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Abstract: Let   be a Markov Chain with a unique stationary distribution .  Let h be a

function integrable w.r.t. .  Let h =  h d  and hn =    This paper explores 

the conditions for the   consistency and asymptotic normality of the estimate hn of h

assuming the existence of h solution to the Poisson equation h - h = g - Pg.  This framework

covers the case of nonirreducible Markov chains arising in many growth models in economics.
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I.  Introduction

Here is an informal statement of the problem that is addressed to in this expository paper. 

Consider a Markov Chain {Xn} with a unique stationary distribution  which is not easy to

compute analytically.  A natural alternative is to estimate (A) for any subset A of the state

space from observing the chain {Xj} over a finite number of periods, say 0  j  n and using the

sample proportion of visits to A (defined as   where IA is the indicator

function of A) as the estimate of (A).  The asymptotic consistency property of such an estimate

is based on laws of large numbers1 that assert that, under certain conditions, for -almost all

initial conditions x,   converges to (A) in a suitable sense.  But one may say that this is

somewhat like "begging the question": since  is not known, and since the support of  is often

difficult to determine, or is a small set (see Section 4.4 for an example in which the support of

the stationary distribution is a subset of (0,1), the state space, and has Lebesgue measure zero). 

In the context of dynamic economic models, the initial condition is historically given, and cannot

be chosen by the observer2 (to belong to the support of ).

This paper addresses the question of finding conditions under which   is a

consistent estimator of (A) for any initial condition, and further, when it is  -consistent (i.e. 

 is stochastically bounded) and when it is asymptotically normal.  More

generally, we consider a reward function h on the state space, and would like to estimate h =  h

d , the expectation of h with respect to the stationary distribution.  A natural candidate is the

empirical average  .  One would like to assess the accuracy of , i.e., the

order of magnitude of the error    We provide sufficient conditions under which 

 is of the order of  .  When the Markov Chain {Xn} is Harris irreducible (see

Orey [1971]), with respect to some nontrivial -finite measure, (this includes irreducible



2

countable state space Markov Chains) the techniques of regeneration due to Athreya and Ney

[1978] and Nummelin [1978] can be exploited to find such conditions (see the books by

Nummelin [1984], and Meyn and Tweedie [1993]).  However, there are many Markov Chains

that are generated by iterations of independent identically distributed random maps (also known

as Iterated Function Systems (IFS)) that are in general not irreducible (see Bhattacharya and Lee

(1988), Athreya and Stenflo (2000)).  This is especially true when the IFS consists of a finite or

countable number of maps and the stationary distribution turns out to be a nonatomic one.  Some

of the best known stochastic dynamic models in economics - both descriptive and normative -

fall into this category.  We note that the literature on the "inverse optimal problem" identifies

conditions under which a given IFS is "generated" by a stochastic dynamic programming model

(see Mitra, Montrucchio and Privileggi (2001) and the list of references).  This line of research

owes much to the pioneering efforts of Mordecai Kurz (1969).

The present paper is devoted to establishing  consistency and asymptotic normality of

the estimate hn under the key assumption that there is a function g such that i) h - h = g - Pg

(the so-called Poisson equation) and ii) some finiteness condition holds.  There are many

nonirreducible chains that satisfy these conditions.  Also in some irreducible cases the present

approach is an alternative to the regeneration approach referred to earlier.  Kipris and Varadlan

(1986) treat the case when the chain is reversible with respect to the stationary distribution.

After some preliminaries in Section 2, a variety of sufficient conditions for  -

consistency and asymptotic normality are presented in Section 3.   In Section 4 we turn to

Markov Chains generated by iterations of independent identically distributed monotone maps on

an interval [c,d].  When the chain satisfies the splitting condition introduced by Dubins and
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(2.1)

(2.2)

Friedman (1966), it has a unique invariant distribution , to which the distributions of Xn

converge in the Kolmogorov distance geometrically from any initial condition.  This turns out to

be crucial to derive the  -consistency of the estimates.  We also sketch in this section some

applications of the results to example of growth and cycles under uncertainty [see Stokey and

Lucas (1989), Ljungqvist and Sargent (2000) and Bhattacharya and Majumdar (2001)].  All the

proofs are relegated to the last section.

2.  Estimating the Stationary Distribution of a Markov Chain

Let   be a Markov Chain with state space (S, ), transition function p( , ) and a

given initial distribution  [which may assign mass one to a single point].  Recall that the

transition function p( , ) satisfies: (a) for any A , p( ,A) is -measurable; and, (b) for any 

x  S, p(x, ) is a probability distribution over .  Assume that there is a stationary (or, an

invariant) probability distribution  on (S, ), such that 

for every A in .

Suppose that we wish to estimate  from observing the Markov chain {Xj} for 0  j  n

starting from a historically given initial condition.  A "natural" estimate of (A) for any A in  is

the sample proportion of visits to A, i.e.
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(2.3)

(2.4)

(2.5)

(2.6)

where IA(x) = 1 if x  A and 0 if x  A.  We say that   is a weakly consistent estimator of

(A) under  if n(A) (A) as n  in probability, i.e.,

 is a strongly consistent estimator of (A) if (2.3) is strengthened to:

Assuming that   is such a consistent estimator, it will be useful to know the accuracy of the

estimate, i.e., the order of the magnitude of the error   .  Under fairly general

second moment conditions this turns out to be of the order   (i.e., the estimator is 

consistent) and under some further conditions a central limit theorem of the sort asserting that

for 0 <   depending on A and possibly the initial distribution  holds.  This can then be

used to give confidence intervals for (A) having observed    

The above issues can be considered in a more general framework where the goal is to

estimate

the integral of a reward function h with respect to  for a real valued measurable function
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(2.7)

(3.1)

(3.1')

h : (S, )  R that is integrable with respect to .  A natural estimate for h is the empirical

average:

As before it would be useful to find conditions to assess the accuracy of   i.e. the order of

the magnitude of    In particular, it is of interest to know whether this estimate is 

consistent,  i.e., whether   is of the order   and further whether 

 converges in distribution to N(0,   ) for   depending on h.  In the

next section we state some results that provide precise conditions for the validity of the  

consistency of and asymptotic normality of the estimators  

3.  Sufficient Conditions for   Consistency and Asymptotic Normality 

A reward function h is a -measurable real valued function on S.  Let  be a stationary

distribution for the transition function p( , ); and let

Let

be the mean of the reward function with respect to .

In this section we present a variety of sufficient conditions on h and p that ensure
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(3.2)

(3.2')

(3.3)

(3.3')

-consistency and asymptotic normality of   defined in (2.7).

In what follows, if g is a - measurable real valued function on S such that for all x 

S

then Pg is a function defined by:

the conditional expectation of g(X1) given X0 = x.  The conditional variance of g(X1) given

X0 = x is defined by

provided

3.1 Consistency

The following proposition provides a sufficient condition for the estimate   of

h[(2.6) - (2.7)] to be  -consistent:

Proposition 1.  Let  be a stationary distribution for p( , ), and h be a reward function [satisfying

(3.1)].  Let there exist a function g [satisfying (3.2) and (3.3)] such that the Poisson equation
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(3.4)

(FC)

(3.5)

(3.6)

holds, i.e.,

Let the initial distribution  be such that the following "finiteness condition"holds:

Then,

Remark 1.  Since  is an equilibrium distribution for the Markov chain

as it should be since (3.4) holds and h =  hd .

Corollary 1. Under the hypothesis of Proposition 1  is a   consistent estimate of h; that

is,   is stochastically bounded, i.e.,  for  > 0, K  such that for all n
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(3.7)

(3.8)

(3.9)

(3.9')

In addition,  > 0, as n 

Corollary 2.  Suppose h and g in the above proposition are such that g is bounded.  Then (FC) is

satisfied for any initial distribution  and hence (3.5) - (3.7) hold.

A natural question is this: given a reward function h how does one find a function g such that the

Poisson equation (3.4) holds?  The following comments address this issue.  Let h be such that for

all x  S

Let

satisfy (3.2), i.e. Ex g(X1)  <    for all x.  Let

i.e., the expectation and summation can be interchanged.  Comparing (3.9) and (3.9') we see that

g(x) = Exh(X0) - h + (Pg)(x) = h(x) - h + (Pg)(x), i.e., (3.4) holds.
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(3.10)

(3.11)

(3.11')

(3.12)

Corollary 3.  If the function g defined in (3.9) is bounded then (3.5) - (3.7) hold for any initial

distribution .

Corollary 4.  Let A  be such that for all x  S

Let

be bounded and satisfy

Then (3.5) - (3.7) hold with h(x)  IA(x), for any initial distribution .

Corollary 5.  Let A  be such that 

where .  Then g defined in (3.11) is bounded and satisfies (3.11') and hence (3.4) -

(3.7) hold with h(x) = IA(x) for any initial distribution .

Remark 1.  In the case of Markov processes generated by iterations of iid monotone maps on a
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(3.13)

(3.14)

(3.15)

finite interval [c,d] that satisfy the so-called splitting condition it is known (see Dubins &

Freedman (1966)) that 

for some 0 <  < 1.  It follows from (3.12) and (3.13) that the empirical distribution function 

 is a   consistent estimator of [c,y].  Also, for h(x)  x it can be shown that

g in (3.9) satisfies (3.4).  This point is elaborated in Section 4.

3.2 Asymptotic Normality

The next Proposition deals with asymptotic normality.

Proposition 2.  Let h,g Pg, Vg be as in Proposition 1.  Let

where M  = {y : g(y) - Pg(x)  > }.

Suppose that the initial distribution  is such that under P
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(3.16)

(3.17)

(3.18)

Then under such a P

Corollary 6.  Suppose g above is bounded and (3.15) holds.  Then (3.16 - 3.17) hold and hence

(3.18) holds.

Corollary 7.  Let h: S  R be such that for all x  S,   and 

 satisfies (3.9') and (3.15) - (3.17) of Proposition 3.  Then (3.18)

holds.

Corollary 8.  Let A   be such that for all x  S
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Let .

Suppose the initial distribution  is such that

Then, under P ,

Corollary 9.  Suppose there exists a probability distribution  and constants {bj}, function k( )

such that

  i) pj(x, ) - ( ) TV  k(x)bj

 ii)

iii)  k2d  < 

where TV stands for total variation distance.  Suppose also that the initial distribution  is

such that for any g integrable with respect to  the weak law of large numbers holds, i.e., under

,
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(4.2)

Then, for such an initial distribution , for any bounded measurable h, 

for some   non-random but depending on  and h.

4. Markov Chains Generated by Iterations of I.I.D. Maps

We now consider Markov chains   generated by iterations of an i.i.d. sequence of

random maps.  Let S be a closed bounded interval [c,d] (-  < c <  < , and  the Borel -field

of S.  Let  be a family of maps from S into itself.  Let   be a sequence of i.i.d. maps from

.  For a given initial x, write

and (4.1)

Then for any x, Xn(x) is a Markov Chain with state space S = [c,d] and the transition function

p(•,•) is given by

The initial state x can also occur (independently of ( n)) according to some probability

distribution .  The distribution of Xn when the initial distribution in  is denoted by Pn.
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(4.3)

4.1 Monotone Maps and the Splitting Condition

Let  be a set of monotone maps from S into S; i.e., each element of  is either a

nondecreasing function on S or a nonincreasing function.

Given two probability measures  and  on , let dK( , ) be the Kolmogorov distance,

i.e.,

It should be noted that convergence in the Kolmogorov distance implies weak convergence.

Proposition 3. (Dubins and Feedman (1966)).  Assume that the following splitting condition (H)

holds:

(H) There exist z0  S,  > 0 and a positive integer N such that

(1) Prob( N N-1... 1x  z0 x  S) 

and

(2) Prob( N N-1... 1x  z0 x  S) 

(a) Then there is a unique invariant distribution  on [c,d] of the Markov process Xn;

and

(b) for any initial distribution ,
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(4.4)

where [y] is the integer part of y.

The estimate (4.4) of the speed of convergence of Pn to the invariant  plays a crucial

role in applying Proposition 1 and its corollaries to the economic models that we describe now.

4.2 Models of Growth and Cycles

We should stress that Markov Chains generated by iid maps arise "naturally" not only in

descriptive dynamic economics, but also in the context of dynamic optimization under

uncertainty, particularly when one wishes to study the evolution of states generated by an

optimal policy function (see Majumdar, Mitra and Nyarko (1989 for an extended list of

references).  We briefly outline two examples of applications of Proposition 3 [see Bhattacharya

and Majumdar (2001, Section III) for details, particularly for the verification of the splitting

condition (H)].

Example 1.  Let  = {F1....FN} where each Fi : R+  R+ satisfies:

F.1. Fi is strictly increasing, continuous and there is some ri > 0 such that Fi(x) > x on (0, ri)

and Fi(x) < x for x > ri.

F.2. for i > i', Fi(x) > Fi'(x) for all x  0.

Let Prob ( n = Fi) = pi > 0 (1  i  N).
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As before, let Xn+1(x) = n+1(Xn(x)).  It is possible to show that this Markov chain {Xn(x)}

with state space (0, ) has the following property: for each x  (0, ) Xn(x) enters the interval [r1,

rN] with probability one, and remains [r1, rN] forever.  Hence from the perspective of long run

analysis we can take [r1, rN] as the effective state space.  The splitting condition (H) is verified in

Bhattacharya and Majumdar (2001).

Example 2.  This example is motivated by the remarks of Solow in his celebrated paper (1956)

and the subsequent work of Day (1982).  Consider a Markov process with the state space S = R+.

and two possible laws of motion denoted by F and G (i.e.,  = {F,G}) occurring with

probabilities  and 1-  respectively (0 <  < 1).  The law of motion F is monotone increasing

and has an attracting positive fixed point (recall Figure 1 of Solow (1956)); however, the other

law G triggers cyclical forces and has a pair of locally attracting periodic points of period 2 (and

a repelling fixed point: the precise assumptions are stated below).  One may interpret F as the

dominant long run growth law (  is "large"), and G as the law of short run cyclical interruptions. 

A numerical example is given in Section 5.  But, first, we state the assumptions on F and G

precisely and note their implications.

The law of motion that generates the growth process is represented by a continuous

increasing function F : [0,1]  [0,1].  We assume that

G.1. F has a fixed point r > ½ such that

F(x) > x for 0 < x < r,

F(x) < x for x > r.

Whether or not F(0) = 0 is not relevant for our subsequent analysis.  Note that the trajectory from

any initial x0 converges to r; indeed, if 0 < x0 < r, the sequence F(n)(x0) increases to r; whereas if
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x0 > r, the sequence F(n)(x0) decreases to r.

The law of motion that triggers cyclical forces is denoted by a continuous map 

G: [0,1]  [0,1].  We assume

C.1. G is increasing on [0, ½] and decreasing on [½, 1].

C.2. G(x) > x on [0, ½].

C.3. G has two periodic points of period 2 denoted by { 1, 2}, and a fixed point x* which is a

repelling fixed point of G, and no other fixed point or periodic point.  Moreover, { 1, 2}

are locally stable fixed points of G(2).

Finally,

C.4. G has an invariant interval [c,d](½  c < d < 1); c < 1 < x* < 2 < d.  Also r  (c,d), 

r  { 1, x
*, 2}.

Now, when we consider the evolution

Xn+1 = n+1(Xn)

where n+1 = F with probability  and n+1 = G with probability 1- .  We can proceed as

follows: for any initial x  (0,1) the process Xn(x) enters [c,d] with probability one after a finite

number of steps.  Also, it is easy to see that [c,d] is invariant under F.  Hence, for the long run

analysis of the evolution of Xn, we can take [c,d] as the effective state space.  The splitting

condition (H) is verified by a careful consideration of the structure of the model (Bhattacharya

and Majumdar (2001).  It should be stressed that while G is not a monotone function, on the

(common) invariant interval [c,d] both F and G are monotone (increasing and decreasing

respectively).

Proposition 3 is, therefore, applicable directly to both examples.  From (4.7) one has
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where J is any subinterval of [c,d].  We can now apply Corollary 5 and conclude that the

empirical distribution function   is a  -consistent estimator of [c,y].

We now turn to the problem of estimating the "equilibrium mean"   y (dy).  Here the

reward function h(x) = x.  We present some detailed calculations that can be extended to a more

general class of reward functions.  Going back to (3.4) let us write .  Note that

if we can ensure the convergence of the infinite series  and its boundedness, then by

defining

we can satisfy (3.4) as well as the condition (FC).

With   , assume, without loss of generality, that c  0

[otherwise consider    Now,
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Hence, .  This ensures that

and the uniform convergence of the series   as m .  Corollary 1 now leads to the

following conclusion: the empirical mean   is a  -consistent estimate of  

4.3 Some Additional Results

We record first an important result applicable to the case where  consists of monotone

nondecreasing functions on [c,d].

Proposition 4.  Let S = [c,d] and  consist of monotone nondecreasing functions from S into S

and assume that the splitting condition (H) holds.  Then for any continuous function with

bounded variation h, there is some bounded g satisfying (3.4).  Moreover, independent of the

initial distribution ,

and

[where and 2 =  g2d  -  (hg)2 d )].

This proposition is a special case of Theorem 3.1 of Bhattacharya and Lee (who proved a

functional central limit theorem given the assumptions listed above).
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We turn to a pair of sufficient conditions for solving the equation h - h = Pg when the

state space S = [c,d] and   is sequence of i.i.d. maps from S to S (not necessarily

monotone).  Let h = [c,d]  R be absolutely continuous.  Then   for 

0  x  d.  Thus

and

so

yielding the following:

Proposition 5.  Let h = [c,d]  R be absolutely continuous.  Assume that

Then

is well defined on [c,d] and solves the equation
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Corollary 10.  Under the hypothesis of Proposition 3), if h : [c,d]  R is absolutely continuous

then g(x)    (Exh(Xn) - h) is bounded and satisfies h - h = g - Pg and for any initial

distribution

for some 0 < 2 < , nonrandom but depending on and h.

Let Yh(x) = 1( 2... n(x)), n  1, Y0(x)  x where   are as before i.i.d. maps from S

to S (again not necessarily monotone).  Then it is clear that for each x and n, Yn(x) has the same

distribution as Xh(x).  Suppose lim Yh(x) = Y exists w .p.1 and the distribution of Y is

independent of x.  Then Y has distribution  and

Let   be the modulus of continuity of the c.d.f.

of Y.  Then it can be verified that

This leads us to

Proposition 6.  Let h = [c,d]  R be absolutely continuous.  Let Yh, Y be as above.  Suppose

there exist n  0 such that
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(A)

(B)

and

Then the conclusions of Corollary 10 hold.

Corollary 11.  Let   be i.i.d. Lipschitz maps from [c,d]  [c,d] such that  E ns( 1) < 0

where is the Lipschitz constant of the map

.  Let Yn and Y be as before.  Assume WY( )  c  for some constants 0 < c < , 0 <  1. 

Then for e  < r < 1, n = rn, conditions (A) and (B) hold and hence the conclusions of Proposition

5 and Corollary 10 hold.

4.4.  The Support of an Invariant Distribution: An Example

Example 3.  Let S = (0,1) and , be the family of all admissible laws of motion consist of a pair

of functions from the 'quadratic family', specified as follows:

 = {F , } where

and (5.1)

Consider the Markov process

Xn+1 = n+1(Xn) (5.2)
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where   is an i.i.d. sequence with the distribution Prob( n+1 = ) = p Prob ( n+1 = F ) = 1 -

p.       For this Markov process, it is verified by Bhattacharya and Rao (1993, p. 20, Example 2)

that the splitting condition (H) holds and the support of the invariant distribution is a Cantor set

of Lebesgue measure zero.

Example 4.  Let S = [0,1]; F(x) = (3/4) x1/2, G(x) = (3.1) × (1-x).  Then all the assumptions in

Example 2 of Section 4 hold.  The invariant distribution can be estimated through computer

simulation.

5.  Proofs

     Proposition 1

Since h and g satisfy (3.4), i.e.

Thus, (A)

where Yj = g(Xj) - (Pg)(Xj-1) for 1  j  n.  By the Markov property of {Xn} and the definition of

Pg it follows that   is a martingale difference sequence, i.e.
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(B)

E(Yj X0, X1,...Xj-1) = 0.

Thus, under (FC), {Yj : 1  j  n} are uncorrelated,

 where V

and E  stand for mean and variance under the initial distribution  and V(Yj X0,...,Xj-1) is the

conditional variance of Yj given X0, X1,.....Xj-1.  Again by the Markov property and the definition

of (Vg)((x) in (3.3) of Proposition 1

Using (a + b)2  2(a2 + b2) repeatedly, we get from (A) and (B) that

Now, by the hypotheses (FC) of Proposition 1 the right side above is   as was to be shown. 

This establishes Proposition 1.

Corollary 1.  By Chebychev's inequality,

and by (3.5) the rightside is bounded by a constant multiple of  .  Hence for  > 0, there

exists a K  such that (3.6) holds.  Similar calculation yields (3.7)
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Corollary 2.  If g is bounded, so is Pg and hence so is Vg.  Thus (FC) holds.

Corollary 3 and 4 follow from Corollary 2.

Corollary 5.  Let g(x) be as in (3.11).  By (3.12) g(x)  am and is bounded.  Also the

bounded convergence theorem implies (3.11').

Proposition 2.

From (A) and (3.17) it is enough to show

Since E(Yj  X0,...Xj-1) = 0,  j, {Yj : 1  j <  is a martingale difference sequence and 

B.M.  Brown's Martingale central limit theorem (Bhattacharya and Waymire, [1990] pp. 508)

applies.  Also since V(Yj X0,...,Xj-1) = (Vg)(Xj-1) and

E(  (3.16) and (3.17) imply Brown's conditions. 

So (3.18) follows.

Corollary 6.  Omitted.

Corollary 7.  As shown in the proof of Corollary 2, g and h satisfy h - h = g - Pg.  So (3.18)

holds, if g satisfies (3.15 - 3.17).

Corollary 8.  It suffices to note that
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Since g is bounded and if

conditions (3.15 - 3.17) hold and so (3.18) holds.

Corollary 9.  If h : S  R is bounded and measurable then

Thus

exists for all x and satisfies (3.4), i.e.,

h - h = g - Pg

Also thus g is bounded by   and hence is square integrable with respect to .  Also
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Vg(x) is integrable with respect to .  Hence, by hypothesis, under P

0 < 2 <  depending on g and hence on h.  Thus (3.15) of Proposition 2 holds.  Since g is

bounded, condition (3.16) - (3.17) follow.  Thus (3.18) holds.

Corollaries 10 and 11: omitted
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1. We have in mind several fundamental results on ergodicity and the strong law of large

numbers that hold when the initial distribution of the Markov process is an invariant

distribution [see, for example, Bhattacharya and Waymire (1990, pp. 229-230)].

2. Standard texts on development economics emphasize the role of history in understanding

and explaining the evolution and institutions of economies [see, for example, Ray (1998,

Chapter 5)], and, in a dynamic economic model it is natural to think of the initial

condition as a product of history.  A similar point was made in applications of ergodic

theory to computer graphics: "we have no way of choosing the starting x" according to an

invariant distribution; "in fact the idea is to start at some x and let a computer generated

realization of the process draw a picture of the invariant distribution" [Elton (1987, p.

482)].  The emphasis in Elton was to derive ergodic theorems starting from any state


