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1. Introduction and results

Preferential attachment processes have a long history dating back at least to Yule [20] and
Simon [19] (cf. [12] for an interesting survey). Recently, Barabasi and Albert [7] proposed a
random graph version of these processes as a model for several real-world networks, such as
the internet and various communication structures, on which there has been much renewed
study (see [1], [9], [11], [15] and references therein). To summarize, the basic idea is that,
starting from a small number of nodes, or vertices, one builds an evolving graph by ‘prefe-
rential attachment’, that is by attaching new vertices to existing nodes with probabilities
proportional to their ‘weight’. When the weights are increasing functions of the ‘connec-
tivity’, already well connected vertices tend to become even more connected as time pro-
gresses, and so, these graphs can be viewed as types of ‘reinforcement’ schemes (cf. [17]).
A key point, which makes these graph models ‘practical’, is that, when the weights are
linear, the long term degree proportions are often in the form of a ‘power-law’ distribution
whose exponent, by varying parameters, can be matched to empirical network data.

The purpose of this note is to understand a general form of the linear weights model
with certain random ‘edge additions’ (described below in subsection 1.1) in terms of an
embedding in continuous-time branching processes which allows for extensions of law
of large numbers and maximal degree growth asymptotics, first approached by difference
equations and martingale methods, in [8], [10], [13], [14].

We remark that some connections to branching and continuous-time Markov processes
have also been studied in two recent papers. In [18], certain laws of large numbers for
the degree distributions of the whole tree, and as seen from a randomly selected vertex
are proved for a class of ‘non-explosive’ weights including linear weights. In [16], asym-
ptotic degree distributions under super-linear weights are considered. In this context, the
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embedding given here is of a different character with respect to Markov branching systems
with immigration, and the contributions made concentrate on detailed investigations of a
generalized linear weights degree landscape.

1.1 Model

Start with two vertices v1, v2 and one edge joining them – denote this graph as G0. To
obtain G1, create a new vertex v3, and join it a random number X1 times to one of v1
and v2 of G0 with equal probability. For any finite graph Gn = {v1, v2, . . . , vn+2}, let the
degree of each vertex be defined as the number of edges emanating from that vertex, and
the degree of the j th vertex, vj ∈ Gn be denoted by dj (n) for j = 1, . . . , n+ 2 and n ≥ 0
(note that in our notation, Gn has n + 2 vertices at step n ≥ 0). After n + 2 vertices are
created, to obtain Gn+1 from Gn, create an (n+3)rd vertex vn+3, and connect it a random
number Xn+1 times to one of the n + 2 existing vertices v1, . . . , vn+2 with probability

di(n) + β
∑n+2

j=1(dj (n) + β)
(1.1)

of being joined to vertex vi for 1 ≤ i ≤ n + 2 where β ≥ 0 is a parameter. We will
also assume throughout that {Xi}i≥1 are independently and identically distributed (i.i.d.)
positive integer valued random variables with distribution {pj }j≥1 with finite mean. The
‘weight’ then of the ith vertex at the nth step is proportional to di(n) + β, and linear in
the degree.

We remark that this basic model creates a growing graph (which is a tree when Xi ≡ 1)
with undirected edges. As the referee remarked, one can alternatively think of this model
as a tree with each edge having a ‘count factor weight’ which corresponds to the number
of times a connection was made between the two associated nodes. Our model includes the
‘one-edge’ case of the original Barabasi–Albert process, made precise in [8], by setting
Xi ≡ 1 and β = 0, as well as the ‘β ≥ 0’ scheme considered in [13] and [14], by taking
Xi ≡ 1. Also, the ‘β ≥ 1’ linear case considered in [18] is recovered by taking Xi ≡ 1.

The aspect of adding a random number of edges {Xi}i≥1 at each step to vertices chosen
preferentially seems to be a new twist on the standard model which can be interpreted
in various ways. The results, as will be seen, involve the mean number

∑
jpj of added

edges, indicating a sort of ‘averaging’ effect in the asymptotics.
We also note, in the case β = 0, a more general graph process, allowing cycles and self-

loops, can be formed in terms of the ‘tree’ model above (cf. [8] and Ch. 4 [11]) where several
sets of edges are added to possibly different existing vertices at each step preferentially.
Namely, let {Li}i≥1 be independent and identically distributed positive integer valued
random variables with distribution {qj }j≥1 with finite mean, and let L̄i = ∑i

k=1 Lk for

i ≥ 1. As before, initially, we start with two vertices, v
(L)
1 and v

(L)
2 and one edge between

them. Run the ‘tree’ model now to obtain vertices {wi}i≥3 and identify sets

{w3, . . . , w2+L1}, {w3+L1 , . . . , w2+L̄2
}, . . . , {w3+L̄k−1

, . . . , w2+L̄k
}, . . .

as vertices v
(L)
3 , v

(L)
4 , . . . , v

(L)
k+2, . . . . One interprets the sequence of graphs G

(L)
n =

{v(L)
1 , . . . , v

(L)
n+2} for n ≥ 0 as a more general graph process where Li sets of edges are

added at the ith step preferentially for i ≥ 1. This model has some overlap with the very
general model given in [10] where vertices can be selected preferentially or at random;
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in [10], when only ‘new’ vertices are selected preferentially, their assumptions become
Xi ≡ 1 and {qj }j≥1 has bounded support (as well as β = 0).

For the remainder of the article, we will focus, for simplicity, on the basic ‘tree’ model
given through (1.1), although extensions to the other case (Li ≥ 1, β = 0) under various
conditions on {qj }j≥1 are possible.

1.2 Results

For n ≥ 0 and j ≥ 1, let

Rj (n) =
n+2∑

i=1

I (di(n) = j)

be the number of vertices in Gn with degree j . Also, define the maximum degree in Gn by

Mn = max
1≤i≤n+2

di(n).

In addition, denote the mean

m =
∑

j≥1

jpj .

Our first result is on the growth rates of individual degree sequences {di(n)}n≥0 and the
maximal one Mn. It also describes the asymptotic behavior of the index where the maximal
degree is attained.

Theorem 1.1. Suppose
∑

(j log j)pj < ∞, and let θ = m/(2m + β).

(i) For each i ≥ 1, there exists a random variable γi on (0, ∞) such that

lim
n→∞

di(n)

nθ
= γi exists a.s..

(ii) Further, there exist positive absolutely continuous independent random variables
{ξi}i≥1 with E[ξi] < ∞, and a random variable V on (0, ∞) such that γi = ξiV for
i ≥ 1. In particular, for all i, j ≥ 1,

lim
n→∞

di(n)

dj (n)
= ξi

ξj

exists a.s..

(iii) Also, when
∑

j rpj < ∞ for an r > θ−1 = 2 + β/m, then

lim
n→∞

Mn

nθ
= max

i≥1
γi < ∞ a.s.

(iv) Moreover, in this case (
∑

j rpj < ∞ for r > θ−1), if In is the index where

dIn(n) = Mn,

then limn→∞ In = I < ∞ exists a.s.
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Remark 1.1. Note that Theorem 1.1 asserts that the individual degrees di(n) and the
maximal degree Mn grow at the same rate nθ , and also the vertex with maximal degree
freezes eventually, that is it does not change for large n.

The next result is on the convergence of the empirical distribution of the degrees
{di(n): 1 ≤ i ≤ n + 2}. Let {D(y): y ≥ 0} be a Markov branching process with expo-
nential (1) lifetime distribution, offspring distribution {p′

j = pj−1}j≥2, immigration rate
β ≥ 0, immigration size distribution {pj }j≥1, and initial value D(0) distributed according
to {pj }j≥1 (see Definition 2.2 in §2 for the full statement). Also, for y ≥ 0 and j ≥ 1, let

pj (y) = P(D(y) = j). (1.2)

Theorem 1.2. Suppose
∑

(j log j)pj < ∞, and define the probability distribution
{πj }j≥1 by

πj = (2m + β)

∫ ∞

0
pj (y)e−(2m+β)ydy.

Then, for j ≥ 1, we have

Rj (n)

n
→ πj , in probability, as n → ∞.

Remark 1.2. As a direct consequence, for bounded functions f : N → R,

1

n

∞∑

j=1

f (j)Rj (n) →
∞∑

j=1

f (j)πj , in probability, as n → ∞.

We now consider the ‘power-law’ behavior of the limit degree distribution {πj }j≥1.

Theorem 1.3. Suppose
∑

j≥1 j2+β/mpj < ∞. Then, for s ≥ 0, we have
∑

j≥1

j sπj < ∞ if and only if s < 2 + β/m.

Remark 1.3. Heuristically, the last result suggests πj = O(j−[3+β/m]) as j ↑ ∞. In
the case Xi ≡ x0 for x0 ≥ 1, (1.2) can be explicitly evaluated (Proposition 3.2) to get
πj = O(j−[3+β/x0]) when j is a multiple of x0.

The next section discusses the embedding method and auxiliary estimates. In the third
section, the proofs of Theorems 1.1, 1.2, and 1.3 are given.

2. Embedding and some estimates

We start with the following definitions, and then describe in the following subsections the
embedding and various estimates.

DEFINITION 2.1

A Markov branching process with offspring distribution {p′
j }j≥0 and lifetime para-

meter 0 < λ < ∞ is a continuous-time Markov chain {Z(t): t ≥ 0} with state space
S = {0, 1, 2, . . . } and waiting time parameters λi ≡ iλ for i ≥ 0, and jump probabilities
p(i, j) = p′

j−i+1 for j ≥ i − 1 ≥ 0 and i ≥ 1, p(0, 0) = 1, and p(i, j) = 0 otherwise
(cf. Chapter III of [5]).
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DEFINITION 2.2

A Markov branching process with offspring distribution {p′
j }j≥0 and lifetime parameter

0 < λ < ∞, immigration parameter 0 ≤ β < ∞ and immigration size distribution
{pj }j≥0 is a continuous-time Markov chain {D(t): t ≥ 0} such that D(t) = Z(t) as in
Definition 2.1 when β = 0, and when β > 0,

D(t) =
∞∑

i=0

Zi(t − Ti) I (Ti ≤ t),

where {Ti}i≥1 are the jump times of a Poisson process {N(t): t ≥ 0} with parameter β,
T0 = 0, and {Zi(·)}i≥0 are independent copies of {Z(t): t ≥ 0} as in Definition 2.1, with
Z0(0) = D(0) and Zi(0) distributed according to {pj }j≥0 for i ≥ 1 and also independent
of {N(t): t ≥ 0}.

Remark 2.1. The condition that the mean number of offspring is finite,
∑

jp′
j < ∞, is

sufficient to ensure that P(Z(t) < ∞) = 1 and P(D(t) < ∞) = 1 for all t ≥ 0, that is
no explosion occurs in finite time (cf. p. 105 of [5]).

2.1 Embedding process

We now construct a Markov branching process through which a certain ‘embedding’ is
accomplished. Recall {pj }j≥1 is a probability distribution on the positive integers. Consider
an infinite sequence of independent processes {Di(t): t ≥ 0}i≥1 where each {Di(t): t ≥ 0}
is a Markov branching process with immigration as in Definition 2.2, corresponding to
exponential (λ = 1) lifetimes, offspring distribution {p′

j = pj−1}j≥2 (with p′
0 = p′

1 =
0), and immigration parameter β ≥ 0 and immigration size distribution {pj }j≥1. The
distributions of {Di(0)}i≥1 will be specified later.

Now, define recursively the following processes:

• At time 0, the first two processes {Di(t): t ≥ 0}i=1,2 are started with D1(0) =
D2(0) = 1. Let τ−1 = τ0 = 0, and τ1 be the first time an ‘event’ occurs in any one of
the two processes.

• Now add a random X′
1 of new particles to the process in which the event occurred: (i) If

the event is ‘immigration’, then P(X′
1 = j) = pj for j ≥ 1. (ii) If the event is the death

of a particle, then P(X′
1 = j) = pj−1 for j ≥ 2. Denote X1 as the net addition; then

P(X1 = j) = pj for j ≥ 1.
• At time τ1, start a new Markov branching process {D3(t): t ≥ 0} with D3(0) = X1.
• Let τ2 be the first time after τ1 that an event occurs in any of the processes {Di(t):

t ≥ τ1}i=1,2 and {D3(t − τ1): t ≥ τ1}. Add a random (net) number X2, following the
scheme above for X1, of particles with distribution {pj }j≥1 to the process in which the
event occurred. At time τ2, start a new Markov branching process {D4(t): t ≥ 0} with
D4(0) = X2.

• Suppose that n processes have been started with the first two at τ0 = 0, the third at
time τ1, the fourth at time τ2, and so on with the nth at time τn−2, and with (net)
additions X1, X2, . . . , Xn−2 at these times. Now, let τn−1 be the first time after τn−2
that an event occurs in one of the processes {Di(t): t ≥ 0}i=1,2, {D3(t − τ1): t ≥ τ1},
{D4(t − τ2): t ≥ τ2}, . . . , {Dn(t − τn−2): t ≥ τn−2}. Add a (net) random number Xn−1
of new particles with distribution {pj }j≥1 (following the scheme above) to the process
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in which the event happened. Now start the (n + 1)st process {Dn+1(t): t ≥ 0} with
Dn+1(0) = Xn−1.

Theorem 2.1 (Embedding theorem). Recall the degree sequence dj (n) defined for the
graphs {Gn} near (1.1). For n ≥ 0, let

Zn ≡ {Dj(τn − τj−2): 1 ≤ j ≤ n + 2}, and

Z̃n ≡ {dj (n): 1 ≤ j ≤ n + 2}.

Then, the two collections {Zn}n≥0 and {Z̃n}n≥0 have the same distribution.

Proof. First note that both sequences {Zn}n≥0 and {Z̃n}n≥0 have the Markov property and
Z0 = Z̃0 = {1, 1}. Next, it will be shown below that the transition probability mechanism
from Zn to Zn+1 is the same as that from Z̃n to Z̃n+1. To see this note that, at time 0, both
D1(·) and D2(·) are ‘turned on’, and, at time τ1, D3(·) is ‘turned on’, and more generally,
at τj , Dj+2(·) is ‘turned on’. At time τn+1, the ‘event’ could be in Di(·) for 1 ≤ i ≤ n+ 2
with probability

Di(τn − τi−2) + β
∑n+2

j=1(Dj (τn − τj−2) + β)

in view of the fact that the minimum of n + 2 independent exponential random vari-
ables {ηi}1≤i≤n+2 with means {μ−1

i }1≤i≤n+2 is an exponential random variable with mean
(∑n+2

i=1 μi

)−1, and coincides with ηi with probability μi

(∑n+2
i=1 μi

)−1 for 1 ≤ i ≤ n+ 2.
At that event time τn+1, Dn+3(·) is ‘turned on’, that is a new (n+3)rd vertex is created and
connected to the chosen vertex vi with Xn+1 edges between them. Hence both the degree
of the new vertex and increment in the degree of the chosen vertex (among the existing
ones) is Xn+1. This shows that the conditional distribution of Zn+1 given Zn = z is the
same as that of Z̃n+1 given Z̃n = z. �

2.2 Estimates on branching times

We now develop some properties of the branching times {τn}n≥1, used in the embedding in
subsection 2.1, which have some analogy to results in section III.9 of [5] (cf. [4]). Define
S0 = 2 + 2β and, for n ≥ 1,

Sn = 2 + 2β +
n∑

j=1

2Xj + nβ,

where as before X1, . . . , Xn are the net independent additions, distributed according to
{pj }j≥1, at event times τ1, . . . , τn. Define also, for n ≥ 1, Fn as the σ -algebra,

Fn = σ {{Dj(t − τj−2): τj−2 ≤ t ≤ τn}1≤j≤n+2, {Xk}1≤k≤n}. (2.1)

PROPOSITION 2.1

The random variable τ1 is exponential with mean S−1
0 . Also, for n ≥ 1, conditioned on

Fn, the random variable τn+1 − τn is exponential with mean S−1
n .
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Proof. Follows from the construction of the {τi}i≥1. �

PROPOSITION 2.2

Suppose m =∑ jpj < ∞. Then,
{

τn −
n∑

j=1

1

Sj−1
; Fn

}

n≥1

is an L2 bounded martingale and hence converges a.s. as well as in L2.

Proof. The martingale property follows from the fact

τn =
n∑

j=1

(τj − τj−1)

and Proposition 2.1.
Next, with φ(a) = E[e−aX1 ] for a ≥ 0, we have the uniform bound in n ≥ 1,

Var

(

τn −
n∑

j=1

1

Sj−1

)

= Var

(
n∑

j=1

(

τj − τj−1 − 1

Sj−1

))

=
n∑

j=1

Var

(

τj − τj−1 − 1

Sj−1

)

(by martingale property)

=
n∑

j=1

E

[
1

S2
j−1

]

=
n∑

j=1

E

[∫ ∞

0
xe−Sj−1xdx

]

≤
∞∑

j=1

∫ ∞

0
(φ(2x)e−xβ)j−1xe−(2+2β)xdx

≤
∫ ∞

0

xe−(2+2β)xdx

1 − φ(2x)e−xβ
< ∞,

where the finiteness in the last bound follows from the fact that

lim
x↓0

x

1 − φ(2x)e−xβ
= 1

2m + β
< ∞.

The a.s. and L2-convergence follows from Doob’s martingale convergence theorem
(c.f. Theorem 13.3.9 of [6]). �

PROPOSITION 2.3

Suppose
∑

(j log j)pj < ∞, and recall m = ∑
jpj . Let also α = (2m + β)−1. Then,

there exists a real random variable Y so that a.s.,

lim
n→∞ τn −

n∑

j=1

α

j
= Y.
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Proof. By Proposition 2.2, there is a real random variable Y ′ such that

τn −
n∑

j=1

1

Sj−1
→ Y ′ a.s.

To complete the proof, we note, as E[X1 log X1] = ∑
(j log j)pj < ∞, by Theo-

rem III.9.4 of [5] on reciprocal sums, that
∑∞

j=1(1/Sj − α/j) converges a.s. �

COROLLARY 2.1

Suppose m =∑ jpj < ∞. Then,

(i) τn ↑ ∞ a.s., as n → ∞.

Also, when
∑

(j log j)pj < ∞, we have, with α = (2m + β)−1, that
(ii) τn − α log n → Ỹ := Y − αγ a.s., as n → ∞, where γ is Euler’s constant.

(iii) For each fixed ε > 0, supnε≤k≤n(τn − τk − α log(n/k)) → 0 a.s., as n → ∞.

Proof. The first claim follows from Proposition 2.2 and the fact that
∑

1/Sj = ∞, since
by strong law of large numbers, we have a.s. that Sj ≤ j (1/α + 1) for large j . The
last two claims, as

∑n
j=1 1/j − log n → γ , Euler’s constant, are direct consequences of

Proposition 2.3. �

2.3 Estimates on Markov branching processes

As in Definition 2.2, let {D(t): t ≥ 0} be a Markov branching process with offspring
distribution {p′

j = pj−1}j≥2, lifetime λ = 1 and immigration β ≥ 0 parameters, and
immigration distribution {pj }j≥1.

PROPOSITION 2.4

Suppose
∑

(j log j)pj < ∞, and D(0) ≥ 1, E[D(0)] < ∞. Recall m =∑ jpj . Then,

lim
t→∞ D(t)e−mt = ζ

converges a.s. and in L1, and ζ is supported on (0, ∞) and has an absolutely continuous
distribution.

Proof. Let β > 0; when β = 0 the argument is easier and a special case of the following
development. Let 0 = T0 < T1 < · · · < Tn < · · · be the times at which immigration
occurs, and let η1, η2, . . . be the respective number of immigrating individuals (distributed
according to {pj }j≥1). From Definition 2.2, D(t) has representation

D(t) =
∞∑

i=0

Zi(t − Ti)I (Ti ≤ t), (2.2)

where {Zi(t): t ≥ 0}i≥0 are independent Markov branching processes with offspring
distribution {p′

j = pj−1}j≥2, with exponential (λ = 1) lifetime distributions, with no
immigration, with Z0(0) = D(0) and Zi(0) = ηi for i ≥ 1, and also independent of
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{Ti}i≥0. Under the hypothesis
∑

(j log j)pj < ∞, it is known (Theorem III.7.2 of [5];
with rate λ

(∑
j≥2 jp′

j − 1
) =∑j≥1(j + 1)pj − 1 = m), for i ≥ 0, that

lim
t→∞ Zi(t)e

−mt = Wi (2.3)

converges in (0, ∞) a.s. and Wi has a continuous distribution on (0, ∞). Also under the
hypothesis that

∑
(j log j)pj < ∞, it can be shown (Proposition 2.5) that

E[W̃i] < ∞, where W̃i = sup
t≥0

Zi(t)e
−mt , (2.4)

and hence convergence in (2.3) holds in L1 as well.
Since {Ti}i≥0 is a Poisson process with rate β, and independent of {Zi(t)}t≥0,

E

[ ∞∑

i=0

W̃ie
−mTi

]

≤ E[W̃1]

(

E[D(0)] +
∞∑

i=1

(
β

m + β

)i
)

< ∞, (2.5)

yielding

∞∑

i=0

W̃ie
−mTi < ∞ a.s.. (2.6)

Hence, noting (2.3), (2.4) and (2.6), by dominated convergence,

lim
t→∞ D(t)e−mt =

∞∑

i=0

lim
t→∞[Zi(t − Ti)I (Ti ≤ t)e−m(t−Ti)]e−mTi

=
∞∑

i=0

Wie
−mTi := ζ (2.7)

converges in (0, ∞) a.s.. Also,

sup
t≥0

D(t)e−mt ≤
∞∑

i=0

W̃ie
−mTi (2.8)

and hence by (2.5) and (2.7), we get that

lim
t→∞ D(t)e−mt = ζ in L1.

Finally, since {Wi}i≥0, {Ti}i≥1 are independent, absolutely continuous random variables,
ζ is absolutely continuous as well. �

2.4 Suprema estimates

We now give some moment estimates which follow by combination of results in the
literature.

Let {Z(t): t ≥ 0} be a Markov branching process with offspring distribution {p′
j =

pj−1}j≥2 and lifetime parameter λ = 1 as in Definition 2.1 with independent initial
population Z(0) distributed according to {pj }j≥1. Recall m =∑ jpj , and, from (2.3) and
(2.4),

W = lim
t→∞ Z(t)e−mt and W̃ = sup

t≥0
Z(t)e−mt .
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PROPOSITION 2.5

The following implications hold: If
∑

j≥1(j log j)pj < ∞, then E[W̃ ] < ∞.

Also, for s > 1, if
∑

j≥1 j spj < ∞, then E[W̃ s] < ∞.

The proof of the above proposition involves a basic lemma about sums of independent
non-negative random variables, which we state below.

Lemma 2.1. Let f : [0, ∞) �→ [0, ∞) be a concave function and S = X1 + · · · + XN be
a sum of N independent nonnegative random variables {Xi : i ≥ 1}. Then

E[Sνf (S)]

≤ E[Sν]f (ES) +
ν∑

k=1

(
ν

k

)

E[Sν−k]
N∑

i=1

E[Xk
i f (Xi)], for ν ≥ 1.

The proof of this lemma is similar to that of Lemma I.4.5 of [2], where the proof is given
for ν = 1, and the general case is stated without proof (see (4.15) in page 42 of [2]). For
convenience, we provide a short proof of Lemma 2.1 in the general form in the Appendix.

Proof of Proposition 2.5. First note that, without loss of generality, we can assume
Z(0) = 1, since the initial value Z(0) in both statements of the proposition is assumed to
have enough integrability. To see this more clearly, observe that for s ≥ 1,

E(W̃ s) = E[E(W̃ s |Z(0))] =
∑

j≥1

pjE(W̃ s |Z(0) = j). (2.9)

Let {W̄k}k≥1 denote a sequence of i.i.d. random variables with distributions same as that
of supt≥0 Z(t)e−mt conditioned on the event {Z(0) = 1}. Using Jensen’s inequality, we
get for s ≥ 1,

E(W̃ s |Z(0) = j) ≤ j sE

(
1

j

j∑

k=1

W̄k

)s

≤ j sE

(
1

j

j∑

k=1

W̄ s
k

)

= j sEW̄ s
1 .

(2.10)

Hence, from (2.9) and (2.10), we get

E(W̃ s) ≤
(
∑

j≥1

j spj

)

E(W̄ s
1 ). (2.11)

Hence, it is enough to prove the result for W̄1 (instead of W̃ ), or alternatively we can
assume that Z(0) = 1 for the proof.

Then, first, as Z(·) is increasing, we have

W̃ = sup
t≥0

Z(t)e−mt ≤ em sup
n≥0

Z(n)e−mn := W̃0. (2.12)

The process {Z(n)}n≥0 is a discrete-time branching process with

W = lim
n→∞ Z(n)e−mn,

P (Z(1) = 0) = 0, P(Z(1) = j) < 1 for all j ≥ 1, and
∑

jP (Z(1) = j) = EZ(1) =
e−m.



Growth of preferential attachment random graphs 483

From Lemma I.2.6 in [2], for r ≥ 1, we have, when P(W > 0) > 0, that

E[W̃ r
0 ] ≤ C0(1 + E[Wr ]) (2.13)

for a constant C0.
From Theorem I.10.1 of [5] or Theorem I.2.1 of [2],

P(W > 0) > 0, E[W ] < ∞ if and only if
∑

j≥1

(j log j)P (Z(1) = j) < ∞.

(2.14)

In particular, when
∑

jrP (Z(1) = j) < ∞ for r > 1, P(W > 0) > 0.
Also, from Theorem I.4.4 of [2], and the discussion on p. 41–42 of [2] (cf. eq. (4.15)

of [2]), we can derive (see after eq. (2.16) for the argument) that for r > 1 there exists a
constant C1 > 0 such that

E[Wr ] ≤ C1

(

1 +
∑

j≥1

j rP (Z(1) = j)

)

. (2.15)

From (2.15), we get E[Wr ] < ∞ when
∑

jrP (Z(1) = j) < ∞. From Corollary III.6.2
of [5] (cf. [3]), for a ≥ 1, b ≥ 0,

∑

j≥1

ja| log j |bP (Z(1) = j) < ∞ if and only if
∑

j≥1

ja| log j |bpj < ∞.

(2.16)

Then, combining (2.12)–(2.16), we conclude the proof of Proposition 2.5.
We now give the argument for bound (2.15). Since the proof of (2.15) is given only for

1 < r < 2 in [2] (see Theorem I.4.4, pages 41–42 of [2]), we provide a proof for r ≥ 2
below. Note that the proof for 1 < r < 2 given in [2] works for r = 2 (see pages 41–
42 of [2]), without any modification. So we assume that (2.15) is true for all 1 < r ≤ ν

for some integer ν ≥ 2, and prove that the bound holds for all ν < r ≤ ν + 1 as well.
We will use Lemma 2.1 with f (x) = xr−ν which is concave and nonnegative on [0, ∞].
Define the martingale W ′

n = Z(n)e−mn and F ′
n = σ {W ′

m: m ≤ n} for n ≥ 1. Note that,

conditional on Z(n), Z(n + 1)
d= ∑Z(n)

i=1 Xn,i , where {Xn,i}i≥1 are i.i.d. with distribution

given by {P(Z(1) = j)}j≥1. Hence, W ′
n+1

d= ∑Z(n)
i=1 Xn,ie−m(n+1), conditional on F ′

n.
Using Lemma 2.1, noting ν ≥ 1, we get

E[(W ′
n+1)

νf (W ′
n+1)|F ′

n]

≤ E[(W ′
n+1)

ν |F ′
n]f (E[W ′

n+1|F ′
n])

+
ν∑

k=1

(
ν

k

)

E[(W ′
n+1)

ν−k|F ′
n]

Z(n)∑

i=1

E[Xk
n,ie

−m(n+1)kf (Xn,ie
−m(n+1))]

≤ (W ′
n)

νf (W ′
n) +

ν∑

k=1

(
ν

k

)

[(W ′
n)

ν−k]Z(n)e−m(n+1)(k+r−ν)
∑

j≥1

jk+r−νP (Z(1) = j)

= (W ′
n)

νf (W ′
n) +

ν∑

k=1

(
ν

k

)

[(W ′
n)

ν−k+1]c(n, k)
∑

j≥1

jk+r−νP (Z(1) = j), (2.17)
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where c(n, k) = exp{mn−m(n+1)(k+r −ν)} = (e−mαk )
ne−m(αk+1), and αk = (k+r −

ν−1) ≥ r −ν > 0 for all k ≥ 1. Hence, we have for all k ≥ 1 that c(n, k) ≤ (e−mαk )n and
∑

n≥1

(e−mαk )
n

< ∞. (2.18)

Taking expectation and rearranging terms in (2.17), one gets

E[(W ′
n+1)

νf (W ′
n+1)] − E[(W ′

n)
νf (W ′

n)]

≤
ν∑

k=1

(
ν

k

)

E[(W ′
n)

ν−k+1](e−mαk )n
∑

j≥1

jk+r−νP (Z(1) = j). (2.19)

Now, since, W ′
0 = 1 and f (x) = xr−ν we have from (2.19) that

E[Wr ] ≤ limN→∞E[(W ′
N+1)

νf (W ′
N+1)]

= limN→∞E

[

f (1) +
N∑

n=0

[(W ′
n+1)

νf (W ′
n+1) − (W ′

n)
νf (W ′

n)]

]

≤ 1 +
ν∑

k=1

(
ν

k

)∑

n≥0

E[(W ′
n)

ν−k+1](e−mαk )n
∑

j≥1

j rP (Z(1) = j),

(2.20)

observing jk+r−ν ≤ j r for j ≥ 1 when 1 ≤ k ≤ ν. Notice that limn→∞ E[(W ′
n)

ν−k+1] =
EWν−k+1 < ∞, by the induction hypothesis, (2.13), W ′

n → W a.s., and dominated
convergence. As 1 ≤ ν − k + 1 ≤ ν, the proof of (2.15) is complete using (2.18). �

Now let {D(t): t ≥ 0} be a Markov branching process with offspring distribution
{p′

j = pj−1}j≥2, lifetime λ = 1 and immigration β ≥ 0 parameters, and immigration
distribution {pj }j≥1 as in Proposition 2.4 with also D(0) distributed as {pj }j≥1. Let also

D̃ := sup
t≥0

D(t)e−mt .

PROPOSITION 2.6

For r > 1, we have

if
∑

j≥1

j rpj < ∞, then E[D̃r ] < ∞.

Proof. When β = 0, the statement is the same as Proposition 2.5. When β > 0, as in the
proof of Proposition 2.4, let {Ti}i≥1 be the times of immigration, and T0 = 0. Note that∑

i≥0 e−mTi < ∞ a.s. as the expected value
∑

i≥0(β/(m + β))i is finite. From (2.8), and
Jensen’s inequality, we have

D̃r ≤
(
∑

i≥0

W̃ie
−mTi

)r
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≤
⎛

⎝

[
∑

j≥0

e−mTj

]−1
∑

i≥0

W̃ r
i e−mTi

⎞

⎠

(
∑

j≥0

e−mTj

)r

=
(
∑

i≥0

W̃ r
i e−mTi

)(
∑

j≥0

e−mTj

)r−1

.

Hence, by independence of {W̃i}i≥0 and {Ti}i≥0, for any integer K ≥ r − 1, we have

E[D̃r ] ≤ E[W̃ r
1 ]
∑

i≥0

E

⎡

⎣e−mTi

(
∑

j≥0

e−mTj

)K
⎤

⎦ .

From Proposition 2.5, E[W̃ r
1 ] < ∞. Also,

E

⎡

⎣e−mTi

(
∑

j≥0

e−mTj

)K
⎤

⎦ ≤ E[e−2mTi ]1/2E

⎡

⎣

(
∑

j≥0

e−mTj

)2K
⎤

⎦

1/2

=
(√

β

2m + β

)i

E

⎡

⎣

(
∑

j≥0

e−mTj

)2K
⎤

⎦

1/2

.

Given Tj is the sum of j independent exponential random variables with parameter β for
j ≥ 1, we now bound

E

⎡

⎣

(
∑

j≥0

e−mTj

)2K
⎤

⎦

≤ (2K)!
∑

0≤j1≤···≤j2K

E

[
2K∏

l=1

e−mTjl

]

= (2K)!
∑

0≤j1≤···≤j2K

E

[
2K−2∏

l=1

e−mTjl e−2mTj2K−1

](
β

m + β

)j2K−j2K−1

≤ (2K)!

(
m + β

m

) ∑

0≤j1≤···≤j2K−1

E

[
2K−1∏

l=1

e−mTjl

]

≤ (2K)!

(
m + β

m

)2K

is finite for fixed K . �

3. Proof of main results

We give the proofs of the three main results in successive subsections.
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3.1 Growth rates for degrees and the maximal degree

We first begin with a basic analysis result.

PROPOSITION 3.1

Let {an,i : 1 ≤ i ≤ n}n≥1 be a double array of nonnegative numbers such that

(1) For all i ≥ 1, limn→∞ an,i = ai < ∞,
(2) supn≥1 an,i ≤ bi < ∞,
(3) limi→∞ bi = 0,
(4) For i �= j , ai �= aj .

Then,

(a) max1≤i≤n an,i → maxi≥1 ai , as n → ∞.
(b) In addition, there exists I0 and N0 such that max1≤i≤n an,i = an,I0 for n ≥ N0.

Proof. For each k ≥ 1,

lim
n→∞ max

1≤i≤k
an,i = max

1≤i≤k
ai .

Hence,

limn→∞ max
i≥1

an,i ≥ limn→∞ max
1≤i≤k

an,i = max
1≤i≤k

ai

which gives

limn→∞ max
i≥1

an,i ≥ max
i≥1

ai. (3.1)

Also, for each k ≥ 1,

max
i≥1

an,i ≤ max
1≤i≤k

an,i + max
i>k

bi .

Then,

limn→∞ max
i≥1

an,i ≤ max
1≤i≤k

ai + max
i>k

bi ≤ max
i≥1

ai + max
i≥k

bi .

Since limi→∞ bi = limi→∞bi = limk→∞ maxi≥k bi = 0, we have

limn→∞ max
i≥1

an,i ≤ max
i≥1

ai. (3.2)

Now, (3.1) and (3.2) yield part (a). By assumptions (3) and (4), maxi≥1 ai is attained at
some finite index I0, and this index is unique, giving part (b). �

Proof of Theorem 1.1. By the embedding theorem (Theorem 2.1), to establish Theorem 1.1
for the sequence {Z̃n}n≥0, it suffices to prove the corresponding results for the {Zn}n≥0
sequence.

By Proposition 2.4 and Corollary 2.1(i),

lim
n→∞ Di(τn − τi−2)e

−m(τn−τi−2) = ζi
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converges a.s. in (0, ∞) for i ≥ 1. By Proposition 2.3, a.s. as n ↑ ∞,

exp

{
−m

2m + β

n∑

j=1

1

j

}

exp{mτn} = exp

{

m

(

τn −
n∑

j=1

1

j (2m + β)

)}

→ emY .

Further,
∑n

j=1(1/j) − log n → γ , a Euler’s constant. Thus, a.s. as n ↑ ∞,

emτnn−m/(2m+β) → emY emγ/(2m+β) := V, (3.3)

where V is a positive real random variable. Hence,

Di(τn − τi−2)n
−m/(2m+β)

= Di(τn − τi−2)e
−m(τn−τi−2)e−mτi−2 emτnn−m/(2m+β)

→ ζie
−mτi−2V := ξiV ,

a.s. as n ↑ ∞, where ξi = ζie−mτi−2 is a positive real random variable. This proves part
(i) with γi = ξiV .

By independence of τi−2 and {Di(t)}t≥0, absolute continuity of τi−2 for i ≥ 3 (τ0 =
τ−1 = 0), and Proposition 2.4, it follows that ξi has an absolutely continuous distribution
with finite mean, proving part (ii).

To prove part (iii) and (iv), we first note, for each i ≥ 1, that

Di(τn − τi−2)e
−m(τn−τi−2) ≤ sup

t≥0
Di(t)e

−mt := D̃i .

Let

an,i = Di(τn − τi−2)e
−mτn for 1 ≤ i ≤ n, and

bi = D̃ie
−mτi−2 for i ≥ 1.

For each i ≥ 1, supn≥1 an,i ≤ bi and an,i → ζie−mτi−2 := ai say. Since
∑∞

j=1 j rpj <

∞ for some r > 1 (satisfying rm/(2m + β) = rθ > 1), we have that E(D̃r
i ) < ∞

(Proposition 2.6). By Markov’s inequality, for all ε > 0,

P(D̃i > εim/(2m+β)) ≤ E[D̃r
1]/(εr irm/(2m+β)).

Hence, by Borel–Cantelli, we have a.s.

D̃i ≤ εim/(2m+β) for all large i.

Note, by Corollary 2.1(ii), we have mτi−2 − [m/(2m + β)] log(i − 2) → Ỹ a.s., for
i → ∞ for some finite random variable Ỹ . Hence, as ε > 0 is arbitrary, it follows that
bi = D̃ie−mτi−2 → 0 a.s. as i ↑ ∞. By Proposition 3.1 and (3.3), this implies that a.s.,

lim
n→∞ max

1≤i≤n
Di(τn − τi−2)n

−m/(2m+β) = V max
i≥1

ζie
−mτi−2 .
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Now we claim {ζie−mτi−2}i≥1 are all distinct, that is P(ζj e−mτj−2 = ζie−mτi−2) =
P(ζj e−m(τj−2−τi−2) = ζi) = 0 for any 1 ≤ i < j . This follows from the fact that ζi is
measurable with respect to Fi−2 (cf. (2.1)), and conditioned on Fi−2, the random variables
ζj and τj−2 − τi−2 are independent with absolutely continuous distributions for j ≥ 3;
when j = 2, i = 1, note that ζ2 is absolutely continuous and τj−2 − τi−2 = τ0 − τ−1 = 0.
Hence, V maxi≥1 ζie−mτi−2 is attained at a unique index I0. Also, as {In}n≥1 are integer-
valued random variables, In will equal I0 a.s. for all large n. �

3.2 Convergence of the empirical distribution of degrees

The following lemma will be helpful in the proof of Theorem 1.2.

Lemma 3.1. Let {X(t): t ≥ 0} be a continuous-time, discrete state-space, Markov chain
which is non-explosive, that is the number of jumps of {X(t): t ≥ 0} in any finite time-
interval [0, K] is finite a.s.. For K > 0, δ > 0, let

pK(δ) ≡ sup
0≤t≤K

P (|X(t + δ) − X((t − δ) ∨ 0)| ≥ 1).

Then, for all K > 0,

lim
δ↓0

pK(δ) = 0.

Proof. Since {X(t): t ≥ 0} is non-explosive, for any 0 < K < ∞, the number of jumps
N(K) of {X(t): 0 ≤ t ≤ K} is a finite-valued random variable a.s.. Also for any j < ∞,
the jump times (T1, . . . , Tj ) of {X(t): t ≥ 0} have a continuous joint distribution. These
two facts together yield the lemma. �

The following result follows from Remark 2.1 and the above lemma.

COROLLARY 3.1

Let {D(t): t ≥ 0} be as in Definition 2.2. Define, for 0 ≤ s ≤ t , D(s, t] = D(t) − D(s)

and, for K > 0, δ > 0,

pD
K(δ) = sup

0≤t≤K

P (D((t − δ) ∨ 0, t + δ] ≥ 1).

Then for K > 0,

lim
δ↓0

pD
K(δ) = 0.

Proof of Theorem 1.2. Recall α = (2m+β)−1 (from subsection 2.2). For n ≥ 1, note that

Rj (n)

n

d= 1

n

n+2∑

i=1

I (Di(τn − τi−2) = j)
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= 1

n

n+2∑

i=1

{I (Di(τn − τi−2) = j) − I (Di(α log(n/(i − 2))) = j)}

+ 1

n

n+2∑

i=1

{I (Di(α log(n/(i − 2))) = j) − pj (α log(n/(i − 2)))}

+ 1

n

n+2∑

i=1

{

pj (α log(n/(i − 2))) −
∫ 1

0
pj (−α log(x))

}

+
∫ 1

0
pj (−α log(x))dx

= J1(n) + J2(n) + J3(n) + J4(n), say.

For notational convenience, we use the convention log(n/(i − 2)) ≡ log(n) for i = 1, 2
here. The proof is now obtained by showing Ji(n) vanishes in probability for i = 1, 2, 3
and observing, after change of variables, that

J4(n) ≡ 1

α

∫ ∞

0
pj (y) exp{−y/α}dy.

To show that the first term J1(n) goes to 0 in probability, fix ε > 0. Note, from Coro-
llary 2.1(iii), for δ > 0, if

An(δ) ≡
{

sup
nε+2≤i≤n+2

|τn − τi−2 − α log(n/(i − 2))| > δ

}

,

then

limδ↓0limn→∞P (An(δ)) = 0. (3.4)

Now for nε + 2 ≤ i ≤ n + 2, we have 0 ≤ α log(n/(i − 2)) ≤ −α log ε. Hence, from the
definition of An(δ), we get the following bound on the expectation of a typical summand
in J1 in this range. Using notation from Corollary 3.1, we have

E(|I (Di(τn − τi−2) = j) − I (Di(α log(n/(i − 2))) = j)|)
= P(|I (Di(τn − τi−2) = j) − I (Di(α log(n/(i − 2))) = j)| = 1)

≤ P(|Di(τn − τi−2) − Di(α log(n/(i − 2))| ≥ 1))

≤ P({|Di(τn − τi−2) − Di(α log(n/(i − 2)))| ≥ 1} ∩ Ac
n(δ)) + P(An(δ))

≤ P({Di((α log(n/(i − 2)) − δ) ∨ 0, α log(n/(i − 2)) + δ] ≥ 1}
∩ Ac

n(δ)) + P(An(δ))

≤ sup
a∈[0,−α log ε]

P({Di((a − δ) ∨ 0, a + δ] ≥ 1} ∩ Ac
n(δ)) + P(An(δ))

= p
D3
K(ε)(δ) + P(An(δ)),
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where K(ε) = −α log ε, and we recall D3(·) is a Markov branching process with immi-
gration with D3(0) distributed according to {pj }j≥1. Since the absolute value of each
summand in J1 is bounded (by 1), we have by splitting the sum over indices 1 ≤ i < nε+2
and nε + 2 ≤ i ≤ n + 2, the following bound:

E|J1(n)| ≤ 1

n
(nε + 2) + 1

n
(n − nε)[pD3

K(ε)(δ) + P(An(δ))].

Now for fixed ε > 0, taking limit as n → ∞ first and then over δ → 0, we get from
Corollary 3.1 and (3.4) that

limn→∞E|J1(n)| < ε

and, as ε > 0 is arbitrary, that limn→∞ E|J1(n)| = 0. Hence J1(n) → 0 in probability, as
n → ∞.

For the second term J2(n), we have from Markov’s inequality that for any ε > 0,

P(|J2(n)| > ε)

≤ 1

n4ε4
E

(
n+2∑

i=1

(I (Di(α log(n/(i − 2))) = j) − pj (α log(n/(i − 2)))

)4

≤ 6

n2ε4
,

using independence of {Di(·)}i≥1, and hence of the summands above. Now, by Borel–
Cantelli arguments and the method of fourth moments (cf. Theorem 8.2.1 of [6]), we get
J2(n) → 0 a.s., as n → ∞.

Finally, by simple estimates, and Riemann integrability of pj (−α log(x)) (as pj (·) is
bounded, continuous), the third term vanishes as n → ∞. �

3.3 Power-laws for limiting empirical degree distribution

Recall, with respect to the definition of πj (1.2), that {D(y): y ≥ 0} is a Markov
branching process with exponential (λ = 1) lifetime distribution, offspring distribution
{p′

j = pj−1}j≥2, immigration rate β ≥ 0, immigration size distribution {pj }j≥1, and
initial value D(0) distributed according to {pj }j≥1.

Proof of Theorem 1.3. First note, for s ≥ 0, that

∑

j≥1

j sπj = (2m + β)

∫ ∞

0
e−(2m+β)y

∑

j≥1

j spj (y)dy

= (2m + β)

∫ ∞

0
e−(2m+β)yE[(D(y))s]dy. (3.5)

By Proposition 2.4, D(y)e−my → ζ a.s., and when
∑

j≥1 j2+β/mpj < ∞, we have by

Proposition 2.6 that E[(supy≥0 D(y)e−my)2+β/m] < ∞. Hence, by dominated conver-
gence, for s ≤ 2 + β/m, and a constant C,

Cemsy ≤ E[(D(y))s] ≤ C−1emsy.
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Plugging into (3.5), we prove the theorem for all 0 ≤ s ≤ 2 +β/m. Noting
∑

j≥1 j sπj ≥
∑

j≥1 j2+β/mπj for s ≥ 2 + β/m finishes the proof. �

We now evaluate πj in a special case. The formula, similar to that in [13] and §4.2 of
[18], gives the asymptotics mentioned in Remark 1.3.

PROPOSITION 3.2

When Xi ≡ x0 for an integer x0 ≥ 1, we have for j ≥ 1 that

πj = 2x0 + β

j + 2x0 + 2β

l−1∏

k=1

kx0 + β

(k + 2)x0 + 2β

when j = lx0 for l ≥ 1 (where the product is set equal to 1 when l = 1), and πj = 0
otherwise. Hence, for large j , πj = O(j−[3+β/x0]) when j = lx0 for l ≥ 1, and πj = 0
otherwise.

Proof. First note as Xi ≡ x0 that m = D(0) = x0, and the process D(·) moves in steps of
x0. Clearly, then πj = 0 when j is not a multiple of x0. When j = lx0 for l ≥ 1, let Aj

be the first time the process D(·) equals j ,

Aj = inf{y ≥ 0: D(y) = j} < ∞ a.s.

Let Bj be the time, after Aj , that the process D(·) spends at j ; note that conditioned on
Aj , Bj is an exponential (j + β) variable. Then, we write

πj = (2x0 + β)

∫ ∞

0
e−y(2x0+β)pj (y)dy

= (2x0 + β)E

[∫ Aj +Bj

Aj

e−y(2x0+β)dy

]

= E[e−Aj (2x0+β)[1 − e−Bj (2x0+β)]]

= E[e−Aj (2x0+β)]

[

1 − j + β

j + 2x0 + 2β

]

= 2x0 + β

j + 2x0 + 2β
E[e−Aj (2x0+β)].

As Xi ≡ x0, for j = lx0 and l ≥ 2, we have Aj is the sum of l − 1 independent
exponential random variables with parameters x0 + β, . . . , (l − 1)x0 + β, and so

E[e−Aj (2x0+β)] =
l−1∏

k=1

kx0 + β

(k + 2)x0 + 2β
.

When l = 1, then Aj = 0, giving πx0 = (2x0 + β)/(3x0 + 2β). �

4. Appendix

Proof of Lemma 2.1. For q ≥ 1 and a finite set D′ ⊂ N, define

Aq

D′ = {〈i1, . . . , iq〉: ik ∈ D′, k = 1, . . . , q}.
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For A ∈ Aq

D′ , let mi = ∑q

k=1 I (ik = i) for i ∈ D′, and BA = {i ∈ D′: mi > 0}. Note
that for all i ∈ D′, mi ≥ 0 and

∑
i∈D′ mi = q. For any such finite set of indices D′ and

any integer q ≥ 1, one has the following identity for any sequence of reals {xi}i≥1,

(
∑

i∈D′
xi

)q

=
∑

A∈Aq

D′

∏

i∈BA

x
mi

i . (4.1)

Also, we remark, as noted in Lemma I.4.5 of [2] that the concavity and nonnegativity
of the function f on [0, ∞) implies that f is also increasing, and subadditive. Indeed, for
the specific function f (x) = xr−ν for 0 < r − ν < 1, used in the argument of (2.15), by
a simple inspection, this holds.

Now, fix an integer N ≥ 1 and let D = {1, . . . , N}. Using the above identity, the
independence of {Xi} and the subadditivity of f , we have

E[Sνf (S)] ≤
∑

A∈Aν
D

E

[(
∏

i∈BA

X
mi

i

)

f

(
∑

i∈BA

Xi

)]

+
∑

A∈Aν
D

E

(
∏

i∈BA

X
mi

i

)

E

[

f

(
∑

i∈Bc
A

Xi

)]

. (4.2)

Using Jensen’s inequality, the fact that f is increasing, {Xi} are nonnegative, and the
identity (4.1) above, we get the following bound on the second term in (4.2):

∑

A∈Aν
D

E

(
∏

i∈BA

X
mi

i

)

E

[

f

(
∑

i∈Bc
A

Xi

)]

≤
∑

A∈Aν
D

E

(
∏

i∈BA

X
mi

i

)[

f

(
∑

i∈Bc
A

EXi

)]

≤
∑

A∈Aν
D

E

(
∏

i∈BA

X
mi

i

)

f (ES)

= E[Sν]f (ES). (4.3)

For the first term in (4.2), we use the subadditivity of f , and the independence of {Xi} to get

∑

A∈Aν
D

E

[(
∏

i∈BA

X
mi

i

)

f

(
∑

i∈BA

Xi

)]

≤
∑

A∈Aν
D

E

[
∑

i∈BA

f (Xi)

(
∏

i′∈BA

X
mi′
i′

)]

≤
∑

A∈Aν
D

[
∑

i∈BA

E(X
mi

i f (Xi))E

(
∏

i′∈BA\{i}
X

mi′
i′

)]

. (4.4)

Now the collection {A ∈ Aν
D: mi = m} are those indices 〈i1, . . . , iν〉 where components

iq1 = · · · = iqm = i for m distinct locations q1, . . . , qm ∈ {1, . . . , ν}, and the other
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components, put together as 〈j1, . . . jν−m〉, belongs to Aν−m
D\{i}. Then, (4.4) is bounded above

by

ν∑

m=1

(
ν

m

) N∑

i=1

E(Xm
i f (Xi))E

⎧
⎨

⎩

∑

A∈Aν−m
D\{i}

(
∏

i′∈BA

X
mi′
i′

)⎤

⎦

≤
ν∑

m=1

(
ν

m

) N∑

i=1

E(Xm
i f (Xi))E[Sν−m] (4.5)

noting (4.1) and E[(S − Xi)
ν−m] ≤ E[Sν−m]. From (4.2)–(4.5), the proof of the lemma

is complete. �
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