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CRITICAL AGE DEPENDENT BRANCHING MARKOV
PROCESSES AND THEIR SCALING LIMITS

KRISHNA B. ATHREYA, SIVA R. ATHREYA, AND SRIKANTH K. IYER

ABSTRACT. This paper studies: (i) the long time behaviour of the em-
pirical distribution of age and normalised position of an age depen-
dent critical branching Markov process conditioned on non-extinction;
and (ii) the super-process limit of a sequence of age dependent critical

branching Brownian motions.

1. INTRODUCTION

Consider an age dependent branching Markov process where i) each parti-
cle lives for a random length of time and during its lifetime moves according
to a Markov process and ii) upon its death it gives rise to a random number
of offspring. We assume that the system is critical, i.e. the mean of the
offspring distribution is one.

We study three aspects of such a system. First, at time ¢, conditioned
on non-extinction (as such systems die out w.p. 1) we consider a randomly
chosen individual from the population. We show that asymptotically (as
t — 00), the joint distribution of the position (appropriately scaled) and
age (unscaled) of the randomly chosen individual decouples (See Theorem
2.1). Second, it is shown that conditioned on non-extinction at time ¢,
the empirical distribution of the age and the normalised position of the
population converges as t — oo in law to a random measure characterised
by its moments (See Theorem [2:2]). Thirdly, we establish a super-process
limit of such branching Markov processes where the motion is Brownian (See
Theorem [2.4]).

The rest of the paper is organised as follows. In Section 2.1l we define the
branching Markov process precisely and in Section we state the three
main theorems of this paper and make some remarks on various possible

generalisations of our results.
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In Section 3] we prove four propositions on age-dependent Branching pro-
cesses which are used in proving Theorem 2] (See Section H). In Section Bl
we also show that the joint distribution of ancestoral times for a sample of
k > 1 individuals chosen at random from the population at time ¢ converges
as t — oo (See Theorem B.5]). This result is of independent interest and is a
key tool that is needed in proving Theorem (See Section [).

In Section [0 we prove Theorem [24] the key idea being to scale the age
and motion parameters differently. Given this, the proof uses standard tech-
niques for such limits. Theorem [2.1]is used in establishing the limiting log-
Laplace equation. Tightness of the underlying particle system is shown in
Proposition and the result follows by the method prescribed in [7].

2. STATEMENT OF RESULTS

2.1. The Model.
Each particle in our system will have two parameters, age in R, and
location in R. We begin with the description of the particle system.

(i) Lifetime Distribution G(-): Let G(-) be a cumulative distribution
function on [0, 00), with G(0) = 0. Let p = [;* sdG(s) < oc.

(ii) Offspring Distribution p : Let p = {p;}r>0 be a probability
distribution such that py < 1, m = > 72 kpy = 1 and that o? =
S o ko — 1 < o0.

(iii) Motion Process 7(-): Let n(-) be a R valued Markov process
starting at 0.

Branching Markov Process (G,p,7n): Suppose we are given a reali-
sation of an age-dependent branching process with offspring distribution p
and lifetime distribution G (See Chapter IV of [5] for a detailed description).
We construct a branching Markov process by allowing each individual to ex-
ecute an independent copy of n during its lifetime 7 starting from where its
parent died.

Let Ny be the number of particles alive at time ¢ and

(2.1) Cr={(al, X)) :i=1,2,...,N;}

denote the age and position configuration of all the individuals alive at time
t. Since m = 1 and G(0) = 0, there is no explosion in finite time (i.e.
P(N; < 00) = 1) and consequently C; is well defined for each 0 < t < o0
(See [3]).
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Let B(R4) (and B(R)) be the Borel o-algebra on R, (and R). Let M (R x
R) be the space of finite Borel measures on R, x R equipped with the weak
topology. Let My(Ry X R) :={v e M(Ry xR) : v =>" 04, 2(,),n €
N,a; € Ry, x; € R}. For any set A € B(R1) and B € B(R), let Y;(A x B) be
the number of particles at time ¢t whose age is in A and position is in B. As
pointed out earlier, m < oo, G(0) = 0 implies that Y; € M,(R, x R) for all
t > 0if Yy does so. Fix a function ¢ € C; (R4 x R), (the set of all bounded,
continuous and positive functions from Ry x R to Ry ), and define

Nt . .
(2.2) (Vi) = [odvi =3 olaf, X))
=1

Since 7)(+) is a Markov process, it can be seen that {Y; : ¢ > 0} is a Markov
process and we shall call Y = {Y; : t > 0} the (G, p,n)- branching Markov
process.

Note that C; determines Y; and conversely. The Laplace functional of Y,
is given by

(2.3) Lip(a,z) = Eqzle™ Y] = Ele™ ) | Yy = §,,].
From the independence intrinsic in {Y; : ¢ > 0}, we have:
(2'4) Ey 4, [e_w’yﬁ] = (EVl [e_w’Yt)])(El/Q [e_<¢7Yt>])’

for any v; € M,(R; x R) where E, [e~(®Y)] .= Ele~{®Y) | Y, = 1] for
1 =1,2. This is usually referred to as the branching property of Y and can
be used to define the process Y as the unique measure valued Markov process
with state space M, (R4 x R) satisfying Lyt s¢(a,x) = Li(Ls(9))(a, z) for all
t,s > 0.

2.2. The Results.

In this section we describe the main results of the paper. Let A; be the
event {N; > 0}, where N; is the number of particles alive at time ¢. As
po <1, P(A¢) >0 for all 0 < ¢ < oo provided P(Ny = 0) # 1.

Theorem 2.1. (Limiting behaviour of a randomly chosen particle)
On the event Ay = {Ny > 0}, let (a¢, X¢) be the age and position of a
randomly chosen particle from those alive at time t. Assume that n(-) is
such that for all 0 <t < 00

(2.5) E(n(t)) = 0,v(t) = E(n*(t)) < oo, sup v(s) < oo,

and v = /OOOU(S)G(ds) < 0.
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Then, conditioned on A, (at, %) converges as t — oo, to (U, V) in distri-
bution, where U and V are Independent with U a strictly positive absolutely
continuous random variable with density proportional to (1 —G(-)) and V is
normally distributed with mean 0 and variance %

Next consider the scaled empirical measure Y; € M,(Ry x R) given by
Yi(A x B) =Y;(A x VtB), A c B(R,),B € B(R).

Theorem 2.2. (Empirical Measure)

Assume (2.3). Then, conditioned on Ay = {N; > 0}, the random measures
%} converges as t — oo in distribution to a random measure v, charac-

terised by its moment sequence my(¢) = E[v(¢)¥], for ¢ € Cy(Ry x R),

k> 1.

An explicit formula for my(¢) is given in (5.2]) below.

Our third result is on the super-process limit. We consider a sequence of
branching Markov processes (G, Pn, n) {n>1} denoted by {Y;" : ¢ > 0},>1)
satisfying the following;:

(a) Initial measure: For n > 1, YJ' = m,,, where 7, is a Poisson
random measure with intensity nv, for some v = axpu € M (R4 xR).
(b) Lifetime G™(-): For all n > 1, G™ is an exponential distribution
with mean %
(c) Branching p,,-: For n > 1, Let F,(u) = Y 32 pniu’ be the
generating function of the offspring distribution p, = {pnr}r>o0-
We shall assume that F;, satisfies,
(2.6) lim sup || n?(F,(1—u/n) — (1 —u/n)) —u®||— 0,
N0 0<u<N
for all N > 0.
(d) Motion Process 7,(-): For all n > 1,

(2.7) m(t) = —= / £>0,

where {B(t) : t > 0} is a standard Brownian motion starting at 0
and o : Ry — Ris a continuous function such that [~ o?(s)dG(s) <
oo. It follows that for each n > 1, n, satisfies ([2.5]).

Definition 2.3. Let £ be an independent exponential random variable with
mean £, 0 < A < co. For f € C;' (Ry xR) let Uy f(z) = E(f(€, 2+ M)By))
where 1 is defined in (2.0). For t > 0, let uy(f) be the unique solution of
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the non linear integral equation

(2.8) wf(2) = Uf(z) — A /0 Ur (s (£)?)()ds.

Let {Y; : t > 0} be a M(R4 x R) wvalued Markov process whose Laplace

functional is given by

where f € Cl+(R+ x R?) (the set of all continuous functions from Ry x R to
R with finite limits as (a,z) — o0) and Vi(f)(z) = wi(f(x)) for x € R (See
[7] for existence of YV satisfying (2.9).

Note that in the process {); : t > 0} defined above, the distribution of the
age (i.e. the first coordinate) is deterministic. The spatial evolution behaves
like that of a super-process where the motion of particles is like that of a
Brownian motion with variance equal to the average variance of the age-
dependent particle displacement over its lifetime. Also, us(f) in second
term of (Z.8)) is interpreted in the natural way as a function on R4 x R with
us(f)(a,z) = us(f)(z) for all a > 0,2 € R.

Theorem 2.4. (Age Structured Super-process)

Let € > 0. Let {Y,"” : t > 0} be the sequence of branching Markov processes
defined above(i.c.in (a), (b), (c), (d)). Then asn — oo, {Vp = LY t > €}
converges weakly on the Skorokhod space D([e,00), M(Ry x R)) to {Vy: t >
€}

2.3. Remarks.

(a) If 7() is not Markov then C; = {a}, X}, i = {m.i(u) : 0 < u <
ai} i =1,2...,N;} is a Markov process where {f;;(u) : 0 < u < a}} is
the history of n(-) of the individual ¢ during its lifetime. Theorem [2.1] and
Theorem extends to this case.

(b) Most of the above results also carry over to the case when the motion
process is R? valued (d > 1) or is Polish space valued and where the offspring
distribution is age-dependent.

(¢) Theorem 2.J] and Theorem2.2] can also be extended to the case when
n(Ly), with L; 4 G, is in the domain of attraction of a stable law of index
0<a<2.
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(d) In Theorem 4] the convergence should hold on D([0, 00), M (R4 xR))
if we take a in the sequence of branching Markov processes to be & (i.e.
Exponential with mean }).

(e) The super-process limit obtained in Theorem [2.4] has been considered
in two special cases in the literature. One is in [6] where an age-dependent
Branching process is rescaled (i.e. the particles do not perform any motion).
The other is in [8] where a general non-local super-process limit is obtained
when the offspring distribution is given by p; = 1. In our results, to obtain
a super-process limit the age-parameter is scaled differently when compared

to the motion parameter giving us an age-structured super-process.

(f) Limit theorems for critical branching Markov processes where the mo-
tion depends on the age does not seem to have been considered in the liter-
ature before.

3. RESULTS ON BRANCHING PROCESSES

Let {N; : t > 0} be an age-dependent branching process with offspring
distribution {py }x>0 and lifetime distribution G (see [5] for detailed discus-
sion). Let {(x}r>0 be the embedded discrete time Galton-Watson branching
process with (i being the size of the kth generation, k > 0. Let A; be the
event {N; > 0}. On this event, choose an individual uniformly from those
alive at time t. Let M; be the generation number and a; be the age of this
individual.

Proposition 3.1. Let A;, as, My and N; be as above. Let i and o be as in
Section [2.1l. Then

. 2p
(@) Jim tP(A) = —5

N, _ 2ux
(b)  For all x > 0, tlim P(Tt > z|A) =e %HQ_,
M, 1
(¢)  Foralle>0, tlim P(\Tt ——|>¢€lA) =0
—00 Iu
1 €T
(d)  Foralle >0, lm Pla < |A) = ;/ (1= G(s))ds.
— 00 0

Proof : For (a) and (b) see chapter 4 in [5]. For (c¢) see [9] and for (d) see
[3]. O

Proposition 3.2. (Law of large numbers) Let € > 0 be given. For the
randomly chosen individual at time t, let {Ly; : 1 < i < My}, be the lifetimes
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of its ancestors. Let h : [0,00) — R be Borel measurable and E(| h(L1) |) <

oo with Ly 4a. Then, as t — oo

My
P35 > h(Ls) = E(H(L))| > el40) 0.
=1

Proof : Let € and €; > 0 be given and let ki (t) = t(% —¢€) and ka(t) =
t(% + €). By Proposition [B.1] there exists 6 > 0, n > 0 and ¢, > 0 such that
for all £ > tg,

(31) tP(Nt > O) > § and P(Nt < tn’At) < €15

(3.2) P(My € [k1(t), k2(8)]|Ar) < ex.

Also by the law of large numbers for any {L;};>1 i.i.d. G with E|h(L1)| < oo

(3.3) Jim_ P(sup LS h(Ly) = B(h(L1)| > ¢) =0.
—00 JZk] i—1

Let {Cx}x>0 be the embedded Galton-Watson process. For each ¢ > 0 and
k > 1 let (s denote the number of lines of descent in the k-th generation
alive at time ¢ (i.e. the successive life times {L;};>1 of the individuals in
that line of descent satisfying Zle L;<t< Zfill L;). Denote the lines of
descent of these individuals by {Cutj : 1 < j < G} Call (it bad if

k
(3.4) 5 h(Laaje) — B((L))) > e
=1

where {Lyji}i>1 are the successive lifetimes in the line of descent (i; start-
ing from the ancestor. Let (i, denote the cardinality of the set {(yj : 1 <



8 KRISHNA B. ATHREYA, SIVA R. ATHREYA, AND SRIKANTH K. IYER

J < it and (e is bad}. Now,

My
P > b(La) = B(L)] > 4)
1=1

= P( The chosen line of descent at time ¢ is bad |A;)

IN

P( The chosen line of descent at time ¢ is bad, My € [k1(t), k2(t)])|Ar)
+P(M; € [ki(t)), k2(t)]°|Ar)

1 ZI?Z(]? (t) Cjt,b
— J=r1 7 c
= P, sl N, A PO E () k(D]14:)
kz(t)
o 1 Zj:kl(t) Cjt,b.
= PN ol T N, ezt
1 20 Cit,b
j=ka(t) Sits - )
TP, S0 N, Nes )+ POV € (), k2 (1)1 A
k:z(t)
1 Zj:kl(t) Cjt,b
<
—= P(Nt>0)E( tn aNt>t"7)+
P(Ny <tn) .
B+ P € [l (0). ka1 4)
S
= BN <) E(Cjep) +
tnP(Ny > 0) P
+P(N; < tn|N; > 0) + P(M; € [k1(t)), k2(1)]°| Ar)
(3.5)

For t > ty by B2) and (33)), the last two terms in ([3.5]) are less than e;.
The first term is equal to

k2 (t) G

1 1
Y2 Y E E(¢; = - - E 1 .
t’l’}P(Nt > 0) ; ({]t,b) t’l’]P(Nt > 0) ; Ek:(t) (2; {¢jui 18 bad})
= =k1 1=
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1 ka(t)

. E(¢:
tnP(N; > 0) j:/%:(t) () >

j 1 j
x P <Z L <t<
=1

1
i=1
where the {L;};>1 are i.i.d. G.

i=1
Using (B.I]) and (since m = 1) E((;) = E({y) we can conclude that

ka(t)
1
t?]P(Nt > 0) ]:kzl:(t) E(Cjt,b)
P P(sup;sp, 1y +1 32721 h(Li) = E(h(L1))| > €)
= 0) tnP(N; > 0)
- E(CO)P(Suijkl(t) 5l Sy h(Li) = E(h(Ly))| > 6)7

no
(3.6)

which by ([B.3]) goes to zero. So we have shown that for ¢ > ¢,
1 &
P(’Mt ;h(Lti) — E(h(L1))| > €|Ar) < 3er.

Since €; > 0 is arbitrary, the proof is complete. O

Proposition 3.3. Assume (2.7) holds. Let {L;};>1 be i.i.d G and {n;}i>1
be i.i.d copies of n and independent of the {L;};>1. For 8 € R,t > 0 define
#(0,t) = Ee'”"Y) . Then there exists an event D, with P(D) =1 and on D
for all 8 € R,

—02y

" 0
¢<—,L'> —e 2 as n — oo,
Motz s

where 1 is as in (2.3).
Proof: Recall from (Z35) that v(t) = E(n?(t)) for t > 0. Consider

Xm:Mforlgign
n
Zj:l v(Ly)
and F = o(L; : © > 1). Given F, {Xp; : 1 < i < n} is a triangular array
of independent random variables such that for 1 < i < n, E(X,;|F) = 0,
Y B(X|1F) =1
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Let € > 0 be given. Let

Lo(e) =) E (X2 X2 > | F).
i=1

By the strong law of large numbers,
Z?:l v(L;j)
n

Let D be the event on which ([B.7) holds. Then on D

(3.7) — w.p. 1.

n

ena

limsup Ly () < 1imSUP%ZE(’m(Li)’2) (L) P > T\f)
< tmsup §E(m (L) | m (L) P> B)
= 0.

Thus the Linderberg-Feller Central Limit Theorem (see [4]) implies, that on
D, for all 0 € R

n ' . 2
o| —— 1| = BT i) S e
=1\ \/2j=1v(L;)
Combining this with ([B.7)) yields the result. O

Proposition 3.4. For the randomly chosen individual at time t, let
{Lyi,{mi(u) : 0 < u < Ly} 1 < i < M}, be the lifetimes and motion
processes of its ancestors. Let Z; = ﬁ zij‘itl nei(Lyi), and

ﬁt = O'{Mt,Lti 01 S 7 S Mt} Then

X 2
(3.8) E (\E(e’ezﬂ L) — e 7| ]At> —0

Proof: Fix 0 € R,e; > 0 and € > 0. Replace the definition of “bad” in

B.4) by

(3.9) Lo L) — 5 >
o VE
By Proposition B3] we have,
] 0 0%y
(3.10) Jim_ P(sup| [[¢(—=.Li)—e 2 |>e =0

ik oo VI



AGE DEPENDENT BRANCHING MARKOV PROCESSES 11

Using this in place of ([8.3) and imitating the proof of Proposition [3.2]
(since the details mirror that proof we avoid repeating them here), we obtain
that for ¢ sufficiently large

2
(3.11) |H¢ LtZ - e_eTw| >e1|A) <e

Now for all 8 € R,

E(e%0|C,) H¢ =, Lu).
So,
9; My i L 7, 2
limsupE(\E(eZ g, iz L |L¢) — GTIPHAt)
t—o0
0 0%
= limsup E( Ly)—e 2 ||A
tqoop ’H¢ \/— ti) || At)
< 61+2hmsupP |H¢ 4 yLy) —e 2 | > €e]Ap)
t—o0 \ Mt
= €]+ 2e.
Since € > 0,¢e; > 0 are arbitrary we have the result. O

The above four Propositions will be used in the proof of Theorem 2.1
For the proof of Theorem we will need a result on coalescing times of
the lines of descent.

Fix k > 2. On the event A; = {N; > 0}, pick k individuals Cy,Cy, ..., Cy
from those alive at time ¢ by simple random sampling without replacement.
For any two particles C;,Cj, let 7¢; ¢+ be the birth time of their most
recent common ancestor. Let 7,1 = sup{7¢;c,t : @ # j,1 < i,j < k}.
Thus 71,14 is the first time there are k — 1 ancestors of the k individuals
C1,Cy,...,Ck. More generally, for 1 < j < k —1 let 7;; as the first time
there are j ancestors of the k individuals C1, Cy, ... Ck.

Theorem 3.5.

CCt

< z|A;) = H(z) exists for all z >0
and H(-) is an absolutely contmuous distribution function on [0, ]
(i) Conditioned on A, the vector 7, = +(1;,: 1 < j <k —1) ast — oo
converges in distribution to a random vector T = (Th, ..., Tp—1)

(i) For any i,7, lim;_,o P(
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with 0 < T7 < Ty < ... < Tp_1 < 1 and having an absolutely

continuous distribution on [0,1]¥71.

Proof : The proof of (i) and (ii) for cases k = 2,3 is in [9]. The following
is an outline of a proof of (ii) for the case k > 3 (for a detailed proof see [3]).
Below, for 1 < j <k — 1, 7;; will be denoted by 7;. It can be shown that
it suffices to show that for any 1 < i1 <idg... <ip <kand 0 <r; <rp <
<y < 1,
lim P(&<r1<@<r2<...<Tﬁ<rp<M <rp—1 < 1]4;)
t—o0 t t t t
exists. We shall now condition on the population size at time tr;. Suppose
that at time trqy there are nq; particles of which ki1 have descendants that
survive till time ¢ry. For each 1 < j < k11, suppose there are ny; descendants
alive at time try and for each such j, let k; out of the no; have descendants
that survive till time tr3. Let ko = (k21,..., ko) and |k2| = Z'ﬁ:ﬂl kaj
Inductively at time tr;, there are n;; descendants for the j-th particle, 1 <
J < |ki—1]. For each such j, let k;; out of n;; have descendants that survive
up till time tr; 1 (See Figure 3] for an illustration).
It will be useful to use the following notation: Let

nit, ki1 € Noki < na, |k |= ks na = (naa).

For i =2,...1p let (n;, k;) € N;, where N; = Nlki-1] 5 Nlki-1l

|ki—1] n |ki1] -
iy < nig, | Ki |= Y g, <k:> =11 (ﬁ)
j=1 ' j=1 >

Let fs = P(Ns; > 0). Now,

Ti T Ti Th—
P(i<r1<ﬁ<r2<...<%<rp<%<rk_1<t|At):

t t
r n — P(Nyy, =n
_ f}l 3 <<k11>(ftn)kn(1_f““1) 1 k11> ( tfl U
t (’ﬂi,ki)ENi 11 try
pt+1[ki-1] s ' _
« TLTT () 00 = b PV, = iy, > 0)
i=1 j=1 K
[T, x
xg(k)ET,
with w; = ripr — 10 = 1,2,...,p =1, up = 1 —1p, Nt]ul is number of

particles alive at time tu; of the age-dependent branching process starting
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with one particle namely j, g(k) = g(k1,...,kp) is the proportion of con-
figurations that have the desired number of ancestors corresponding to the
given event, X7 £ Nj, [Nj, >0and S =317 X7,

Let ¢; =
Ti Ti
B.1 (1) (11) repeatedly we can show that P(5L <7 < 22 <y <...< 2 <
rp < EL < rp_q < t|Ay) converges to

o — 1. Then following [9 ] and using Proposition

1 1
— Z /dxe_x(qla;)k“—e_qux
q o~ Ei1!
k;eNFi—1
p+1 ‘kz 1| q 1
X H H /da:e Zki' e " g(k)
=2 j=1 t
Z f+11 x,)k (]ka\ —k)!

p+1 ‘k|

1
R 2 H1+q\k\|k”| 9(k) x

kieNlki-1l i= i

|kp+1‘_k

k1
o s ) e
T\ )k (Ikpt1| = K)!

2 1

Consequently, we have shown that the random vector 73 converges in
distribution to a random vector 7. From the above limiting quantity, one
can show that the T has an absolutely continuous distribution on [0, 1]*~.
See [3] for a detailed proof.

O

4. PROOF OF THEOREM [2.1]

For the individual chosen, let (at, X;) be the age and position at time t.
As in Proposition B4l let { Ly, {ni(u),0 < u < Ly} : 1 < i < M}, be the
lifetimes and the motion processes of the ancestors of this individual and
e +1y(u) =0 < u <t — S2M: Ly} be the motion this individual. Let
Ly = o(My, Ly, 1 < i < My). It is immediate from the construction of the
process that:

My
ap =1 — g Ly;,
i=1
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try tro trs

kin =6, kz = (2,0,1,1,0,1), | kz |= 5,ks = (0,2,1,2,1),| k3 [= 6
niy =51,na = (12,7,5,4,1,7),ns = (5,14,9, 10,8)

FiGUure 1. Tracking particles surviving at various times

whenever M; > 0 and is equal to a + t otherwise; and that
M
Xi = Xo+ D> mi(Lus) + mar 1) (a2)-

1=1

Rearranging the terms, we obtain

(az, %) — (ar, \/741 <\/: - [) Ze) + (0.2 + o)

M.
>t mi(Le,)
v My

where Z;y = and Z = %m(MtH)(at). Let € > 0 be given.
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P(‘Zﬁ’ > E‘At)

IN

P(’Ztg‘ >e,a < k‘At) + P(‘Zﬁ’ > €, > k’At)
P(’Ztg‘ >e,a < k‘At) + P(at > k’At)

E(|Zi2|* Lo, <k| At)
2

A

IN

. +P(at > k7|At)

By Proposition .1l and the ensuing tightness, for any 7 > 0 there is a k,

P(at > ]{7|At) < g

for all k > k,,t > 0. Next,

E(|ZLay<k)|At) = E(la,<k, E(|Z2|*|L0)| Ar)
via
= Bl N2 4,
SUp, <, V(u)
- t
Hence,

sup,<g,, v(u)

P(’Ztg‘ > €’At) 2

n
+2

Since € > 0 and 7 > 0 are arbitrary this shows that as t — oo
(4.1) Zia| Ay -2 0,

Now, for A > 0,0 € R, as a; is £; measurable we have

2

_i 0 i L
E(e_)\ate Z\/EZt1|At) _ E(e—)\at(E(e—zeZt1|£t) —e )|At) +
_6%y
4+ "2 E(e_)\at‘At)

Proposition B.3] shows that the first term above converges to zero and
using Proposition B we can conclude that as ¢t — oo

(4.2) (a, #zﬂmt v

As Xy is a constant, by Proposition B1] (¢), (£2), (£1]) and Slutsky’s The-
orem, the proof is complete. O
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5. PROOF OF THEOREM

Let ¢ € Cp(R x Ry). We shall show, for each & > 1, that the moment-
<V;,p>F
NY
[11] the result follows.

The case k = 1 follows from Theorem 2.1l and the bounded convergence

functions of E( |A;) converges as t — co. Then by Theorem 16.16 in

theorem. We shall next consider the case k£ = 2. Pick two individuals C7, Co
at random (i.e. by simple random sampling without replacement) from those
alive at time t. Let the age and position of the two individuals be denoted
by (ai, X}),i = 1,2. Let 7z = 7¢, ¢, be the birth time of their common
ancestor, say D, whose position we denote by X}t. Let the net displacement
of 4 and C5 from D be denoted by Xf_n,z' = 1,2 respectively. Then
Xi=X,+X} ., i=12

Next, conditioned on this history up to the birth of D(= G;), the ran-
dom variables (aj, X;_,,),i = 1,2 are independent. By Proposition (i)

Tt

conditioned on Ay, % converges in distribution to an absolutely continuous

random variable T' (say) in [0,1]. Also by Theorem 2.]] conditioned on G;

and Ay, {(a, 5;—:%),2 = 1,2} converges in distribution to {(U;, V;),i = 1,2}
%,

which are i.i.d. with distribution (U, V) as in Theorem 2.1l Also —Z
tioned on A;, converges in distribution to a random variable S distributed
as V. _

Combining these one can conclude that {(a, %),z = 1,2} conditioned on
A converges in distribution to {(U;, VT'S + /(1 = T)V;),i = 1,2} where
Ui, Us, S, V1, Vs are all independent. Thus for any ¢ € Cy(Ry x R) we have,
by the bounded convergence theorem,

condi-

(5.1)
2 i 2
tim B([] é(ai, 1) A) = B[] U VTS + T = TWVi) = ma(6) (say)

fmreo i=1 \/E i=1

Now,

X NN —1
e otai, Mg

Using Proposition [3.1] (b) and the fact that ¢ is bounded we have
limy o0 E((%f)))aflt) exists in (0,00) and equals ma(¢). The case k > 2
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can be proved in a similar manner but we use Theorem (ii) as outlined
below. First we observe that as ¢ is bounded,

<Y, ¢ >*
b < NF ‘|At) += Z:Eh(Nta H¢ |At + g9(#,Ci, Ny),

where h(Ny, k) — 1 and g(¢,Ct, Ny) — 0 ast — ooy and i = {iy,49,... 0k}
is the index of kparticles sampled without replacement from C; (see (2.1)).
Consider one such sample, and re-trace the genealogical tree 7; € 7 (k),(7 (k)
is the collection of all possible trees with k leaves given by i), until their most
common ancestor. For any leaf i; in 7j, let 1 = n(i;,1) < n(i;,2) < - <
n(ij, Ni;) be the labels of the internal nodes on the path from leaf i; to
the root. We list the ancestoral times on this by {Tl,Tn(ij71), s Taliy, N,)-
Finally we denote the net displacement of the ancestors in the time intervals

[07 7—1]7 [7—17 Tn(ij,2)]7 EE) [Tn(ij,Nij—l)y Tn(ij,Nij)]7 [Tn(ij,Nij)vt]

by

- - _Ni; ~
77@'1j (7—1)7 77@2] (Tn(ij,2) ) 7_1)7 SRR nij ! ( Tn(ij,N; ) Tn(z],Nij —1))7 77§j (t7 Tn(ij,Nij))'

Given the above notation we have:

i k
at s |At =K Z H f(¢7]7 t)|At 5

||::];r

TeT; j=1
where
N;,
F(o,5,t) = ¢lay, \1[(?72] 1) + 2327713 (Taiym)» Taigam—1)) + 7l (6 Taiy i, ))-
m
Now by Theorem B.5],
(T0s Tn(i;2)s -+ + s T(iy,N; )

\/% ’At % (T17Tn( 2)s .- JTn(ij,Nij))‘

So by Theorem 2.1]

LHQOE<<%> 40 =2 (X 5 [Toto5:004: ) = muto

i Te7;j=1
(5.2)
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where

9(¢,5,t) =

Ni,
= o(USVII+ Z ZZ?\/T"(ijvm) — Tagim-1) + Zl{j 1= Tn(iijij)
m=2
with S, Z{j,Z{?, m = 2,...,N;;, are i.i.d.V, U is an independent random
variable given in Theorem 2] and 7;’s are as in Theorem (ii). Since
¢ is bounded, the sequence {mg(¢) = limy_ E(%ﬁ?k)} is necessarily a
moment sequence of a probability distribution on R. This being true for

each ¢, by Theorem 16.16 in [11] we are done. O

6. PRrRoOOF OF THEOREM [2.4]

Let Z be the Branching Markov process Y described earlier, with lifetime
G exponential with mean A\, p; =1 and n 4 7 (see (27))). Then it is easy to
see that for any bounded continuous function, S;¢(a,r) = E, 4y < Zt, ¢ >=
Eq0)9(as, Xy) satisfies the following equation:

6.1)  Sip(a,z) = e MWio(a, z) —i—/o dshe W, (Si_s(6)(0,))(a, z),

where W; is the semi-group associated to 7. Let £ be the generator of
n1. Making a change of variable s — t — s in the second term of the above
and then differentiating it with respect to ¢, we have

%St(@(a,x) = —Ae MWig(a, x) + e M LWig(a, x) + A (¢)(0, x)
v /0 dsA(—Xe™ =Y W,_ o (S4(6)(0, ) (a, z)

+ / dsAe N0 £, (84(6)(0, ) (0, 2)
0

= ASt((b)(O? LL’)
+(L =N [e_)‘tWtqb(a,x) + /O ds e W, (S4(6)(0,))(a, z)
= ASi(¢)(0,2) + (L — N)Si(¢)(a, x)

o?(a
_ 85@(&7;3) + 2( )AStqﬁ(a,ac) + AMSe(0)(0, ) — Se()(a, x)),

da
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For each n > 1 define (another semigroup) Ry'¢(a, x) = Eq o(¢(ar, $+%)
Now note that,

R?(JS(CL, 33‘) = Ea,0(¢(ata T+

= Ea,\/ﬁ:c((ﬁ(ata%)
- St¢n(a7\/ﬁx)7

where ¢, (a,z) = ¢(a, %) Differentiating w.r.t. ¢, we have that the gener-
ator of R} is

o 2
62 R'6(ar) = 22(a,2) + 1D Ag(a,2) + M6(0.2) — o(a, ).
Proposition 6.1. Let € > 0 and t > €. Let ¢ € C}F (R4 x R%). Then,
(63) sup | Rpy(¢)(a,z) — Uy(¢)(z) |— 0.
(a,x)eR4 xR

Proof: Let t > e. Applying Theorem 2] to the process Z, we have

(ant, %) 4, (U,V). The proposition is then immediate from the bounded
convergence theorem and the fact that ¢ € C;"(Ry x R) O

Proposition 6.2. Let m,, be a Poisson random measure with intensity nv
andt > 0. The log-Laplace functional of Vi,

(6.4) E

Ty

(o6 = o~ (o)

where

ug ¢
n

uyd(a,x) = Rn —e_%aaz— ts" n’v, a,T
(65) ufdla. ) = Riyn(1—e™)a.a) <A [ dshl (20, (20)(a.2),

where
U, (9)(a,x) := [Fp(1 — ¢(0,2)) — (1 — $(0,2))] .

Proof: For any n € N, let Y,* be the sequence of branching Markov pro-
cesses defined in Section It can be shown that its log-Laplace functional
L} satisfies,

(6.6)

nt
Lyd(a,x) = e Wi le™%)(a, 2)+ / dsAe W [Fo(Lyy_(0,-))] (a,2)ds,
0

where ¢ > 0 and W}/ is the semigroup associated with 7,. Using the fact
that e ™ =1 — fou dshe=>s for all w > 0 and a routine simplification, as
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done in [10], will imply that
(6.7)

Lryd(a,2) = Wie™)(a, 2) + A / n (Fu(L26(0,)) — L76)(a,z)ds

Therefore v}, (¢)(a,z) =1 — L}¢(a, z), satisfies,
(6.8)

U f(a, ) = Wﬁt(1—€_¢)(a7$)+/on dsW;_(1=vid)—=Fn(1-0v5)$(0,-)))(a, ©) Ads.

Let L" be the generator of n,. Then for 0 < s <t

d
TR (0hs(9)(a2) =

= SRR (R O) (00) + By (50 0) (@0
= (R By (0 (6) (0 2)
FRY ) (LWL =€)+ nA((L = 0jd) — Fall = )00, ) (a,2))

TR ( /O U (WL (1= o(6)) — Fa( — 000, ->>> (a,2)
= R (SAERO)(0, ) — 1 (6)) + AL — ) — Fa(l — o8)6(0, ) (@, 2))
= _RZ(t—s) (’I’L\I’n (,UZSQS))(G’ 33'),

Integrating both sides with respect to s from 0 to ¢, we obtain that

t
(6.9) v(¢)(a,x) = Rpy(1— e~ ?)(a,z) — /0 dsRp;_ s (n¥n(vps8))(a, ).
If 7, is a Poisson random measure with intensity nv, then

En [ @YD) = By [em(RYa)] = {LEE) L) _ o=nep (D))

Therefore if we set uj'(¢) = nov)! ( ). From (6.9]), it is easy to see that u}'(¢)
satisfies (6.4]). O

For any £ Ry x R — B, L we let | £ [lo= supguuyci, cz | £(0.7) |
With a little abuse of notation we shall let || f |lco= sup,er | f(x) | when
f:R—R as well.

Proposition 6.3. Let ¢ > 0. ¢ € C;"(Ry x R?) and u}'(¢) be as in Propo-
sition and ui(¢) be as in Theorem [2] Then fort > e,

(6.10) sup | ui'(9)(a, z) — u(9)(x) [— 0
(a,z)eR4 xR
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Proof: For any real u € R, define, e, (u) = An?(F,(1 — %) — (1 — %)) — u?.
So,

%)) a,)

W (@), x) = Riyn(l — ¢ )(a,z) — A / AsRY ) (120
= Rinll = e o) = [ dsRi (el (00))a.0)
- / AR, (u26(0,)2) (0, )

Now

u () (a, @) — ui(@)(x) =
= RIy(n(1—e ) (a,2) — Uy(9)(x)

_ /0dst(t_s)(€n(u?(¢(0.))))(a7x)
3 [ s (Vi (@) ) = R w2600, a.2)

= RY(n(1 - e %))(a,2) — U(@) (@) — /0 dsRY ) (e (ul(6(0,))))(a, )
.\ / ds R, (150) = 126(0,)?)(a, )

3 [ s (U0 0) = Ry 6. ))

Observe that, R is a contraction, || u™(¢) [|eo<|| ¢ |loc and || u.(¢) [|cc<||
¢ ||eo for ¢ € Cj(Ry x R). Therefore, we have

1u2(6) — () oo < || RE(n(1— e=3)) = Us(@) oo +t | en(u(6(0,) [loe
F2A ] 6 [l /0 ds || u() — ua(®) o

t
+A/0 ds || (Ur—s = By ) (1s9)” ||oc -

For ¢ € Cj(Ry x R%), note that, Uy, is a strongly continuous semi-group
implies that us(¢) is a uniformly continuous function. So using Proposition
the first term and the last term go to zero. By our assumption on F|
| en(ul((0,-)) |loo Will go to zero as n — oo. Now using the standard
Gronwall argument we have the result. O
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Proposition 6.4. Let e > 0. The processes Y™ are tight in D([e, 00), M (R4 x
R)).

Proof By Theorem 3.7.1 and Theorem 3.6.5 (Aldous Criterion) in [7] , it
is enough to show

(6.11) V5 8) — (V) -0,

where ¢ € C;r (R4 x R), §,, is a sequence of positive numbers that converge
to 0 and 7, is any stop time of the process Y™ with respect to the canonical
filtration, satisfying 0 < € < 7, < T for some T' < oo.

First we note that, as ()}*,1) is a martingale, for v > 0 by Chebyschev’s
inequality and Doob’s maximal inequality we have

1 1
(6.12)  P(Q7,,9) >7) < g ¢ lloe E( Vi, 1) < e 16l

sup
e<t<T

By the strong Markov Property applied to the process V" we obtain that
for a;, 3 > 0, we have

Ln(0n; 0, 8) = E(exp(—a(Y; 4s,.,¢) — B85, )
= Eexp(—(Vr ,us, (ag) + B)))
= BElexp(—(Vr _o,ul (ug (ag) + B9))))

Therefore

’ Ln(o;aaﬂ) - Ln((sn;a:ﬂ) ’S
< |l ud(ug, (ad) + B¢) — ul ((a + B)9) [loo E(?ng(yfa 1))

< o | ug(uf, (ag) + 60) — ud ((a + B)9) [l

where is the last inequality is by Doob’s maximal inequality. Now,

| ug (ug,, (@) + 8¢) — ud ((a + B)9) oo <|| Bpe(ug, (ad) — ad) [l +
+ez || 6 oo /0 da || ug(ug, (@@) + B¢) — ug(( + £)9) llo +dn(9),
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where d,(¢) = )\foeda I en(ug(uy (ag) + Bd) + en(ug (@ + 8)9)) [loo -
Observe that

| Rre(ug, (@) — a9) |loo < [| Ryc(ug, (@) — Ry, (@) [loo
+ [ B (Bys, (@9) — ag) [l

< | ul (ad) — Ris (620) oo + | Riers,(@6) — Ri(00) [loc
on n
< I R (1 =) =a0) |+ [ da | R, (29(*20)) |
1| B2 gy (@) — Ri(09) [l
< (1 —e%) — ad oo +onca(ll ¢ 12 +1)+ | REis,(@6) — Ric(a) [|oc,
Een((ﬁ)
Consequently,

| uP (. (ad) + B6) — ul((r + £)6) [lso< en(d) + dn(9)
e || 6 lloe /0 da || ul(uf (a) + B8) — u((r + £)8) 1o -

By Proposition [6.1] e, (¢) — 0 and d,,(¢) — 0 by our assumption F;,. Hence
by a standard Gronwall argument we have that,

By ©12), {(V7 ,¢);n =1,2,...} is tight in R;. Take an arbitrary sub-
sequence. Then there is a further subsequence of it indexed by {ny;k =
1,2,...} such that (yffk , @) converges in distribution to some random limit
b. Thus we get

(Vi (6), Vs (@) = (b,b) as k — o.

But (6.13) implies that
mn n d
(Vrk (@), V2 15, () = (b,b) as k — oo,

This implies that (V" +6nk’¢> (yfjk,gb) %, 0ask — 0. So (611
holds and the proof is complete O

Proof of Theorem [2.4] Proposition [6.3] shows that the log-Laplace func-
tionals of the process );' converge to ); for every ¢t > €. Proposition [6.4
implies tightness for the processes. As the solution to (2.8) is unique, we

are done. O
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