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ABSTRACT
The Maxwell slip boundary condition is widely used to compute the slip velocity at the
wall under rarefied flow condition. In this paper, we apply the Direct Simulation Monte
Carlo (DSMC) method on a Couette flow problem in order to evaluate this boundary
condition. The computations are performed at different values of tangential momentum
accommodation coefficient (between 0.1 and 1) and Knudsen numbers (Kn between
0.001 and 3), at 500 K for Argon, with the aim of comparing the ensuing slip length to
that predicted by Maxwell’s formula. It is found that the boundary condition is accurate
up to a Kn = 0.1 but not at higher Knudsen numbers. Although it has been known that
the slip boundary condition is valid only for small Knudsen numbers, the critical
Knudsen number from where the deviation begins is not well documented. The present
results indicate that such deviations occur at Kn = 0.1 in flows that are bounded by
opposing walls. At higher Knudsen numbers, the Knudsen layers overlap and the
collisions of molecules with walls dominate to change the boundary conditions
significantly.

1. INTRODUCTION
It is well known that the no-slip boundary condition is not satisfied under rarefied flow condition –
rather the gas slips at the solid walls. Maxwell proposed the following approach to calculate the slip
velocity on a gas-solid interface under rarefied condition [1, 2]. On the assumption that a fraction σ of
the molecules are reflected diffusively at the walls (i.e. their average tangential velocity corresponds to
that of the wall, Uw ), and the remaining (1 – σ) of the molecules are reflected specularly (i.e. with the
normal component of the velocity changing sign and the tangential component remaining the same),
Maxwell obtained the following expression (in the absence of temperature gradients along the wall):

(1)

In the above equation, U stands for streamwise velocity, subscripts g and w refer to gas and wall
respectively, σ is the tangential momentum accommodation coefficient (TMAC), and n is normal to the
surface. A temperature gradient along the wall leads to a second term on the right hand side involving
the temperature gradient. The TMAC can be related to the tangential momentum of the incident (τi) and
reflected (τr) molecules using the following relation [2]:

(2)

Millikan [3] postulated that the slipping behaviour is due to “molecular inhomogeneities”, while 
Cao et al. [4] argued that the mechanism for momentum transfer between the wall and gas is due to
trapping of gas molecules in the potential wells of the surfaces. The gas molecules may undergo several
collisions and may escape after a residence time, during which momentum exchange between the fluid
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and wall is accomplished [4]. Therefore, σ can assume any value between 0 and 1, depending up on the
nature of the gas and the surface, pressure of the gas, surface roughness, surface cleanliness, and
temperature [5]. The extreme values of σ = 1 and 0 denote fully diffused and specular surface,
respectively. The value of σ to be used for a pair of gas-solid interface and a given flow condition is
not obvious; its value needs to be determined through experiments or calculated by some other means.
From a detailed literature survey of experimentally available values, Agrawal and Prabhu [5] have
proposed a value of 0.93 for all monatomic gases and commonly available surfaces.

It is worthwhile to point out that Maxwell proposed this model (Eq. 1) based on a referee’s
suggestion, and believed that the model can be further improved [1]. The ∂U/∂n term in Eq. 1 may be
replaced by τ/µ (where τ is the shear stress at the wall and µ is the gas viscosity at the wall). This leads
to an additional term (∂Un/∂x, where Un is the wall-normal velocity and x is the streamwise
coordinate) in Eq. 1 [6, 7]. This additional term becomes particularly relevant with curved and rotating
surfaces [7, 8, 9]. Similarly additional terms can also be introduced by considering second order effects.
These can be obtained either by using a Taylor series expansion or just using the second derivative of
the velocity with a pre-factor. In fact, the slip boundary condition has been established theoretically in
a more general and rigorous form. More precisely, the slip boundary conditions are derived by a
systematic asymptotic analysis of the Boltzmann equation for small Knudsen numbers based upon the
Hilbert expansion and the analysis of the Knudsen layer. The results of this analysis are summarized in
[6]. Alternate slip models also exist in the literature as reviewed in Refs. [10, 11, 12, 13].

Inspite of the various issues noted above, the Maxwell’s slip model (Eq. 1) continues to be
extensively applied in a very large number of studies (see Refs. [7, 9, 13, 14, 15, 16, 17], among others).
The purpose of this investigation is to evaluate this model using the direct simulation Monte Carlo
(DSMC) technique. Specifically, the amount of slip predicted by DSMC is compared with that
predicted by the model for different values of σ (between 0.1 and 1) and over a sufficiently large range
of Knudsen number (between 0.001 and 3). The flow considered here is Couette flow, whereby fluid
between two long parallel plates is dragged due to uniform motion of one plate while the other plate is
held stationary. The present study is different from those in the literature in that the earlier studies
presumed the behavior of the gas at the wall (such as diffuse reflection) and merely used a
computational tool (molecular dynamics or DSMC) to compute the slip velocity at the wall (see Refs.
[11, 18, 19, 20, 21], among others); this point is discussed further in Section 4. However, here, we allow
the gas particles to undergo diffuse and specular reflections, in varying percentages, with the aim of
evaluating Eq. 1.

2. NUMERICAL DETAILS
An in-house code was developed and employed to verify the Maxwell’s model. The code uses the
standard Direct Simulation Monte Carlo technique developed by Bird [22]. The flow domain is split
into cells in the direction normal to the flow (with an infinite length along the flow direction). The
technique assumes decoupling of molecular motion and molecular collisions. A certain number of
simulated molecules N are initially divided equally among all the cells and each simulated molecule
represents a number of real molecules. Initially, the molecules are given a velocity randomly from a
Maxwellian distribution at the simulation temperature. The molecules travel for a time dt after which
they undergo collisions. The collisions are considered by choosing random pairs from each cell using
the null time counter method developed by Bird. To reduce computation time, each cell is further
divided into sub-cells. The actual collision process is executed using a variable hard sphere model.
Details are again available in the text by Bird [22]. The process of molecular motion followed by
collisions is repeated till steady state is attained by macroscopic flow properties. A typical simulation
involves 20,000 simulated molecules spread over 500 cells each of which is divided into four sub-cells.
Depending on the conditions, these are varied such that the cell width is less than 1/4 of the mean free
path of the molecules. The time dt is chosen so that it is much smaller than the mean collision time.

A random number is employed to determine whether a molecule will have specular or diffuse
reflection from the wall. The random number is checked against the value of σ which is an input
parameter for the code. The code is validated by comparing the results with those from Pan et al. [18];
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for all noble gases the results were found to compare within ± 6% [23]. More detailed calculations as
described in the next section were performed only with Argon.

3. RESULTS
The calculations were carried out for Knudsen numbers of 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1 and 3,
thus spanning from the continuum regime (Kn < 0.001) to the border of free molecular flow regime
(Kn > 10). For each value of Kn, the TMAC (σ) was varied from 0.1 to 1 in steps of 0.1 (80
computations in total). Note that theoretically, σ = 0 implies total specular reflection at the walls and
corresponds to infinite amount of slip (see Eq. 1).

The slip length is calculated using the data close to any wall. Ensemble averaging is carried out for
the last 1000 time steps; detailed tests indicated that this is adequate for convergence. Table 1 lists the
values of slip coefficients (for a Kn of 0.01 and σ varying from 0.1 to 1) calculated using three
methods: our numerical calculations, from Maxwell’s original theoretical relation (third column) and
from the modified relation using kinetic theory as described by Barber and Emerson [10] (fifth
column). The Maxwell’s theoretical slip length (Sv) is related to TMAC through the following relation:

(3)

where L is the characteristic length for the flow (distance between the two plates). Further, the slip
coefficient (Sth) can be defined as: 

(4)

The modified relation assumes a pre-factor of 1.1466 [10]. The fourth and the last columns in the
table correspond to the ratio of the slip coefficients (Maxwell to numerical and modified Maxwell to
numerical respectively). As can be noted, the values from the numerical simulations are consistently
around 10% higher than that predicted by Maxwell’s formula (this is consistent with [11]). However,
the modified Maxwell relation using a prefactor of 1.1466 is within ± 5% of the DSMC results (except
for an anamolous point at a TMAC of 0.8 where it is off by around 10%). It can therefore be assumed
that the modified Maxwell’s relation for the slip is valid at Kn = 0.01.

The value of the slip ratios (modified Maxwell’s relation to DSMC simulations) for all the Knudsen
numbers is plotted in Fig. 1. As apparent from the figure, the ratio is close to unity till a Knudsen
number of 0.1 after which it deviates significantly. At higher Knudsen numbers, the values obtained
from the numerical simulations are lesser than those obtained theoretically. Our attempts at evaluating
a second-order slip boundary condition did not yield much difference in the results (not shown).
Arguably, this is because the second order terms can bring a relatively small change in the value of slip
velocity and cannot account for the rather large (> 100%) deviation observed at Kn > 0.3 (see Fig. 1).

We have also carried out simulations at a different  temperature (100 K). The main difference
expected at lower temperatures is the way the gas molecules interact with the wall. At lower
temperatures, molecules are expected to spend a longer time in the potential well of the wall, where
they equilibrate with the wall and thus are reflected diffusively with a higher probability. Thus
fundamentally, the main change at lower temperature is that the value of TMAC may change [4, 5]. No
difference in the results is noted [23] because the value of σ is a parameter that is input to the
simulations, and as long as the method for handling gas-gas and wall-gas collisions remain the same
the results should remain invariant with temperature. In our present simulations, we have not included
means of calculating the dependence of σ on temperature, and therefore these results are to be expected.
Similarly, calculations performed using different  monatomic gases also showed similar results [23],
since again σ is just a parameter and we are not studying how σ varies with the gas-wall combination.
A molecular dynamics simulation (as has been carried out in Refs. [4, 21] for example) which involves
the gas wall potential is however capable of handling both the temperature effect as well as the gas-
wall combination.
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4. DISCUSSION
The deviation at larger Knudsen numbers may be explained as follows. In Maxwell’s derivation [1], it
is assumed that the molecules hitting a wall have a distribution corresponding to some bulk distribution
where the molecules are at equilibrium due to collisions amongst themselves. However, as seen in the
present case, as the Knudsen number increases, a molecule arriving from a distance larger than a mean
free path is actually arriving more or less after colliding with the other wall (theoretically at a Knudsen
number of one, the mean free path is equal to the distance between the two walls). Hence the molecule
carries information from the other wall rather than from the bulk that corresponds to an equilibrium
within the molecules themselves. This effect is strong and can be seen by viewing the velocity profiles
between the two plates for Knudsen numbers of 0.001 and 3 (see Fig. 2, with the vertical axis denoted
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Figure 1. Plot of slip ratio (theoretical to numerical) versus Knudsen number (log10 scale) for
TMAC ranging from 0.1–1.0 in steps of 0.1. The theoretical values are calculated using the
modified Maxwell’s relation.

Table 1. Variation with TMAC of the numerical (SDSMC) and theoretical (Sth and Sth,mod) slip
coefficients, for argon at Kn = 0.01. The theoretical value of slip coefficient has been

calculated from Eq. 4 (as ). The modified theoretical value is calculated as per

Ref. 10 with a pre-factor of 1.1466 
(i.e., Sth,mod = 1.1466Sth). The temperature is fixed at 500 K for these simulations.

Sth (Present Ratio Sth,mod Ratio
σ SDSMC work) (= Sth/SDSMC) (Ref. 10) (= Sth,mod/SDSMC)
0.1 0.20554 0.19 0.9244 0.21785 1.0599
0.2 0.09855 0.09 0.9132 0.10319 1.0471
0.3 0.06159 0.05667 0.9201 0.06497 1.0550
0.4 0.04381 0.04 0.9130 0.04586 1.0468
0.5 0.03386 0.03 0.8860 0.03440 1.0159
0.6 0.02623 0.02333 0.8894 0.02675 1.0198
0.7 0.02075 0.01857 0.8952 0.02129 1.0264
0.8 0.01903 0.015 0.7882 0.01720 0.9037
0.9 0.01407 0.01222 0.8687 0.01401 0.9961
1.0 0.01177 0.01 0.8497 0.01147 0.9743
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as Ux/Uo where x is the flow direction and Uo is the velocity of the upper moving plate). At a Knudsen
number of 0.001, the normalized velocity profile varies approximately linearly from zero to unity at the
upper plate. Small values of slip are observed at lower values of TMAC, which is to be expected. At 
Kn = 3, we see that the velocity profile is considerably flattened with a large amount of slip. Since the
molecules collide with the walls more frequently than with other molecules, the information with the
molecules is the average of the information at the two walls; hence the ratio (Ux/Uo) is closer to 0.5
everywhere, rather than only at the mid-plane.

Some experimental data [12, 14, 15, 16, 24] are also available for rarefied gas flows. The
experimental data is typically analyzed by comparing against the Navier-Stokes solution with slip
boundary condition. For example, in an experimental study undertaken by Sreekanth [12], the pressure
at nine locations were measured in a long tube. The pressure in the tube was related to the slip
coefficients using theory (based on continuum integral momentum equation) also derived in that paper.
Sreekanth noted that comparison between his experimental data and theory improves by changing the
value of slip coefficients (a second-order slip model was employed in this study) from 1 and 0 for 
Kn ≤ 0.03, to 1.1466 and 0 for 0.03 < Kn < 0.13, and further to 1.1466 and 0.14 for Kn ≥ 0.13. One
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Figure 2. Plot of velocity profile for TMAC ranging from 0.1–1.0 for (a) Kn = 0.001 and (b) 
Kn = 3. The value of U

0
employed in these simulations is 0.7 times the speed of sound. The

results are independent of the value of U
0

in the range of 0.05 to 0.7 times the speed of sound.
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can therefore employ a higher-order slip boundary condition in conjuction with experimental or
appropriately tuned slip coefficients in order to analyze the flow at higher Knudsen number [9, 13, 17].
Inspite of modifications in the value of slip coefficient, a disagreement in the results from Navier-
Stokes and Boltzmann equation is still obtained for Knudsen number greater than unity [9, 13]. The
mismatch can either be due to the breakdown of the continuum assumption fundamental in the
derivation of the Navier-Stokes equations or failure of the Maxwell’s model, or both. Typically the
mismatch is attributed to the inability of Navier-Stokes in making predictions at high Knudsen
numbers. The present results indicate that the Maxwell boundary conditions themselves are not
applicable beyond a critical Knudsen number of 0.1 and the fault does not entirely lie on the non-
applicability of the continuum hypothesis.

Alternate to using the Navier-Stokes equations (which are of order Knudsen number and higher
order terms are neglected when deriving these equations using the Chapman-Enskog expansion), the
Burnett equations which are of order Knudsen square have also been employed to a limited extent.
These equations are prone to instabilities and therefore difficult to solve. Nonetheless, some
successful attempts at solving them with Couette flow have also been reported in the literature
[25, 26, 27]. The linearized Boltzmann equation has also been solved for rarefied flows [6, 28, 29,
30]. Another approach to attack the problem is to differentiate the flow into a bulk flow regime and
a Knudsen layer close to the wall and apply the Navier-Stokes relations in the bulk [6, 31, 32]. The
Knudsen layer can be solved analytically [6] or modelled using a wall function [33]. Presently these
approaches do not consider the overlap of the Knudsen layers when two walls are present. Such an
overlap starts occuring as the Knudsen number increases beyond 0.1 which is where the deviation
from the theoretical value is stark. The overlap of the Knudsen layers will need a further analysis. It
must be noted that the Maxwell’s boundary condition is not required in the above approaches;
however these studies do not explicitly compare their slip velocities with that predicted using
Maxwell’s condition.

The present work has attempted to directly test the Maxwell’s slip boundary conditions (along with
some of the modifications suggested in the literature) and suggest inapplicability of these equations
beyond a Knudsen number of 0.1. It is also clear from Fig. 1 that results are not offset by a constant
factor and therefore a simple correction by a factor is not applicable. Probably a rigorous mathematical
treatment of overlapping Knudsen layers may address this issue.

5. CONCLUDING REMARKS
This paper focuses on evaluating the Maxwell’s slip model, which is the most popular model for computing
the slip velocity at the gas-wall interface, under high Knudsen number flow situations. The existing studies
in the literature do not verify the validity of Maxwell’s model. They merely assume the validity of
Maxwell’s model and deduce the value of σ or some other parameter relevant to that work. An independent
verification of the model was therefore required and this need has been fulfilled to an extent through this
study. A detailed test of the model for a sufficiently large range of Knudsen number and TMAC values is
undertaken here, using the direct simulation Monte Carlo technique. This method has proved itself
extremely useful because a direct experimental verification of the model appears rather difficult.

The results of the present study indicate that Maxwell’s equation is valid for low Knudsen
numbers (Kn < 0.1). At higher values of Kn, the effect of the second wall becomes significant and
molecules collide more with either walls than amongst themselves and hence carry velocity
information that is an average of the information available at the two walls. The present results
elucidate the effect of two proximate walls on gas-wall interaction at relatively high Knudsen
numbers which results in overlapping of Knudsen layers. Probably in cases where only one wall is
present, such as in the boundary layer of re-entry vehicles at high altitudes, Maxwell’s equations can
still be applied. For most applications of current interest which revolve around microchannels, fluid
is surrounded by walls on all its lateral sides. In these latter and related situations caution is advised
in applying Maxwell’s equation beyond a Knudsen number of 0.1. Our results are expected to be of
interest to practitioners of rarefied gas dynamics as well as those in the field of vacuum science and
gas flow in micro/nano-channels.
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