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1. Introduction and results

Preferential attachment processes have a long history dating back at least to Yule [20] and
Simon [19] (cf. [12] for an interesting survey). Recently, Barabasi and Albert [7] proposed a
random graph version of these processes as a model for several real-world networks, such as
the internet and various communication structures, on which there has been much renewed
study (see [1], [9], [11], [15] and references therein). To summarize, the basic idea is that,
starting from a small number of nodes, or vertices, one builds an evolving graph by ‘prefe-
rential attachment’, that is by attaching new vertices to existing nodes with probabilities
proportional to their ‘weight’. When the weights are increasing functions of the ‘connec-
tivity’, already well connected vertices tend to become even more connected as time pro-
gresses, and so, these graphs can be viewed as types of ‘reinforcement’ schemes (cf. [17]).
A key point, which makes these graph models ‘practical’, is that, when the weights are
linear, the long term degree proportions are often in the form of a ‘power-law’ distribution
whose exponent, by varying parameters, can be matched to empirical network data.

The purpose of this note is to understand a general form of the linear weights model
with certain random ‘edge additions’ (described below in subsection 1.1) in terms of an
embedding in continuous-time branching processes which allows for extensions of law
of large numbers and maximal degree growth asymptotics, first approached by difference
equations and martingale methods, in [8], [10], [13], [14].

‘We remark that some connections to branching and continuous-time Markov processes
have also been studied in two recent papers. In [18], certain laws of large numbers for
the degree distributions of the whole tree, and as seen from a randomly selected vertex
are proved for a class of ‘non-explosive’ weights including linear weights. In [16], asym-
ptotic degree distributions under super-linear weights are considered. In this context, the
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embedding given here is of a different character with respect to Markov branching systems
with immigration, and the contributions made concentrate on detailed investigations of a
generalized linear weights degree landscape.

1.1 Model

Start with two vertices vy, v2 and one edge joining them — denote this graph as Gy. To
obtain G, create a new vertex v3, and join it a random number X times to one of v
and v, of G with equal probability. For any finite graph G, = {vy, va, ..., vy42}, let the
degree of each vertex be defined as the number of edges emanating from that vertex, and
the degree of the jth vertex, v; € G, be denotedby d;(n) for j =1,...,n+2andn >0
(note that in our notation, G, has n + 2 vertices at step n > 0). After n + 2 vertices are
created, to obtain G, 1| from G,, create an (n + 3)rd vertex v, 43, and connect it a random

number X, 4 times to one of the n + 2 existing vertices vy, ..., v,+2 With probability
d.
e r (1)
Zj=1(dj(n) +8)

of being joined to vertex v; for 1 < i < n + 2 where § > 0 is a parameter. We will
also assume throughout that {X;};> are independently and identically distributed (i.i.d.)
positive integer valued random variables with distribution {p;} ;> with finite mean. The
‘weight’ then of the ith vertex at the nth step is proportional to d;(n) + B, and linear in
the degree.

‘We remark that this basic model creates a growing graph (which is a tree when X; = 1)
with undirected edges. As the referee remarked, one can alternatively think of this model
as a tree with each edge having a ‘count factor weight” which corresponds to the number
of times a connection was made between the two associated nodes. Our model includes the
‘one-edge’ case of the original Barabasi—Albert process, made precise in [8], by setting
X; =1and B = 0, as well as the ‘8 > 0’ scheme considered in [13] and [14], by taking
X; = 1. Also, the ‘8 > 1’ linear case considered in [18] is recovered by taking X; = 1.

The aspect of adding a random number of edges {X;};>1 at each step to vertices chosen
preferentially seems to be a new twist on the standard model which can be interpreted
in various ways. The results, as will be seen, involve the mean number ) j pj of added
edges, indicating a sort of ‘averaging’ effect in the asymptotics.

We also note, in the case 8 = 0, a more general graph process, allowing cycles and self-
loops, can be formed in terms of the ‘tree’ model above (cf. [8] and Ch. 4 [11]) where several
sets of edges are added to possibly different existing vertices at each step preferentially.
Namely, let {L;};>1 be independent and identically distributed positive integer valued
random variables with distribution {g;};>1 with finite mean, and let L = Z;{:l Ly, for
i > 1. As before, initially, we start with two vertices, vgl‘) and vg‘) and one edge between
them. Run the ‘tree’ model now to obtain vertices {w; };>3 and identify sets

{w3, ey w2+L1}» {w3+L1, ey w2+£2}, ey {w3+Lk—1""’ w2+ik},
: (L) (L) (L) ; Ly _
as vertices v3 *, v ', ..., U 5, ... One interprets the sequence of graphs G,~ =

{ viL), cees U;(zﬁ-)z} for n > 0 as a more general graph process where L; sets of edges are

added at the ith step preferentially for i > 1. This model has some overlap with the very
general model given in [10] where vertices can be selected preferentially or at random;
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in [10], when only ‘new’ vertices are selected preferentially, their assumptions become
X; = 1and {g;};>1 has bounded support (as well as 8 = 0).

For the remainder of the article, we will focus, for simplicity, on the basic ‘tree’ model
given through (1.1), although extensions to the other case (L; > 1, § = 0) under various
conditions on {g;};>1 are possible.

1.2 Results

Forn>0and j > 1, let
n+2

Rj(n) =" I(di(n) = j)
i=1

be the number of vertices in G,, with degree j. Also, define the maximum degree in G,, by

M, = max d;(n).

1<i<n+2

In addition, denote the mean

m=>Y_jpj.

j=1

Our first result is on the growth rates of individual degree sequences {d; (n)},>0 and the
maximal one M,,. It also describes the asymptotic behavior of the index where the maximal
degree is attained.

Theorem 1.1. Suppose Y (jlog j)p; < 0o, and let@ = m/(2m + B).

(1) Foreachi > 1, there exists a random variable y; on (0, 00) such that

. di(n)
lim

= y; exists a.S..
n—oo n

(ii) Further, there exist positive absolutely continuous independent random variables
{&i}i=1 with E[&;] < 0o, and a random variable V on (0, 00) such that y; = &V for

i > 1. In particular, for all i, j > 1,
din) &

— exists a.s..

1m =
n—00 dj (n) Sj

(iii) Also, when) j"p; < oo foranr > 0~1 =2+ B/m, then

. n
lim — = maxy; < oo a.s.
n—oo n i>1

(iv) Moreover, in this case ()_ j" p;j < oo forr > 0~Y), if I, is the index where
dln (n) = M}’L’

then lim,_, o I, = I < 00 exists a.s.
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Remark 1.1. Note that Theorem 1.1 asserts that the individual degrees d;(n) and the
maximal degree M, grow at the same rate n’, and also the vertex with maximal degree
freezes eventually, that is it does not change for large n.

The next result is on the convergence of the empirical distribution of the degrees
{din): 1 <i <n+2}. Let {D(y): y > 0} be a Markov branching process with expo-
nential (1) lifetime distribution, offspring distribution { p} = pj_1}j>2, immigration rate
B > 0, immigration size distribution {p;};>1, and initial value D(0) distributed according
to {p;}j>1 (see Definition 2.2 in §2 for the full statement). Also, for y > O and j > 1, let

pj(y) = P(D(y) = j). (1.2)
Theorem 1.2. Suppose ) (jlog j)p; < oo, and define the probability distribution
{mj}j=1by

o0
;= Qm+B) /0 pi(ye”GmtAygy,

Then, for j > 1, we have
R;(n)

n

— mj, inprobability, as n — oo.

Remark 1.2. As a direct consequence, for bounded functions f: N — R,

1 o o
- Zf(j)Rj(n) — Zf(j)nj, in probability, as n — oo.
j=1 j=1

We now consider the ‘power-law’ behavior of the limit degree distribution {7} ;>1.

Theorem 1.3. Suppose ijl j2+’3/’”pj < 00. Then, for s > 0, we have

> j'mj <oo ifandonlyif s <2+ B/m.
j=1

Remark 1.3. Heuristically, the last result suggests 7; = O(j B+#/m) as j 1 co. In
the case X; = xp for xo > 1, (1.2) can be explicitly evaluated (Proposition 3.2) to get
m; = O(j~3+P/xl) when j is a multiple of xo.

The next section discusses the embedding method and auxiliary estimates. In the third
section, the proofs of Theorems 1.1, 1.2, and 1.3 are given.

2. Embedding and some estimates

We start with the following definitions, and then describe in the following subsections the
embedding and various estimates.

DEFINITION 2.1

A Markov branching process with offspring distribution {p}} j=0 and lifetime para-
meter 0 < A < 00 is a continuous-time Markov chain {Z(¢): ¢+ > 0} with state space
S =1{0,1,2,...} and waiting time parameters A; = i for i > 0, and jump probabilities
pQ, j) = p;‘—i+1 forj>i—1>0andi > 1, p(0,0) = 1, and p(i, j) = 0 otherwise
(cf. Chapter III of [5]).
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DEFINITION 2.2

A Markov branching process with offspring distribution { p;.} j>0 and lifetime parameter
0 < X < oo, immigration parameter 0 < B < oo and immigration size distribution
{pj}j>0 is a continuous-time Markov chain {D(¢): ¢ > 0} such that D(¢) = Z(¢) as in
Definition 2.1 when 8 = 0, and when 8 > 0,

D) =) Zit—T) I(T; < 1),
i=0

where {7;};>1 are the jump times of a Poisson process {N(¢): t > 0} with parameter 3,
To = 0, and {Z; (-)}i>0 are independent copies of {Z(¢): t > 0} as in Definition 2.1, with
Zy(0) = D(0) and Z; (0) distributed according to {p;}j>o fori > 1 and also independent
of {N(t):t > 0}.

Remark 2.1. The condition that the mean number of offspring is finite, Y jp’; < oo, is
sufficient to ensure that P(Z(t) < oo) = 1 and P(D(t) < oo) = 1 for all t > 0, that is
no explosion occurs in finite time (cf. p. 105 of [5]).

2.1 Embedding process

We now construct a Markov branching process through which a certain ‘embedding’ is
accomplished. Recall {p;} ;>1 is aprobability distribution on the positive integers. Consider
an infinite sequence of independent processes { D; (¢): ¢t > 0};>1 where each {D; (t):t > 0}
is a Markov branching process with immigration as in Definition 2.2, corresponding to
exponential (A = 1) lifetimes, offspring distribution { p; = pj-1}j=2 (With pj = p| =
0), and immigration parameter 8 > 0 and immigration size distribution {p;};>1. The
distributions of {D; (0)};>1 will be specified later.
Now, define recursively the following processes:

e At time 0, the first two processes {D;(t): t > 0};=1 2 are started with D;(0) =
D>(0) = 1. Let t—1 = 19 = 0, and 1 be the first time an ‘event’ occurs in any one of
the two processes.

e Now add arandom X of new particles to the process in which the event occurred: (i) If
the event is ‘immigration’, then P (X = j) = p; for j > 1. (ii) If the event is the death
of a particle, then P (X i = j) = pj—1 for j > 2. Denote X as the net addition; then
P(X1=j)=pjforj=>1

e At time 71, start a new Markov branching process {D3(¢): t > 0} with D3(0) = X;.

e Let 7o be the first time after t; that an event occurs in any of the processes {D;(?):
t > 11}i=1,2 and {D3(t — 11): t > 711}. Add a random (net) number X», following the
scheme above for X1, of particles with distribution {p;} ;> to the process in which the
event occurred. At time 15, start a new Markov branching process { D4 (?): t > 0} with
D4(0) = X».

e Suppose that n processes have been started with the first two at typ = 0, the third at
time 71, the fourth at time 7, and so on with the nth at time 7,,_», and with (net)

additions X1, X», ..., X,,_» at these times. Now, let 7,,_; be the first time after 7,_»
that an event occurs in one of the processes {D; (¢): t > 0};=12, {D3(t — 11): ¢t > 11},
{Ds(t —1p):t > 1o}, ..., {Dy({t —1y-2):t > T,,_2}. Add a (net) random number X,,_;

of new particles with distribution {p;};>1 (following the scheme above) to the process
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in which the event happened. Now start the (n + 1)st process {D,41(¢): t > 0} with
Dn+1 0) = X;-1.

Theorem 2.1 (Embedding theorem). Recall the degree sequence d;(n) defined for the
graphs {G} near (1.1). Forn > 0, let

Zy={Dj(tp —7tj—2): 1 <j<n+2}, and

Zp={dj(n): 1< j <n+2}.
Then, the two collections {Z,},>0 and {Z,, }n>0 have the same distribution.

Proof. First note that both sequences {Z,},>0 and {Zn}n >0 have the Markov property and
Zo = Zo = {1, 1}. Next, it will be shown below that the transition probability mechanism
from Z, to Z, 4 is the same as that from Z,, to Zn+ 1. To see this note that, at time 0, both
Di(-) and D(-) are ‘turned on’, and, at time t1, D3(-) is ‘turned on’, and more generally,
attj, Djy7(-)is ‘turned on’. At time 7,41, the ‘event’ could bein D;(-) for1 <i <n-+2
with probability

Di(ty —ti2) + B
YD =12 +8)

in view of the fact that the minimum of n + 2 independent exponential random vari-
ables {1; }1<i<n+2 with means { “;] }1<i<n+2 18 an exponential random variable with mean

( Z:’:lz /L,')_l, and coincides with n; with probability u; ( Z:’:lz ui)_l forl <i<n+2.

At that event time T, 41, Dy43(+) is ‘turned on’, that is anew (n + 3)rd vertex is created and
connected to the chosen vertex v; with X, 1 edges between them. Hence both the degree
of the new vertex and increment in the degree of the chosen vertex (among the existing
ones) is X, 4+1. This shows that the conditional distribution of Z, 1 given Z, = z is the
same as that of Zn+1 given Zn =z. O

2.2 Estimates on branching times
We now develop some properties of the branching times {7, },,>1, used in the embedding in

subsection 2.1, which have some analogy to results in section IIL.9 of [5] (cf. [4]). Define
So=2+2Band, forn > 1,

n
Sp=2+428+) 2X;+np,

j=1
where as before X1, ..., X, are the net independent additions, distributed according to
{pj}j>1,at event times 7y, ..., 7,. Define also, forn > 1, F, as the o-algebra,
Fo=0{{Dj(t —tj2):Tj—2 <t < Tpl1<j<n+2, (Xi}1<k<n)- 2.1

PROPOSITION 2.1

The random variable t| is exponential with mean S ! Also, for n > 1, conditioned on
Fu, the random variable 1,11 — 1, is exponential with mean S, L
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Proof. Follows from the construction of the {t;};>1.
PROPOSITION 2.2

Supposem =) jp;j < oo. Then,

is an L? bounded martingale and hence converges a.s. as well as in L2.

Proof. The martingale property follows from the fact

n

Ty = Z("—'j —Tj-1)

j=1

and Proposition 2.1.
Next, with ¢ (a) = E[e~X1] for a > 0, we have the uniform bound inn > 1,

Var (Tn _ii) — Var (2”: <Tj_7—'jl —i»

j=1 Jj=1

& 1
= ZVar (Tj —Tj1— S_> (by martingale property)
j=1 =1

o0 o0
< 2 /0 (p(2x)e Py~ xe=C+2x gy
J=

00 xe—(2+2ﬂ)xdx
S / P ——— I OO,
o 1 —¢Q2x)e*p
where the finiteness in the last bound follows from the fact that
X 1

lim = <
01 —¢pQRx)e™F  2m+ B

Q.

479

The a.s. and L2-convergence follows from Doob’s martingale convergence theorem

(c.f. Theorem 13.3.9 of [6]).
PROPOSITION 2.3

O

Suppose Y (jlog j)p; < 0o, and recallm =Y jp;. Let also @ = 2m + B)~". Then,

there exists a real random variable Y so that a.s.,

n
. o
Jm =2, T =Y
]:
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Proof. By Proposition 2.2, there is a real random variable Y’ such that

n
1
TH_ZS._ — Y/ a.s.
j=1 "1

To complete the proof, we note, as E[X;logXi] = ) (jlogj)p; < oo, by Theo-
rem I11.9.4 of [5] on reciprocal sums, that Ziil (1/8; — a/j) converges a.s. O

COROLLARY 2.1
Supposem =) jp;j < oo. Then,

1) t 1 oo as., asn — 0.
Also, when Y_(j log J)pj < 00, we have, with o = (2m + ,3)7], that
(i) t, —alogn — Y=Y — ay a.s.,as n — oo, where y is Euler’s constant.
(iii) For each fixed € > 0, sup,. <j<,(tn — 7x —alog(n/k)) — O a.s.,as n — oo.

Proof. The first claim follows from Proposition 2.2 and the fact that ) 1/S; = oo, since
by strong law of large numbers, we have a.s. that §; < j(1/a + 1) for large j. The
last two claims, as Z?:l 1/j —logn — y, Euler’s constant, are direct consequences of
Proposition 2.3. O

2.3 Estimates on Markov branching processes

As in Definition 2.2, let {D(t): t > 0} be a Markov branching process with offspring
distribution { p;- = pj—1}j=2, lifetime A = 1 and immigration B > 0 parameters, and
immigration distribution {p;};>1.

PROPOSITION 2.4
Suppose Y (jlog j)pj < 0o, and D(0) > 1, E[D(0)] < oo. Recallm =" jp;. Then,

lim D(t)e ™ =¢
— 00

converges a.s. and in L', and ¢ is supported on (0, o0) and has an absolutely continuous
distribution.

Proof. Let B > 0; when 8 = 0 the argument is easier and a special case of the following
development. Let 0 = Tp < 71 < -+ < T,, < --- be the times at which immigration
occurs, and let 1, 72, . . . be the respective number of immigrating individuals (distributed
according to {p;};>1). From Definition 2.2, D(¢) has representation

D) =) Zi(t = THI(T; 1), 22)
i=0

where {Z;(t): t > 0};>¢ are independent Markov branching processes with offspring
distribution { p; = pj—1}j>2, with exponential (A = 1) lifetime distributions, with no
immigration, with Zy(0) = D(0) and Z;(0) = n; for i > 1, and also independent of
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{T;}i=0. Under the hypothesis ) (jlog j)p; < oo, it is known (Theorem IIL.7.2 of [5];
with rate A(ijz jp} -1)= > =10 +Dpj—1=m),fori >0, that
lim Z;(H)e ™ = W; 2.3)
—00
converges in (0, 0o) a.s. and W; has a continuous distribution on (0, co0). Also under the

hypothesis that ) "(jlog j)p; < oo, it can be shown (Proposition 2.5) that
E[W;] < 0o, where W; = sup Z;(t)e ", 2.4)

t>0

and hence convergence in (2.3) holds in L' as well.
Since {7;};>0 is a Poisson process with rate §, and independent of {Z; (¢)};>0,

00 ~ - 00 /3 i
E [; Wie } < E[Wi] (E[D(on + ; (—m " ﬁ) ) < 00, (2.5)
yielding
ZW,-C""T" <00 a.s.. (2.6)
i=0

Hence, noting (2.3), (2.4) and (2.6), by dominated convergence,

o0
lim D(t)e™™ = § lim [Z;(t — T)I(T; < t)e ™" T)e=mTi
t— 00 i:O r—>0o0

o0
= Z Wie T .= ¢ 2.7
i=0
converges in (0, 0o) a.s.. Also,
s ~
sup D(t)e ™ < Z We T (2.8)
120 i=0

and hence by (2.5) and (2.7), we get that
lim D(r)e™ =¢ inL'.
11— 00

Finally, since {W;};>0, {T;};>1 are independent, absolutely continuous random variables,
¢ is absolutely continuous as well. O

2.4 Suprema estimates

We now give some moment estimates which follow by combination of results in the
literature.

Let {Z(¢): t = 0} be a Markov branching process with offspring distribution { p; =
pj—1}j>2 and lifetime parameter A = 1 as in Definition 2.1 with independent initial
population Z(0) distributed according to {p;};>1.Recallm =} jp;, and, from (2.3) and
(2.4),

W= lim Z(t)e ™™ and W = sup Z(t)e ™.
t—00 10
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PROPOSITION 2.5
The following implications hold: Iijzl(j log j)pj < oo, then E[VT/] < Q.
Also, fors > 1,if 3"~y j°pj < 00, then E[W*] < oo.

The proof of the above proposition involves a basic lemma about sums of independent
non-negative random variables, which we state below.

Lemma 2.1. Let f: [0, 00) — [0, 00) be a concave functionand S = X1+ ---+ Xy be
a sum of N independent nonnegative random variables {X;: i > 1}. Then

E[S" f(9)]

v N
E[S'1f(ES)+ ) (Z)E[S”_k] D EIXff(XD)], forv= 1.
k=1 i=1

The proof of this lemma is similar to that of Lemma I.4.5 of [2], where the proof is given
for v = 1, and the general case is stated without proof (see (4.15) in page 42 of [2]). For
convenience, we provide a short proof of Lemma 2.1 in the general form in the Appendix.

Proof of Proposition 2.5. First note that, without loss of generality, we can assume
Z(0) = 1, since the initial value Z(0) in both statements of the proposition is assumed to
have enough integrability. To see this more clearly, observe that for s > 1,

E(W*) = E[E(W*|ZO)] = Y_ p E(W*|Z(0) = j). 29)
izl

Let {Wk}kzl denote a sequence of i.i.d. random variables with distributions same as that

of sup,>o Z (t)e™™ conditioned on the event {Z(0) = 1}. Using Jensen’s inequality, we
getfors > 1,
S
~ 1< 1< -
E(W*|1Z(0) = j) < j'E (—Z ) < J°E (—.Z ,f) = J'EW;
1= J =1
(2.10)

Hence, from (2.9) and (2.10), we get

E(W*) < (Z f‘p,) E(W}). 2.11)

j=1

Hence, it is enough to prove the result for W; (instead of VT/), or alternatively we can
assume that Z(0) = 1 for the proof.
Then, first, as Z(-) is increasing, we have

W =sup Z(1)e ™ < e&" sup Z(n)e ™" := W. (2.12)

>0 n>0
The process {Z(n)},>0 is a discrete-time branching process with

W = lim Z(n)e ™",

n—o0

P(Z(1)=0) =0, P(Z() = j) < Lforall j > 1,and 3. jP(Z(1) = j) = EZ(1) =
e*m
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From Lemma 1.2.6 in [2], for r > 1, we have, when P(W > 0) > 0, that
E[W;] < Co(1+ E[W']) 2.13)

for a constant Cy.
From Theorem 1.10.1 of [5] or Theorem 1.2.1 of [2],

P(W=>0) >0, E[W] < oo if and only if Z(j log j)P(Z(1) = j) < oo.
j=1
(2.14)

In particular, when ) j"P(Z(1) = j) < ocoforr > 1, P(W > 0) > 0.

Also, from Theorem 1.4.4 of [2], and the discussion on p. 4142 of [2] (cf. eq. (4.15)
of [2]), we can derive (see after eq. (2.16) for the argument) that for » > 1 there exists a
constant C; > 0 such that

E[W']1<C (1 +Y jTP(Z() = j)) . (2.15)
Jj=1
From (2.15), we get E[W"] < cowhen )_ j" P(Z(1) = j) < oo.From Corollary I11.6.2
of [5] (cf. [3]), fora > 1,b > 0,

> j%log jIPP(Z(1) = j) < oo if andonly if ) j*|log j|"p; < oo.
j>1 jz1
(2.16)

Then, combining (2.12)—(2.16), we conclude the proof of Proposition 2.5.

We now give the argument for bound (2.15). Since the proof of (2.15) is given only for
1 < r < 2in [2] (see Theorem 1.4.4, pages 41-42 of [2]), we provide a proof for r > 2
below. Note that the proof for 1 < r < 2 given in [2] works for r = 2 (see pages 41—
42 of [2]), without any modification. So we assume that (2.15) is true forall 1 < r < v
for some integer v > 2, and prove that the bound holds for all v < r < v 4 1 as well.
We will use Lemma 2.1 with f(x) = x"~" which is concave and nonnegative on [0, co].
Define the martingale W, = Z(n)e™" and F', = o{W,,: m < n} for n > 1. Note that,
conditional on Z(n), Z(n + 1) £ 2" X, ;, where {X,, ;)i are i.i.d. with distribution

given by {P(Z(1) = j)}j>1. Hence, W,;H 4 Z,Z:(rf) X,.ie~™ D conditional on F,,.

Using Lemma 2.1, noting v > 1, we get
E[(W, )" (W, DIF u]
< E[(W, ) IF nl f(EIW, 1| F 2]

Z(n)

vV
+ (Z)E[(W,;m“"m] D ELX e D f (X e D)
k=1

i=1

k=1

j=1

_ I\V ’ - v Iv—k+1 ck+r—v _
= (W) f(Wn>+;<k)[(Wn> le(, k)Y PO =j), (@217

jz1
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where c(n, k) = exp{mn —m(n+1)(k4+r—v)} = (%) e @+ anday = (k+r—
v—1) >r—v > 0forallk > 1. Hence, we have forall k > 1 thatc(n, k) < (e~™%)" and

Z (e < 0. (2.18)

n>1
Taking expectation and rearranging terms in (2.17), one gets
E[(W, )" f (W, D)1= EL(W,)" f(W,)]
< Z (Z)E[(W,i)”—"“](e—'"“k)” YRz =), @219
k=1 Jj=1
Now, since, W = 1 and f(x) = x"~" we have from (2.19) that

E[W'] <limy_, o E[(Wy )" f(Wy ]

N
=limy_, o E [f(l) + Y MW Y f (W) — (W,Z)”f(W,i)]}
n=0

<1+y <k> D ELW) eyt 3P = ).
k=1

n>0 j=1

(2.20)

observing j*"=" < j" for j > 1 when 1 < k < v. Notice that lim,_, s E[(W,)"**1] =
EWV—*tl o oo, by the induction hypothesis, (2.13), W,’, — W a.s., and dominated
convergence. As 1 < v —k + 1 < v, the proof of (2.15) is complete using (2.18). O

Now let {D(¢): t > 0} be a Markov branching process with offspring distribution
{ p;. = pj_1}j>2, lifetime A = 1 and immigration 8 > 0 parameters, and immigration
distribution {p;};>1 as in Proposition 2.4 with also D(0) distributed as {p;} j>1. Let also

D :=sup D(t)e ™.
t>0

PROPOSITION 2.6
Forr > 1, we have

iij’pj <00, then E[D'] < oo.
j=1

Proof. When g = 0, the statement is the same as Proposition 2.5. When g > 0, as in the
proof of Proposition 2.4, let {7;};>1 be the times of immigration, and Tp = 0. Note that
Y iooe ™l < oo aus. as the expected value Y, (B/(m + B))' is finite. From (2.8), and
Jensen’s inequality, we have B

,
B < (2 VT/,»e—’"Tf>

i>0
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IA

[Z e—mTf]l 3 ien (Z e—mTf>r

Jj=0 i>0 j>0

r—1
(Z Wiremr‘) (Z emT/) .
i=0 Jj=0

Hence, by independence of {Wi}izo and {T;};>0, for any integer K > r — 1, we have

K
E[D"] < EIW[1)_E|e™ (Ze_mrj>

i>0 j>0
From Proposition 2.5, E [VT/{ ] < o0. Also,

1/2

K 2K
E e—mTi (Z e—mTj) S E[e—2mT,]l/2E (Z e—mT/‘>

j=0 j=0

5 i 2K
_ —mTj
~(f5e%5) | ()

Given T; is the sum of j independent exponential random variables with parameter 8 for
j =1, we now bound

Jey

j=0

1/2

2K
< (2K)! Z E|:l_[e_mTfl:|

0<j1=<jok =1

2K=2 B J2k—J2k -1
= (2K)! Z E l_[ e Tje=2mTjx <_>
=1

) ) m +
0<j1=<jk B

2K—1
< 2K)! <m7+ﬂ) > ok { I1 e"”u}
=1

0<j1<<jak—1
2K

< (2[{)! w

- m

is finite for fixed K. O

3. Proof of main results

We give the proofs of the three main results in successive subsections.
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3.1 Growth rates for degrees and the maximal degree

We first begin with a basic analysis result.

PROPOSITION 3.1

Let {ani: 1 <i < n},>1 be a double array of nonnegative numbers such that

(1) Foralli > 1,lim,,a,,; = a; < o0,
(2) sup,>jani < bi <00,

(3) limj b; =0,

4) Fori # j, a; # aj.

Then,

(a) maxi<j<p an,; — Max;>1a;, as n — oo.
(b) In addition, there exists Iy and No such that max<;<, an,; = an, i, for n > Np.

Proof. Foreachk > 1,

lim max a,; = max q;.
n—>00 1<i<k 1<i<k
Hence,
lim, maxa,; >lim,  max a,; = max a;
i>1 1<i<k 1<i<k
which gives
lim,_, . maxa,; > maxa;. 3.D
i>1 i>1

Also, for each k > 1,

maxa,; < max a,; + maxb;.
i>1 1<i<k i>k

Then,

lim,— o Mmaxa,; < max a; + maxb; < maxa; + maxb;.
i>1 1<i<k i>k i>1 i>k

Since lim;_ 00 b; = lim;, 50b; = limg_, oo max;>x b; = 0, we have

1im,,_, oo max ap,i < maxa;. 3.2)
i>1 i>1
Now, (3.1) and (3.2) yield part (a). By assumptions (3) and (4), max;> a; is attained at
some finite index /o, and this index is unique, giving part (b). a

Proof of Theorem 1.1. By the embedding theorem (Theorem 2.1), to establish Theorem 1.1
for the sequence {Z,},>0, it suffices to prove the corresponding results for the {Z,},>0
sequence.

By Proposition 2.4 and Corollary 2.1(1),

lim Dj(t, — ti_p)e " ~T-2) = ¢
n—0oo



Growth of preferential attachment random graphs 487

converges a.s. in (0, co) for i > 1. By Proposition 2.3, a.s. as n 1 oo,

—m 1 < 1
exp{2m+ﬂ ;;}exp{mrn} = exp {m <rn —Zm)}

j=1

— MY,

Further, Z'}:l(l/j) —logn — y, a Euler’s constant. Thus, a.s. as n 1 oo,

&My =m/Q@m+p) _ omY my/Qm+p) . _ v, (3.3)

where V is a positive real random variable. Hence,

Dj(ty, — ti_g)n "/ "D

= Dj(1y — Ti_p)e M@= Ti2) g =mTi2gMTny —m/2m+f)
— eIV =gV,

a.s.asn 1 oo, where & = ¢;e™%-2 is a positive real random variable. This proves part
(1) with y; = & V.

By independence of t;_; and {D;(#)};>0, absolute continuity of 7;_» fori > 3 (19 =
7_1 = 0), and Proposition 2.4, it follows that &; has an absolutely continuous distribution
with finite mean, proving part (ii).

To prove part (iii) and (iv), we first note, for each i > 1, that

Di(ty — Tj—p)e ™2 < qup D; (e ™ = D;.
t>0

Let
an; = Di(ty — 1i—p)e™™™ for 1 <i <n, and
b; = Dje ™52 fori > 1.
Foreachi > 1, sup,~ a,; < b; and a,,; — ¢;e”"%-2 := a; say. Since Z?il Ji'pj <

oo for some r > 1 (satisfying rm/(2m + B) = r6 > 1), we have that E(5i’) < 0
(Proposition 2.6). By Markov’s inequality, for all € > 0,

P(ﬁi > 6im/(2m+ﬂ)) < E[ﬁi]/(erirm/(2m+ﬁ)).

Hence, by Borel-Cantelli, we have a.s.

D; < €i™ @B for all large i.

Note, by Corollary 2.1(ii), we have mt;—» — [m/(2m + B)]log(i — 2) — Y as., for

i — 00 for some finite random variable Y. Hence, as € > 0 is arbitrary, it follows that

bi = Dje™™%-2 — (Q a.s. as i 1 0o. By Proposition 3.1 and (3.3), this implies that a.s.,
—m/Q2m+p) _

lim max D;(t, — ti_2)n = V max ¢je
n—oo 1<i<n i>1

—mt;_p
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Now we claim {{;e™"%~2};> are all distinct, that is P({je”™%2 = {;e”"H2) =
P(Qe"”(f-/—rfi—z) = ¢;) = 0forany 1 <i < j. This follows from the fact that ¢; is
measurable with respect to F;_» (cf. (2.1)), and conditioned on F;_;, the random variables
¢jand Tj_p — 7;_7 are independent with absolutely continuous distributions for j > 3;
when j = 2,7 = 1, note that ¢ is absolutely continuous and 7;_» — 17,2 = 79 —7_1 = 0.
Hence, V max;>; {;e™"""%-2 is attained at a unique index Io. Also, as {I,},>1 are integer-
valued random variables, I,, will equal Iy a.s. for all large n. O

3.2 Convergence of the empirical distribution of degrees
The following lemma will be helpful in the proof of Theorem 1.2.

Lemma 3.1. Let {X (t): t > 0} be a continuous-time, discrete state-space, Markov chain
which is non-explosive, that is the number of jumps of {X (t): t > 0} in any finite time-
interval [0, K1 is finite a.s.. For K > 0,8 > 0, let

pk(8) = sup P(|X(t+46)—X((t—68)Vv0)|=1.
0<t<K

Then, for all K > 0,
li 8) =0.
51113 Pk (8)

Proof. Since {X (t): t > 0} is non-explosive, for any 0 < K < oo, the number of jumps
N(K) of {X(¢): 0 <t < K} is a finite-valued random variable a.s.. Also for any j < oo,
the jump times (71, ..., T;) of {X(¢): t > 0} have a continuous joint distribution. These
two facts together yield the lemma. a

The following result follows from Remark 2.1 and the above lemma.

COROLLARY 3.1

Let {D(t): t = 0} be as in Definition 2.2. Define, for 0 < s <t, D(s,t] = D(t) — D(s)
and, for K > 0,86 > 0,

pR8) = sup P(D((t —8)v0,1+68]>1).
0<t<K

Then for K > 0,
lim p2(8) =0.
alf(} Pk (4)

Proof of Theorem 1.2. Recalla = 2m+ )~ (from subsection 2.2). For n > 1, note that

n+2

Rj(n) 11 .
—n;umrﬂ Ti2) = J)

n
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n+2

1
= Z{I(Di(fn —7i-2) = j) — I(Di(alog(n/(i —2))) = j)}

i=1
n+2

1
+ - Z{I(Di (alog(n/(i —2))) = j)— pjlalog(n/i — 2)))}
i3

n+2

+ % ;‘ {p;(a log(n/(i —2))) — /0 i log<x>>}
l_
+ [ patogtoax
=Ji(n) + Jo(n) + J3(n) + Ja(n), say.
For notational convenience, we use the convention log(n/(i — 2)) = log(n) for i

=1
here. The proof is now obtained by showing J; (n) vanishes in probability fori = 1, 2
and observing, after change of variables, that

,2
3

)

1 o0
s =~ fo pi(v) exp{—y/aldy.

To show that the first term J1(n) goes to 0 in probability, fix € > 0. Note, from Coro-
llary 2.1(iii), for § > 0, if

A, () = { sup |ty — tica —alog(n/(i —2))| >6},
ne+2<i<n+2
then
lims jolim,, , 0o P (A, (8)) = 0. (3.4

Now forne +2 <i <n+2,wehave 0 < alog(n/(i —2)) < —aloge. Hence, from the
definition of A, (§), we get the following bound on the expectation of a typical summand
in Jj in this range. Using notation from Corollary 3.1, we have

E(1(Di(ty — 1i—2) = j) — I (Di(alog(n/(i —2))) = j))
= P(I(Di(ty — 1i—2) = j) — I(Di(alog(n/(i —2))) = )l =1)
< P(IDi(ty — 7i—2) — Di(alog(n/(i —2))| = 1))
< P({IDj(ta — Ti—2) — Di(arlog(n/(i —2)))| = 1} N A (8)) + P(A4(3))
< P({D;((alog(n/(i —2)) = 48) v 0,alog(n/(i —2)) +4] = 1}
N AL (8)) + P(A(3))
< sup  P({Di((a—8) Vv 0,a+38]> 1} NA,8)) + P(Ai(5))

a€l0,—aloge]

= Priey®) + P(A4(8)),
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where K (€) = —a loge, and we recall D3(-) is a Markov branching process with immi-
gration with D3(0) distributed according to {p;};>1. Since the absolute value of each
summand in J; is bounded (by 1), we have by splitting the sum overindices | <i < ne+2
and ne + 2 <i < n + 2, the following bound:

1 1 Dy
ElJi(m] = - (ne +2) + —(n = n€)[pi e (8) + P(An(8))]-

Now for fixed € > 0, taking limit as n — oo first and then over § — 0, we get from
Corollary 3.1 and (3.4) that

mn—)OOE|J1(n)| <€

and, as € > 0 is arbitrary, that lim,_, o E|J1(n)| = 0. Hence J;(n) — 0 in probability, as
n— oo.
For the second term J;(n), we have from Markov’s inequality that for any € > 0,

P(|12(n)| > €)

1 n+42 4
<k (Z(I(Di (alog(n/(i —2))) = j) — pj(alog(n/(i — 2))))

i=1

using independence of {D;(-)};>1, and hence of the summands above. Now, by Borel—
Cantelli arguments and the method of fourth moments (cf. Theorem 8.2.1 of [6]), we get
Jr(n) —> Oa.s.,asn — oo.

Finally, by simple estimates, and Riemann integrability of p;(—olog(x)) (as p;(-) is
bounded, continuous), the third term vanishes as n — oo. O

3.3 Power-laws for limiting empirical degree distribution

Recall, with respect to the definition of 7; (1.2), that {D(y): y > 0} is a Markov
branching process with exponential (A = 1) lifetime distribution, offspring distribution
{ p; = pj_1}j>2, immigration rate 8 > 0, immigration size distribution {p;};>1, and
initial value D(0) distributed according to {p;};>1.

Proof of Theorem 1.3. First note, for s > 0, that

o
3 jw=@m+ /3)/0 e GOV i pi(y)dy

Jj=1 j=1
— m+ B) / e~ E[(D(y))'1dy. 3.5)
0

By Proposition 2.4, D(y)e™ — ¢ a.s., and when Zizl j2+’3/’"pj < 00, we have by
Proposition 2.6 that E[(sup,>g D(y)e ™)2+P/m] < 0. Hence, by dominated conver-
gence, for s < 2+ B/m, and a constant C,

Ce™ < E[(D(y))*] < C~lem,
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Plugging into (3.5), we prove the theorem forall 0 < s < 2+ 8/m. Noting ijl Jimjp >
ijlj”ﬁ/’"nj for s > 2 + B/m finishes the proof. O

We now evaluate 7; in a special case. The formula, similar to that in [13] and §4.2 of
[18], gives the asymptotics mentioned in Remark 1.3.

PROPOSITION 3.2
When X; = x¢ for an integer xo > 1, we have for j > 1 that

-1

i 2x0 + B
ST+ 2x0+28

kxo + B
| (k+2)xo + 28

when j = Ixqg for I > 1 (where the product is set equal to 1 whenl = 1), and n; = 0
otherwise. Hence, for large j, mj = O (j~B+B/xly when j = Ixg forl > 1, and ;=0
otherwise.

Proof. Firstnote as X; = xo that m = D(0) = xo, and the process D(-) moves in steps of
xg. Clearly, then 77; = 0 when j is not a multiple of xo. When j = lxo for/ > 1,let A;
be the first time the process D(-) equals j,

Aj=inf{y >0: D(y) = j} <00 as.

Let B; be the time, after A}, that the process D(-) spends at j; note that conditioned on
Aj, Bj is an exponential (j + B) variable. Then, we write

o0
mi = Q2xo+ ﬁ)/(; e Y @0th) b (y)dy

Aj+B;
= (2x0+ B)E /A e Y@othlgy

J

— E[efAj(Zonrﬂ)[l _ e*Bj(2x0+ﬂ)]]

= E[eAi(x0th)] [1 __JtB ]
J+2x0+ 28
_ 2x0 + B E[e_A-f(zxo"'ﬂ)].
Jj+2x0+28
As X; = xo, for j = Ixg and [ > 2, we have A; is the sum of / — 1 independent
exponential random variables with parameters xo + 8, ..., (I — 1)xo + B, and so

-1
Efe=/@0t8) = T kxo + B

it (k+2)x0 +28

When ! =1, then A; =0, giving 7y, = (2x0 + B)/(Bx0 + 28). O

4. Appendix
Proof of Lemma 2.1. For g > 1 and a finite set D’ C N, define
AL = {(i1,....ig) ik e D' k=1,...,q}
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For A € AD/, let m; = ZZ:I I(i =i)fori € D',and By = {i € D': m; > 0}. Note
that for alli € D', m; > 0 and ),y m; = q. For any such finite set of indices D’ and
any integer g > 1, one has the following identity for any sequence of reals {x;};>1,

(Zx,)q =3 1 @)

ieD’ AeA‘g, i€By

Also, we remark, as noted in Lemma 1.4.5 of [2] that the concavity and nonnegativity
of the function f on [0, co) implies that f is also increasing, and subadditive. Indeed, for
the specific function f(x) = x" 7V for 0 < r — v < 1, used in the argument of (2.15), by
a simple inspection, this holds.

Now, fix an integer N > 1 and let D = {1,..., N}. Using the above identity, the
independence of {X;} and the subadditivity of f, we have

EIS' S < Y E [(l_[ Xm) ! (Z Xi)}

AcAY i€Bs i€Bs

+ ) E<l_[ Xj”f)E[f(Z Xi):|. (4.2)
AeAy  \ieBy 1By

Using Jensen’s inequality, the fact that f is increasing, {X;} are nonnegative, and the
identity (4.1) above, we get the following bound on the second term in (4.2):

() e (2 2)]= 5 e () (2 )

> E (]_[ Xf"") f(ES)

AG.AVD i€By
— E[S"]f(ES). 423)

For the first term in (4.2), we use the subadditivity of f, and the independence of { X;} to get

= el(m) (5 0)]

= ¥ e[z oo (110

Ae A}, i€By i’eBy

3 [Z E(X,f”ff(x,-»E( I1 X””)} (4.4)

Ae A}, LieBy i’eBA\{i}

Now the collection {A € A},: m; = m} are those indices (i1, ..., i,) where components
igg = -+ =g, =1 for m distinct locations g1, ...,qm € {1 ., v}, and the other
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components, put together as (i, . . . j,—n), belongs to A"D\?" Then, (4.4) is bounded above

by

AeAf{\Z‘} i’eBy

Z( )ZE(X’" (X))E[S"™™] (4.5)

noting (4.1) and E[(S — X;)"™""] < E[S"™™]. From (4.2)—(4.5), the proof of the lemma
is complete. |
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