

3 exp@2ik~ui • r1 2 uj • r2!#d3r1d3r2 , (4.10)

and hence, using also the symmetry properties of the in-
tegrand,

Im@A1* A2 f ~u1 , u2! 1 A1A2* f~u2 , u1!#

5 2k4 Im E
V
E

V
^h~r1!h~r2!&G~r1 , r2!

3 Re$A1* A2 exp@ik~u1 • r1 2 u2 • r2!#%d3r1d3r2

5 2k5E
V
E

V
uA1A2u^h~r1!h~r2!&

sin kur1 2 r2u
kur1 2 r2u

3 cos@k~u1 • r1 2 u2 • r2! 2 u#d3r1d3r2 , (4.11)

where

u 5 arg~A1* A2!. (4.12)

On substituting for the correlation function ^h (r1)h (r2)&
the assumed expression (4.2), Eq. (4.11) reduces to

Im@A1* A2 f ~u1 , u2! 1 A1* A2f~u2 , u1!#

5 2uA1A2uk5E
V

Gh~r1!cos@k~u1 2 u2! • r1 2 u#d3r1 .

(4.13)

Using this expression in Eq. (4.9), we obtain for the ex-
tinction power arising from the interference of the two
scattered waves the expression

^P12
~e !& 1 ^P21

~e !& 5 8pk4uA1A2u E
V

Gh~r1!

3 cos@k~u1 2 u2! • r1 2 u#d3r1 ,

(4.14)

or, in terms of the spatial Fourier transform, defined by
Eq. (4.6), of the function Gh(r),
^P12
~e !& 1 ^P21

~e !& 5 4pk4uA1A2u$G̃h@k~u1 2 u2!#exp~2iu!

1 G̃h@k~u2 2 u1!#exp~iu!%. (4.15)

It will be convenient to indicate the dependence of the
interference term on the angle u, defined by Eq. (4.12).
We therefore set

^P12
~e !& 1 ^P21

~e !& 5 P int~u!. (4.16)

Suppose that one performs the scattering experiments
twice, once with a pair of plane waves whose phase differ-
ence (4.12) has the value u1 and once with a pair of plane
waves whose phase difference has the value u2 . It then
follows from Eqs. (4.16) and (4.15) that

P int~u1! 5 4pk4uA1A2u$G̃h@k~u1 2 u2!#exp~2iu1!

1 G̃h@k~u2 2 u1!#exp~iu1!%, (4.17a)

and

P int~u2! 5 4pk4uA1A2u$G̃h@k~u1 2 u2!#exp~2iu2!

1 G̃h@k~u2 2 u1!#exp~iu2!%. (4.17b)

We may readily solve these equations for each of the two
Fourier components of Gh and find that

G̃h@k~u1 2 u2!# 5
2i

8pk4uA1A2usin~u2 2 u1!

3 @P int~u1!exp~iu2!

2 P int~u2!exp~iu1!#. (4.18)

In particular, with the choice u1 5 0 and u2 5 p/2,

G̃h@k~u1 2 u2!# 5
1

8pk4uA1A2u
@P int~0 ! 1 iP int~p/2!#.

(4.19)

The formula (4.8), together with the expressions (4.17)
has an important physical implication. It shows that
from measurements of the total extinction power gener-
ated on scattering of both of the incident plane waves and
from measurements of the extinction powers ^P11

(e)& and
^P22

(e)& generated by separately scattering each of the two
plane waves, one can calculate the interference term
(4.16). If the measurements are performed with two dif-
ferent values of the phase difference u between the two
incident plane waves, the interference term provides, ac-
cording to Eq. (4.18), information about some of the spa-
tial Fourier components Ḡh(K) of the function Gh(r) that
characterizes the strength of the spatial fluctuations of
the medium. If the direction of incidence of one of the
plane waves, say, u1 , is fixed, and measurements are
made for different directions of incidence u2 of the second
wave, one can determine Fourier components labeled by
the vector K whose end points lie on a sphere s of radius
k 5 v/c [see Fig. 3(a)]. If further the direction u1 is also
varied, one can determine Fourier components labeled by
a vector K whose end points fill a sphere S of radius 2k
5 2v/c, centered at the origin in the Fourier space [Fig.
3(b)]. These two spheres are strictly analogous to the
Ewald sphere of reflection and the Ewald limiting sphere,
well known in the theory of x-ray diffraction by crystals.13
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Thus our results suggest a new method for determining
the low-pass filtered version,

@Gh~r !#LP 5
1

~2p!3 E
uKu,2k

G̃h~K!exp~iK • r!d3K,

(4.20)

of the function Gh(r), which characterizes the average
magnitude of the spatial fluctuations of the scatterer.

In this section we have considered reconstruction of
only the simplest type of random media, namely, those
whose spatial fluctuations are d correlated. It is obvi-
ously desirable to investigate whether the method can be
extended to a broader class of scatterers.

5. CONCLUDING REMARKS
In this paper we have presented several generalizations
of the optical cross-section theorem. The theorem is usu-
ally formulated for situations where the incident field is a
monochromatic plane wave and the scatterer is determin-
istic. We have obtained a generalization of the theorem
which applies to scattering on random media. We have
also obtained a generalization to situations where the in-
cident field is stochastic. We further showed that these
generalizations may be used to determine the strength of
the fluctuations of the dielectric susceptibility of d-
correlated random scatterers. This possibility may be
relevant to diffraction tomography with random media,
which has been receiving some attention in recent
years.14–17
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Fig. 3. Illustrating the accessible Fourier components G̃h(K) of
the function Gh(r) that characterizes the spatial fluctuations of
the random medium, from measurements of the power extin-
guished on scattering of two monochromatic plane waves. (a)
Ewald’s sphere of reflection (s), (b) Ewald’s limiting sphere, gen-
erated by Ewald’s spheres of reflection s1 , s2 ,... for different di-
rections of incidence, represented by vectors O1A, O2A,... .
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