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Diffraction tomography using power
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1. INTRODUCTION
In the short-wavelength limit, tomographic reconstruc-
tion of two- and three-dimensional media has long been
carried out from intensity measurements. More accurate
methods of reconstruction that take into account
diffraction1 require knowledge of both the field amplitude
and the phase of the scattered field. For rapidly varying
fields such as optical fields the phase may be prohibitively
difficult to measure and presents, at best, a technical
challenge at lower frequencies. In this paper we propose
a method to circumvent the phase problem. We will
show that one can determine a function that is related to
the scattering amplitude and makes it possible to recon-
struct the scattering object for certain model media.

We begin by recalling a well-known result in scattering
theory, the optical cross-section theorem.2 It relates the
total power extinguished from a plane wave on scattering
to the scattering amplitude in the forward (incident) di-
rection. More explicitly, let

C~i !~r, t ! 5 c~i !~r!exp~2ivt ! (1.1)

be a monochromatic field incident on the scatterer. We
assume that it is a plane wave that propagates in the di-
rection of a unit vector s0 ,

c~i !~r! 5 a exp~ikr • s0!, (1.2)

with k 5 v/c, c being the speed of light in vacuum. Let

C~s !~r, t ! 5 c~s !~r!exp~2ivt ! (1.3)

represent the scattered wave. The total field [with time
dependence exp(2ivt) being omitted from now on] is then
given by the expression

c ~r! 5 c~i !~r! 1 c~s !~r!. (1.4)

In the far zone in a direction specified by the unit vec-
tor s, the scattered field has the asymptotic form
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c~s !~rs! ; a
exp~ikr !

r
f~s, s0!, (1.5)

f (s, s0) being the so-called scattering amplitude.
The total power extinguished from the incident field as

a result of scattering and absorption is given by the for-
mula

P ~e ! 5 uau2
4p

k
I f ~s0 , s0!, (1.6)

where I denotes the imaginary part. In general, one
needs to know the scattering amplitude for all directions
of incidence and scattering in order to reconstruct the
low-pass-filtered version of the scattering object; however,
equation (1.6) gives information only about the imaginary
part of the scattering amplitude f (s, s0) in the forward di-
rection s 5 s0 . Within the accuracy of the first-order
Born approximation, f (s1 , s2) is related to the Fourier
transform of the susceptibility h (r) of the medium by the
formula1

f~s1 , s2! 5 k2E h~r!exp@2ikr • ~s2 2 s1!#d3r, (1.7)

and consequently Eq. (1.6) yields information only about
the volume integral of the imaginary part of the suscepti-
bility of the scattering object.

We will make use of a recent generalization of the op-
tical cross-section theorem to introduce a method of deter-
mining a complex function that is related to the scatter-
ing amplitude of the object whose structure is to be
determined. It is possible to determine this function ex-
perimentally from measurements of power alone. In
many cases this function is simply related to the struc-
ture of the object.

2. THE DATA FUNCTION
Let us consider the power extinguished from a coherent
beam consisting of two monochromatic plane waves,
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c~i !~r! 5 a1 exp~ikr • s1! 1 a2 exp~ikr • s2!, (2.1)

propagating in the directions specified by the unit vectors
s1 and s2 . In this case the extinguished power,
P (e)(a1 , a2), is given by the expression3

P ~e !~a1 , a2! 5
4p

k
I @ ua1u2f ~s1 , s1! 1 a1* a2 f~s1 , s2!

1 a2* a1 f ~s2 , s1! 1 ua2u2f~s2 , s2!#.

(2.2)

By making two measurements of the total extinguished
power with different relative phases between the two in-
cident waves, one can determine the cross terms by using
the formula

P ~e !~a1 , a2! 2 P ~e !~a1 , 2a2!

5
8p

k
I@a1* a2 f~s1 , s2! 1 a2* a1f~s2 , s1!#. (2.3)

By making two additional measurements with plane
waves of different relative phases, one can determine the
quantity

D~s1 , s2! 5
k

8pa1* a2
$P ~e !~a1 , ia2! 2 P ~e !~a1 , 2ia2!

1 i@P ~e !~a1 , a2! 2 P ~e !~a1 , 2a2!#%. (2.4)

We will refer to D(s1 , s2) as the data function. It may be
seen that the data function is related to the scattering
amplitude by the expression

D~s1 , s2! 5 f~s1 , s2! 2 f * ~s2 , s1!. (2.5)

3. DETERMINATION OF OBJECT
STRUCTURE FROM THE DATA FUNCTION
We will now describe a method for determining the struc-
ture of the object from knowledge of the data function.
While it is, in principle, possible to determine the exact
structure of the object from complete knowledge of the
scattering amplitude (or even from knowledge of the scat-
tering amplitude over a continuous segment of the scat-
tering angles) e.g., by use of the three-dimensional
Marchenko method,4 to do so presents a computational
challenge in the volume of calculations required as well as
in the regularization of the data and convergence prob-
lems. It seems unlikely that such a technique would be
useful in practice. However, as we will see, the data
function provides sufficient information to calculate the
structure function, at least for some scattering media.

We assume that the data function has been determined
by continuous sampling of all available real directions of
propagation, i.e., that D(s1 , s2) is known for all values of
the real unit vectors sj (sjx

2 1 sjy
2 1 sjz

2 5 1, j 5 1, 2, the
subscript labeling the Cartesian components).

A. Absorptive Part of the Susceptibility in the First-
Order Born Approximation
We consider scattering on a medium with complex dielec-
tric susceptibility h (r). The total field (incident plus
scattered) satisfies the equation
¹2c ~r! 1 k2c ~r! 5 24pk2h~r!c ~r!. (3.1)

Within the accuracy of the first-order Born approximation
the scattering amplitude is given by the expression

f~s1 , s2! 5 k2h̃@k~s1 2 s2!#, (3.2)

where

h̃~K! 5 E h~r!exp~2iK • r!d3r (3.3)

is the three-dimensional spatial Fourier transform of the
dielectric susceptibility.

Let a be the imaginary part of the generally complex
dielectric susceptibility,

a~r! [ Ih~r!. (3.4)

The absorbed power, often characterized by the absorp-
tion cross section, is proportional to the volume integral of
a (r), and so we will refer to a as the absorptive part of the
susceptibility (Ref. 5, p. 219). The data function is re-
lated to the Fourier transform of a by the simple formula

D~s1 , s2! 5 2ik2ã@k~s1 2 s2!#, (3.5)

valid for real unit vectors s1 and s2 , ã (K) denoting the
three-dimensional spatial Fourier transform of a (r).

We may now reconstruct a low-pass-filtered version of
a (r) from the data available within the sphere of radius
2k in the Fourier space, centered on the origin. Since
the data function D is a function of only the difference of
two unit vectors, we will formally integrate out an unnec-
essary variable. More precisely, we integrate D over the
average vector variable S 5 (s1 1 s2)/2 of the two unit
vectors s1 and s2 , which is orthogonal to the difference
vector s 5 s1 2 s2 :

D~s! 5
1

2p
E

~2p!

dfD@S~ f! 1 s /2,S~ f! 2 s /2#.

(3.6)

Here S is a vector of length A1 2 s2/4 lying in the plane
perpendicular to s and making an angle f with respect to
some arbitrary reference line in the plane.6 It follows
from Eqs. (3.5) and (3.6) that the low-pass (subscript LP)
reconstruction of a (r) is given by the formula

aLP~r! 5
k

i16p3 E
usu<2

exp~ikr • s!D~s!d3s. (3.7)

To demonstrate the feasibility of this inverse tech-
nique, we first calculate the solution of the direct (for-
ward) problem without any approximation (i.e., to all or-
ders of perturbation) in the form of an infinite series. We
then apply the inverse technique described above to that
solution.

In Fig. 1, computer simulations of the low-pass recon-
struction of the absorptive part of the susceptibility of a
homogeneous sphere are shown. We first calculated the
scattering amplitude for spheres of various radii and sus-
ceptibilities by the method of partial waves, with 35 terms
in the series, thus including the effects of multiple scat-
tering (see Appendix A). We then applied the algorithm
described above to the calculated data in order to recon-
struct the potential. It is seen that for media that are
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Fig. 1. Left, sphere with size parameter ka 5 3p (radius a 5 1.5l); right, sphere of radius ka 5 10p (a 5 5l). In all cases a
5 0.01/2p; the original profile is shown by long-dashed curves. Short–long-dashed curves, reconstruction of spheres with susceptibility
h 5 0.01i/2p; short-dashed curves, reconstruction of spheres with susceptibility h 5 (0.01 1 0.01i)/2p; solid curves, reconstruction of
spheres with susceptibility h 5 (0.0512 1 0.01i)/2p.
purely absorptive (real part of h 5 0) the reconstruction
is quite accurate. The effects of multiple scattering begin
to distort the reconstruction as the real part of the sus-
ceptibility (representing dispersion) increases. As can be
seen by comparing the reconstructions, the size of the
scatterer as well as the refractive index determine
whether the single-scattering approximation (i.e., the
first-order Born approximation) gives reasonably accurate
results. This was perhaps to be expected.

B. Spatial Variations of a Dielectric Random Scatterer
Suppose that the scatterer is dielectric (i.e., is nonabsorb-
ing) such that

^Ih ~r!& 5 0, (3.8)

the angle brackets denoting the ensemble average. We
assume that the fluctuations of the medium are charac-
terized by correlations that have a very short range in
comparison with the scale of variations of the average
susceptibility. We may then model the scatterer by the
quasi-homogeneous approximation.7–9 The correlation
function of the dielectric susceptibility can then be taken
to have the form

^h ~r1!h ~r2!& [ C~r1 , r2! ' GS r1 1 r2

2 D g~r2 2 r1!,

(3.9)

where g is the degree of correlation normalized so that
g(0) 5 1. We will refer to G as the intensity (strength)
of the susceptibility, and it may be seen that when
r1 5 r2 5 r, G is given exactly by the expression G(r)
5 ^h (r)h (r)&. Moreover, G(R) is assumed to vary much
more slowly with R than g(r) varies with r. In this case
the scattering amplitude is given, to leading order in the
susceptibility, by the formula3

f~s1 ,s2! 5 k4G̃@k~s1 2 s2!#G̃F2kS s1 1 s2

2 D G , (3.10)

where

G~r! [ g~r!G~r!, (3.11)

G̃(K) being the spatial Fourier transform of G(r), and G(r)
is the out-going free-space Green function, viz.,
G~r! 5
exp~ikr !

r
. (3.12)

In this case the data function is given by the expression

D~s1 , s2! 5 2ik4G̃@k~s1 2 s2!# I G̃S 2k
s1 1 s2

2 D . (3.13)

By making use of the Fourier representation of the Green
function and the convolution theorem, it can be seen that

G̃~k! 5
1

2p2 E g̃~k 2 k8!

k82 2 ~k 1 ie!2 d3k8, (3.14)

it being understood that e → 01 on the right-hand side of
this equation.

If g̃(k) is isotropic, i.e., if g̃(k) [ g̃(uku), one finds that
the quantity I G̃ @2k(s2 1 s2)/2# is a simple multiplica-
tive factor in the data function at a fixed frequency and
depends only on k. Explicitly,

G̃~2ks! 5
1

p
E

0

1

dxE
2`

`

dk8k82

3
g̃@~k2 1 k82 1 2xkk8!1/2#

k82 2 ~k 1 ie!2 . (3.15)

If, in addition, g̃@(k2 1 k82 1 2xkk8)1/2# is analytic in k8
in the upper half of the complex k8 plane10 for all values
of x in the range 0 < x < 1, then

G̃~2ks! 5 iE
A2

2

d ykyg̃~ky !, (3.16)

and, consequently,

D~s1 ,s2! 5 2ik5G̃@k~s1 2 s2!#E
A2

2

g̃~ky !ydy. (3.17)

Let us compare this situation with the case when the me-
dium is delta correlated, i.e., when

g~r! 5 d ~3 !~r!. (3.18a)

Then

g̃~k! 5 1. (3.18b)

In this case data function can again be shown to be re-
lated to a Fourier component of the object. Specifically,
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D~s1 , s2! 5 2ik5G̃@k~s1 2 s2!#, (3.19)

for all real unit vectors s1 and s2 . We see that as long as
the magnitude of the degree of correlation, ug(r)u, is nar-
row enough for the quasi-homogeneous approximation to
apply, the data function represents Fourier components of
the intensity G(r) of the susceptibility. The effect of a fi-
nite but small correlation length in the random medium
is to multiply the Fourier components by some constant,
as can be seen on comparing Eqs. (3.17) and (3.19). This
effectively amplifies or deamplifies the intensity of the ob-
ject on reconstruction but otherwise has no significant ef-
fect.

A low-pass-filtered version of the intensity (strength of
the susceptibility) of the object can now be determined.
It is given by the formula

GLP~r! 5
1

i16p3k2 E
usu<2

exp~ikr • s!D~s!d3s, (3.20)

where D(s) is as defined in Eq. (3.6).
As an example, consider a model scatterer character-

ized by an ensemble of independent homogeneous
spheres. The spheres are assumed to have the same ra-
dius a and the same susceptibility h0 and are centered at
a point specified by the position vector r0 , distributed
with a probability density p(r0). In this case the corre-
lation function of the susceptibility of the medium is given
by the expression

C~r1 , r2! 5 h0
2E Ba~r1 2 r0!Ba~r2 2 r0!

3 p~r0!d3r0 , (3.21)

where

Ba~r! 5 H 1 if uru < a

0 otherwise
, (3.22)

and the integration is taken over all space. Equation
(3.21) can be expressed in terms of the average and dif-
ference coordinates, R 5 (r1 1 r2)/2 and r 5 r1 2 r2 ,
respectively, as

C~r1 , r2! 5 h0
2E Ba~r8 1 r/2!Ba~r8 2 r/2!

3 p~r8 1 R!d3r8. (3.23)

If p(r) varies slowly with r on the scale of the radius a,
one can replace p(r8 1 R) by the first terms of its Taylor
expansion about R, and one finds that

C~r1 , r2! ' G~R!g~r! 1 h0
2E Ba~r8 1 r/2!

3 Ba~r8 2 r/2!r8 • ¹p~R!d3r8 1 ...,

(3.24)

where

G~R! 5
4p

3
a3h0

2p~R!. (3.25)

The degree of correlation, g, is related to the geometrical
overlap of two spheres11 and is given by the expression
g~r! 5 H 1 2
3r

4a
1

r3

16a3 for r < 2a

0 for r . 2a

.

(3.26)

Retaining only the first term in Eq. (3.24), one obtains the
quasi-homogeneous approximation for the correlation
function of the random scatterer.

The scattering amplitude of a sphere of radius a cen-
tered on the point r0 , f(s1 , s2 ; r0), is given in terms of
the scattering amplitude fa(s1 2 s2) of a sphere of radius
a centered on the origin by the expression

Fig. 2. Susceptibility intensity function G for a medium charac-
terized by an ensemble of independent homogeneous spheres
each with susceptibility h 5 0.21/4p and size parameter
ka 5 4. Dashed curves, original probability distribution, with
(a) ks 5 100, (b) ks 5 10, and (c) ks 5 4. Solid curves, recon-
structed fluctuation structure function. Both types of curves
have been normalized so that the peak values are unity.
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f~s1 , s2 ; r0! 5 exp@ikr0 • ~s2 2 s1!#fa~s1 2 s2!.
(3.27)

Thus the ensemble-average scattering amplitude for such
a scatterer is given by the formula

^ f~s1 , s2 ; r0!& 5 fa~s1 2 s2!p̃@k~s1 2 s2!#, (3.28)

where the tilde indicates, as usual, the three-dimensional
spatial Fourier transform. It follows directly from Eq.
(3.28) that the data function is given by the expression

D~s1 , s2! 5 @ fa~s1 2 s2! 2 fa* ~s2 2 s1!#

3 p̃@k~s1 2 s2!#. (3.29)

In this case the function D(s), defined by Eq. (3.6) has the
value

D~s! 5 @ fa~s! 2 f a* ~2s!# p̃~ks!. (3.30)

According to Eq. (3.20) the reconstructed intensity of
the susceptibility is then given by the expression

GLP~r! 5
1

k3 E aLP~r 2 r8!p~r8!d3r8, (3.31)

where aLP(r) is the reconstructed absorptive part of the
susceptibility of the homogeneous sphere of radius a and
susceptibility h0 given in Eq. (A5) of Appendix A.

Figure 2 shows the numerically reconstructed intensity
of the susceptibility G obtained by the use of Eq. (3.31)
with a Gaussian probability distribution p(r), viz.,

p~r! 5 ~ps 2/2!23/2 exp~2r2/2s 2!. (3.32)

In Fig. 2(a), which corresponds to the case ks 5 100,
the reconstruction is so accurate that the curves are in-
distinguishable. In Fig. 2(b) (ks 5 10), some deviation
from the original profile is evident. In Fig. 2(c) (ks
5 4), the width of the probability distribution is equal to
the radius of the spheres. One might expect that the
quasi-homogeneous approximation will break down in
this limit; indeed the figure shows that in this case the re-
construction differs significantly from the original func-
tion.

4. CONCLUSION
We have proposed a new technique for diffraction tomog-
raphy that makes use of a generalization of the optical
cross-section theorem and avoids the problems of measur-
ing the phase of the scattered field as well as measuring
the directional dependence of the scattered field. We
have also shown that by using this method, one can de-
termine the absorptive part of the susceptibility of a de-
terministic scatterer and the fluctuation strength func-
tion of a random scatterer. We have demonstrated the
feasibility of the proposed method by numerical simula-
tions.

APPENDIX A: THE HOMOGENEOUS
SPHERE
In this appendix, formulas are given that relate the for-
ward and inverse problems. We first determine the scat-
tering amplitude associated with a homogeneous sphere
of refractive index N 5 (4ph 1 1)1/2 and of radius a in
the form of an infinite series. The formulas for the in-
verse problem in the single-scattering approximation are
then expressed in terms of the (exact) series for the scat-
tering amplitude. That is, the low-pass reconstructed ob-
ject function aLP and the averaged data function D are
then expressed in terms of the series for the scattering
amplitude.

The calculation of the scattering amplitude (usually re-
ferred to as the forward problem) can be performed by the
method of partial waves (Ref. 12, p. 932). The scattering
amplitude is then expressed in series form as

f~s1 , s2! 5
1

k (
m50

`

~2m 1 1 !
ibm

bm 2 igm
Pm~s1 • s2!, (A1)

where

bm 5 kjm~Nka ! j8~ka ! 2 nkjm8 ~Nka ! jm~ka !, (A2)

gm 5 nkjm8 ~Nka !nm~ka ! 2 kjm~Nka !nm8 ~ka !. (A3)

In these formulas nm and jm are the spherical Neumann
functions and the spherical Bessel functions, respectively,
of order m, and the prime indicates the derivative with re-
spect to the argument. Further, Pm is the Legendre poly-
nomial of order m. The series converges rapidly when
the number of terms retained exceeds the size parameter
ka. In this case the averaged data function can be ex-
pressed in the form

D~s! 5
2i

k (
m51

`

~2m 1 1 !RS bm

bm 2 igm
DPm~1 2 s2/2!.

(A4)

Using formula (3.7), one finds that

aLP~r! 5 (
m50

`
~2m 1 1 !

p2kr
RS bm

bm 2 igm
D

3
d

d~kr !
@krjm~kr !nm~kr !#. (A5)
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