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1 Introduction

Many models of time series arising in population studies in ecology and growth models
in economics are of the form

Xt—(—l = ft+1(Xt)7 t:O71,2,-.. (1)

Here X;, the state of the system at time ¢, represents the population size or density
in ecology and the total output in a one sector economy in economics. The function
f,41() depends on the underlying dynamics in the period [t,t + 1]. The functions
fir1(+) are deterministic or stochastic depending on the underlying dynamics. In the
deterministic case if f,’s are the same for all ¢ one has a discrete dynamical system

Xt—H = f(Xt)7 t:ovlaza'” (1),

In this case the initial value X, =  gives rise to an orbit {z, f(z), (), .., f™(z), ...}
where for n > 0, fO0(z) = f(f™(z), f©(z) = z. The subject of discrete dynami-

cal systems is concerned with the behavior of the orbits such as the existence of fixed

points, periodic orbits, nonperiodic or chaotic behavior, existence of an equilibrium

or stationary distribution 7 such that if Xy is chosen to have distribution 7 then X,

will also have distribution .

In the stochastic case the f;’s are random reflecting certain stochastic forces in the
underlying evolutionary dynamics. In ecology these could be due to random pat-
terns in climate, food web, predator-prey interactions, environmental changes etc. In
economics these could represent stochastic shocks and or speculative behavior of the
agents of the economy.

The stochastic analog of the discrete dynamical system (1)’ is the model (1) where
{f;} are random but are i.i.d. or more generally a strictly stationary sequence.

When the {f;}:>1 are ii.d. and X, is chosen independently of {f;}+>1 the sequence
{X,}i>0 defined by (1) becomes a Markov chain with stationary transition probabilities .
The objects of interest are steady state distributions or stationary measures, conver-
gence to them, laws of large numbers regarding the behavior of certain empirical
averages etc.




In the present paper we focus on the case when the state space, i.e. the set of values
of X, is Rt = [0,00) and the sequence {f;};>1 is a random sequence from a family
F of maps from R — R" that posses two important features: (1) for small values
of z, f(z) is approximately linear in reflecting the fact that ecological populations
and fledgling economies grow exponentially when small and (2) for large values of
z, f(x) is sublinear reflecting the effect of density dependence or competition as the
population grows or diminishing returns in an economy. Examples of such families
include:

i) the logistic maps (Athreya and Dai(2000)

foz) =czx(l—z), 0<z<1, 0<Zc< 4 (2a)
(ii) the Ricker maps (Ricker[20])

fealz) =cze ™, 0<¢ d<oo, 0<z <0 (2b)

(iif) the Hassel maps (Hassel[14])

fl@)=cr(l+z)™¢, 0<¢ d<oo, 0<r<o0 (2¢)

(iv) the Vellekoop-Hognas maps (Vellekoop-Hognas[15])

f(@) =rz(h(z)™, 0<r b<oo
h(z) > 1forz >0, h(0)=1,
h is continuously differentiable and

h(z) = %%‘) is strictly increasing (2d)

The main thrust of this paper is to investigate the existence of nontrivial sta-
tionary measures (i.e. other than the delta measure at 0) for the case when the
{fi}i>1 sequence is i.i.d. with values in the set F'. There are also some results
on the convergence of the sequence X, of (1) in the subcritical case. But the
general questions of convergence in distribution of X, to the stationary mea-
sure, its uniqueness or nonuniqueness, its smoothness etc. are not addressed
here. Our results here are generalizations of those of Athreya and Dai [2] for
the case of random logistic maps.



In the next section the general mathematical framework of iteration of random
maps is described. There is also a discussion of Feller Markov chains and occu-
pation measures. The main parts of the paper are sections 3 and 4. In section
3 a set of necessary and two set of sufficient conditions are provided for the
existence of nontrivial stationary measures. In section 4 we provide some con-
vergence results, a trichotomy into subcritical, critical and supercritical cases
and a useful comparison lemma. Some open problems are mentioned in the last
section.

2 TIteration of random maps

2.1 The general framework

Consider the model {X;}i>o defined by (1) where the state space is some set S and
fo’s are functions that map S to itself. If f;’s are random then so are X;’s. But in
order that X,’s be random variables some conditions must be imposed on the gener-
ation of f’s. This is spelled out below.

Let S be a nonempty set and S be a o-algebra of subsets of S. Let (9, B, P) be a
probability space. Let {f;}i>1 be a sequence of maps from 2 x S — S such that each
f; is jointly measurable, i.e.

VAeS {(wzr): filwz)e AeB xS (3)

Let X, :Q — S be (B,S) measurable. Then {X;};> defined by

Xip1(w) = fra(w, Xy(w)) t=0,1,2,-- (4)

is such that V¢, X; : Q — S is (B,S) measurable, i.e. it is a random variable on
(Q,B) and so {X;}i>0 is an S-valued stochastic process defined on (2,8, P). The
proof of this (see Athreya and Stenflo [6]) is by induction and the facts:

(i) if X : Q — S is (B,S) measurable then the map 7 : w — (w,z(w)) from
0 — Q x Sis (B, B x 8) measurable and

(i) the composition f o is (B,S) measurable if f:OQxS8 — Sis (BxS§,85)
measurable.

In particular, if F = {h1,ha, ..., hp}, k <ooisa finite or countable collection of
measurable maps from (S, 8) to itself and {I;};51 is a sequence of random variables
from some probability space (2, B, P) to {1,2, ..., k} then the functions
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filw,z) = by (@) (5)

satisfy the joint measurability condition (3). This covers the iterated function sys-
tems discussed by Barnsley [7] and also by Mitra et al [18].

More generally let F' be a parametrized family of functions from S to S, say F' =
{hy(:) 1 y € Y} such that

(i) VyeY, h,:S—Sis(S,S) measurable

(i) there exists a o-algebra ¥ of subsets of ¥ such that the map

h(y,z) = hy(x) (6)

from Y x S — S is (X x S,8) measurable. If Yis finite or countable with ¥
as the power set of Y, then (i) = (ii) as can be shown easily (see Athreya
and Stenflo [6]). Now let {y;};>1 be a sequence of random variables from some
probability space (Q, B, P) to (Y,X). Then,

fj(wvx) = h(yj(w)ax)v J > 1 (7>

satisfy the joint measurability condition (3).

Examples of parametrized families include the four families mentioned in section
1. For example, for the logistic family

Fr = {hz) = cx(l-2), 0<ec<4,
0<z<1}

S = [0,1], S = Borelsets of [0,1],

Y = [0,4], & = Borelsets of [0,4].

Similarly for the Ricker family

Fr = {hea(r) = cxe™®, 0 <z < oo,
0<ed< oo},



H

S = [0,00], S B([0,0)),
Y = [0,00)x[0,00), & = B([0,00) % [0,00))

Similar identifications can be made for the Hassel family and the Vellekoop-
Hognas family.

2.9 Tteration of i.i.d. random maps and Markov chains

In the paragraph above the random sequence of parameter values {yj(w)};j>1 could be
quite general. Their joint distribution was not restricted to be, for eg, stationary or
Markov or iid. etc. But when such restrictions are imposed then the sequence {X:}
defined by (1) becomes more specific and amenable to further studies. Of particular
importance is the case when {y;(w)};> are Lid.r.v. In this case the sequence {X;}i>0
becomes a Markov chain with state space (S, S)

Theorem 1
Let F.Y, h, be as in (6). Let {y;(w)};>1 be a sequence of Li.d.r.v. on some probability
space (Q, B, P). Let f;j(w, ) be asin (7). Let Xo(w,z) =2

Xepi(w,z) = fir1(w, Xy(w,x)), t=>0 (8)

Then, for each z € S, the sequence {X;(w,z)}s>0 is 2 Markov chain with state space
(S,8), initial state x, and transition probability

P(z,A) = P(w: h(y;(w),z) € A) (9)

Remark 1 The joint measurability condition (3) ensures that for each z, h(y;(w), x)
is an S valued random variable and so (9) is well defined.

The proof of Theorem 1 is in Athreya and Stenflo [6]. Here is a heuristic argument.
Iterating (7) and suppressing w, we get

X1 (@) = fraa(fi( fi(2))) (10)

For each z, X;(z) = fi(...fi(z)) and hence independent of fi.1. So once X(z) is
given, information about previous X;(z), for j < ¢ gives no information about fi41
making {X;} Markov.



Remark 2 There is a sequence dual to {X;}¢>o defined by

X,(z) = filfo, ., fe(2)), 20 (11)

with Xo(z) = .

Tt is clear that since the {f;} are i.i.d., for each z and ¢ the random variables X;(z)
and X;(z) have the same distribution. If the state space happens to be a metric space
then the convergence in distribution of X,(x) as t — oo implies that of Xi(z). In
particular, if X;(z) converges w.p.l. then X, (z) does converge in distribution. This
:dea has been used in Diaconis and Freedman [12] to prove the convergence of Xi(x)
in the log contractive case Elns(f1) < 0 where f; is a Lipschitz map w.p.l. and s( f1)
is its Lipschitz constant.

Remark 3 The above Theorem 1 suggests a natural converse question. Given a
transition probability function P(-,-) on some state space (S,8) is there an itera-
tion of i.i.d. maps that generates a Markov chain with transition function P? Kifer
[16] showed that the answer is yes if the state space S is a complete separable met-
ric space (Polish). For a proof see Athreya and Stenflo [6] who establish the following.

Theorem 2 Let S be a metric space that is Borel isomorphic to a Borel subset of R.
Let P:S x S — [0,1] be a transition probability function. That is

(i) V z in S, P(z,-) is a probability measure on (S,S) and

(i) V A € S, P(-, A) is an S measurable map on S.

Then there exists a function & : [0,1] x S — S that is jointly measurable such
that p{w : w € [0,1], h(w,z) € A} = P(z, A) where p is the Lebesgue measure
on the Borel o-algebra of [0,1]xS.

Thus Y of (6) can be taken to be [0,1]. Tt is clear that if {yi}i>1 are i.i.d. uniform
[0,1] random variables then the family {f;(w,2)}j>1 defined by f;(w,z) = h(y;(w),x))
generates a Markov chain with transition function P(-).

2.3 TFeller (Markov) chains, occupation and stationary measures

Let {X,}n>o be a Markov chain with a metric state space (S,d) and a transition
function P(,-) (as defined in Theorem 2).

Definition 1 {X, }n>o is called a Feller (Markov) chain (or P is called a Feller tran-
sition function) if z, — = implies P(zn,-) = P(z, \) in distribution or equivalently

E(K(X)|Xo = 2) = [ k(y)Pla. dy) = (Pk)() (12)
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is continuous in z for all functions k : S — R that are bounded and continuous.

If { X, }n>0 is generated by an iteration scheme as in (8) with { f}s>1 1.1.d. with fi(w, ")
being continuous w.p.l. then it is Feller. Indeed, since (Pk)(z) = Ek(fi(w,)) and
fi(w,") is continuous and k is bounded and continuous the assertion follows by the
bounded convergence theorem. Note that all the four families listed in (2) consist of
continuous functions.

Definition 2 Let { X, }n>0 be a Markov chain with transition function P. Let for all
AeS,

L,(A) = EZIA(XJ') and (13)

(14)

il

3

ngle (z,A).

Then Ly(-) is called the empirical measure and pnq(-) the occupation measure for the
chain {X,}.

Definition 3 A sequence {ji} of probability measures on (S, d) is said to converge
weakly or in distribution to a probability distribution y if

[ #@)nlda) = [ k(@)ud) (15)

for all k: S — R, bounded and continuous.

Definition 4 A sequence {v,} of subprobability measures on (S, d)(i.e.vy(S) < 1)
is said to converge vaguely to a subprobability distribution v if (15) holds for all
k: S — R, bounded, continuous and vanishing outside a compact set.

Definition 5 A measure p on (S, d) is stationary for the transition function P if

W(A) = (uP)(A) = / P(z, A)u(dz)for allA € & (16)



One way of finding stationary measures for P is to consider all weak or vague limits

of the occupation measures {finz(-)}-

Theorem 3 Let {X,,} be a Feller Markov chain with transition function P. Suppose
for some intial distribution of Xy, there is a subsequence {ny} such that j,, X, (+) con-
verges weakly ie in distribution to a probability measure p. Then p is stationary for P.

Proof Let ¢ be a bounded continuous function from S — R. Then

| / 9(Y) iy, x0 (dy) — / 9(Y) 1,50 ()]

where ||g]| = sup{|g(z)|: = € S}.

ng
Also [ g(¥)in+1.%0(dy) = 572 Exo9(X))

ng
- nkil‘%EXO(Pg)(Xj~1) + nkl.q.lEg(XO)

ng—1

ng+1 ng

By Feller property Pg is bounded and continuous.

So "5 Ex, (Pg)(X,) = [(Pg)()n(dy)

Also by hypothesis

[ ) imxo(dy) > [ a(w)udy)

Thus [g(y)u(dy) = [Pg)(y)u(dy)

= [g(z)(pP)(dz) (by Fubini)

where (uP)(A)

il

[ P(z, A)p(dz).

(17)

This being true for all bounded continuous g it follows that y = wP, ie (16) holds, ie

{4 is stationary.

O



Theorem 4 Under the set up of Theorem 3 suppose that there is a subsequence {ny}
such that pn, x,(-) converges vaguely to a subprobability measure p (ie p(S) < 1)
and that there exists an “approximate identity”, ie, a sequence {g} of continuous
functions such that for each 7, g,(z) € [0,1)V z in S, g(-) has compact support and

for each z in S, g-() increases to one as T — OO.

Then p = pP, ie, (16) holds.
Proof For each g : S — R* continuous and with compact support

[ 9w} ttnexaty) — [ aw)a(dy) (18)

As in the proof of Theorem 3

g tmoxo(dy) — L 9@t (dy)] < T — 0.

and | [ 9 ttnxo(dy) — J(P9) (W) tinx0(dy)| = 0

Also since 0 < ¢g,(-) < 1,and g(-) >0

[ (POt xo(dy) 2 [ (Po)(0)9r()pimexo(@)
Now (Pg)(-) is continuous since P is Feller.

Also (Pg(y))g-(y) is continuous with compact support. So

[(Po))6eWtnzoldy) = [ (P)w)gr(w)u(dy) (19)

Thus from (18) and (19) we get

[ stwnty) = [ (Pg)w)ar(w)n(dy)
Since 0 < g,(-) 1 1, by the monotone convergence theorem
[Po@amuan) t [ (Po))u(ay):

Thus, for all g : S — R™ and continuous with compact support

[g(y)u(dy) > [(Pg)(y)u(dy)
= [ g(2)(nP)(dz).
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This implies p(A) > (uP)(A) forall A€ S..
But uP(S) = [5P(z,S)u(dz) = u(S).
Thus w o= pP.
0

A natural problem is to find a sufficient condition for {tn x,} to have at least one
vague limit point p that is not the trivial measure 0. This is provided by the so called
Foster-Lyaponov condition. See Meyn and Tweedie [17].

Theorem 5 Suppose there exist a function V : S — Rt aset K C S and constants
0<a,M <o
such that

i) Vo¢K, EV(X)Xo=12) - V(z) <-a
(20)
W) YzeS, EV(X)Xo =z) — V(@) <M
Then, lim (K) > @ (21)
’ HnXolB) = 4 M
Proof Let E, stand for expectation when X, = x.
For j > 1,
EV(X;) — EV(X;) =B (PV)(Xjm) = V(X;-1)
< —aPy(Xj ¢ K)+ MPo(X; € K)
= — -+ (Oé -+ M)Pz(Xj_l € K)
Adding over j = 1,2, ...,n and dividing by n yields
1
LBV ()~ V(@) € —at (@t M)ne(K).
Since V(-) > 0, letting n — oo yields (21).
O

Remark 4 In many applications K would be a compact subset of S. From (21) it
follows that for any vague limit point g of pn, x,, (K ) > 0 ensuring its nontriviality.
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3 Stationary measures

Let the collection F' of functions f : [0,L) — [0,L), L < o0
be such that

i) f is continuous

i) £(0)=0

iii) liﬁ)lj%l = " (0) exists and is positive and finite
Z

iv) g(z) = }ﬁaf;) satisfies 0 < g(z) < 1 for 0 <z < 0.

Let (Q, B, P) be a probability space.

Let {f;(w,z};>1 be a collection of random maps from Q x [0,00) — [0,00) that
are jointly measurable, ie that are (B x B0, 00), BJ0,o0)) measurable and for each
J, fi(w,+) € F with probability one. Consider the random dynamical system generated
by the iteration scheme:

Xep(w,2) = fon(w, Xi(w,)),t 20
(22)
xT.

H

Xo(w, z)

Since f;(w,-) € F w.p.l. the model (22) reflects the two features mentioned in the
introduction, ie for small values of X;, X1 18 proportional to X; with proportionality
constant fi ,(0) = Ci41, say, and for large values of X, this is reduced by the factor

g(X3)-

The class F includes the logistic, Ricker, Hassel, Vellekoop-Hognas families mentioned
in the introduction.

For the logistic family f.(z) = cz(l —z),L = 1, f(0) = ¢, and g(z) = 1 - for
0<z <1,

For the Ricker family, L = 00, f.q(z) = cze™%, f\(0) = ¢, g(z) = e % )<z < 00.
For the Hassel family, L = oo, foq(z) = cz(l +z)~% f(0) = c and g(z) = (1 + r)~%
For the Vellekoop-Hognas family, L = oo, f(z) = raz(h(z))7?, fL(0) = rg(x) =
(h(z))~".
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Our first result gives a necessary condition for the existence of a nondegenerate sta-
tionary distribution 7 (ie (0, 00) > 0) for the Markov chain {X;} in (22) generated
by the case when {f;};>1 are i.i.d..

Theorem 6 Let {f;};>1 beiid. Let

Cy(w) = nmfi—(“-;’—@ € (0, 00) (23)

zl0

Assume E(InC;)" < o0 (25)

Suppose there exists a stationary probability measure 7 for the Markov chain {X;}
defined by (22) such that 7(0,00) > 0.

Then

i) E(InC))~ < oo, / Elin gi(w, )] 7(dz) < o0 (26)

and i) E(nC)) = — / (Eln gi(w,z)) m(dz) (27)

and hence is strictly positive.

Proof Let X, have distribution 7. Then, since 7 is stationary measure for {X,}, X1 =
f1(w, Xo) also has distribution 7.

Since X; = fi(w, Xp) can be written as

Xy = C1(°J)X091(W7X0) (28)

taking logarithms yields (suppressing w)

lnX1 = lTLCl + lTLXQ -+ ln91 (X()) (29)
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Let

7 = (InCy)~ + (~Ingi(Xo)). (30)

Since 0 < ¢1(+) < 1, Z is a nonnegative random variable. From (29)

lTLXO - l’l’LXl -+ (lnC1)+ = Z. (31)

If it was known that E|inX,| < oo, then taking expectations in (31) and using (25)
one could conclude that (26) and (27) hold. Since it is not known that £ [InX,| < 00
an alternate approach is required. A truncation argument works. Let, fork =1,2......,

z if x| £k
op(x) = Eoooif x > k
—k if r < —k
It is clear that each ¢ (-) is bounded and |¢x(z) — ér(y)| < |z — y| for all k, z,y.

It is easy to verify that if n > 0 and z —y+n > 0 then dr(z) — dr(y) +1 > 0 (just by
considering the nine possibilities arising out of z and y each being < —k, in [k, k]
or > k).

Let

Zk = qbk(lnXO) - ¢k(lnX1) -+ (ln01)+ (32)

Since Z is > 0 and (InC;)* > 0 it follows that Z; > 0.
Also Z, — Zw.p.l. as k — oo. By stationarity of 7 and boundedness of ¢ and
the hypothesis E(InCy)* < oo we get EZy = E(InC1)*. Letting k — 00 and using

Fatou’s lemma yields

EZ <limEZ; = E(InCy)* < co. (33)

Since Z = (InC1)~+(~Ing:1(Xo) and both terms are nonnegative, (33) yields E(InCy)™ <
oo and E(—Ing;(Xo)) < co. Thus (26) is established. Since EZ < oo and by hypoth-
esis E(InC;)t < oo we get from (31) that

14



E|lnX, — InX;| < co. (34)

Also  |@r(InXo) — dr(InX1)] < |InXo — InX;|
and 0< Z, <|InXo — InXy|+ (InCy)™ = Zsay..
From (34), EZ < 0o and so by the dominated convergence theorem we get

EZ, —~ EZ

ie E(InC,)*" = E(InC1)” + E(=Ing:(Xo)).
All the terms involved being finite, this yields
E(InC,) = —E(Ing:(Xo))

= — [ Elng(z)7(dz)

establishing (27). Since m(0,00) > 0 and w.p.1, 0 < gi(z) < 1for 0 < z <
00, it follows that ElnCy > 0.

O

Corollary 1 In the set up of Theorem 6 if EinC; <0 then

i) the only stationary probability measure on [0, 00) is the delta measure at 0.

n—1
ii) For any initial distribution X, the occupation measure [, xo(A) = ;1; S P(X; €
0
A) converges to zero for all A such that its closure is a C (0,00) and hence for

such A the empirical measure L, (A4) = + }: I(X; € A) — 0 in probability.

Proof

i) Suppose there is a stationary measure u with p(0,00) > 0.

Let i(A) = M for A € B(0,00). Then [ is a probability measure on

(0,00). Also u u{O}&o + (1 — 1{0})fi. Since & and p are both stationary for
P so is fi. By Theorem 6 this implies ElnC; > 0.



ii) Since f;(w,) are continuous w.p.l. the Markov chain is Feller. Also S = [0,00)
admits an approximate identify in the sense of Theorem 4. So, if y is any vague
limit point of the occupation measures {in x,(-)} then p is stationary for P.
By (i) (0, 00) must be zero.

Finally, since ELyp(A) = fin,x,(A), and pin, x,(A) — 0 for all AC Ac (0,00),L,(A) —

0 in probability.
0

Next we present two sets of sufficient conditions for the existence of a stationary
measure 7 with 7(0, 00) > 0 for the Markov chain {X;} in (22).

Theorem 7 Let {f;}{C;},{g;} be as in Theorem 6. Let Dj(w) = supfj(w, ). As-
>0
sume -

i) k(z) = —Elng;(z) < oo forall 0 <z < o0

ii) Ifgglk(:c) =0

iii) k(-) be nondecreasing
iV) EUTLC&‘ < OO,ElTLCl >0
v) E(lnDy)* < oo

vi) E|k(Dy)| < o0

Then, there exists a stationary distribution 7 for the Markov chain {X:} defined by
(22) such that 7(0,L) = 1.

Proof Suppressing w, (22) becomes

Xj1 = CjX;911(X5) (35)

and so  InX;.1 — InX; = InCj1 + Ingj1(X;)

Adding this over j =0,1,..,n—1
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lTLXn - lTLX() = ZZ’H,CJ -+ Zlngj(Xj,.l) (36)
1 1

Since X; = f;(X;-1) < D;
InX, <lInD,

Also  Eling;(X;1)| = —Elng;(X;-1) = Ek(Xj-1)
< Ek(D;_;) < oo by (iii) and (vi).

Also  EllnC,| < oo by (iv)

So the rightside of (36) has a finite expectation. Now choose X, such that E|inX,| <
00, for eg deterministic Xo # 0.

Dividing (36) by n and taking expectations yields

1 1 &
lEann — ZEInX, = ElnCy + =Y _Ek(X;_1) (37)
n n n 1

But %Elan < %E(lnDn)“” — 0 by (v)
and %ElnXO — 0.
By hypothesis (iv) EinC; > 0

Let (H) be the condition that {/n x,(-)} has no vague limit point p with 1(0, 00) > 0.
We shall show that if (H) holds then

ZSCER(Xj-1) — 0 (38)

Thus in (37) the leftside goes to zero but the rightside goes to a positive quantity. This
contradiction shows that there is a vague limit point p of {sn, x,(-)} Wwith 1(0, 00) > 0.
Then i(A) = ((0,00)) (A N (0,00)) will be a stationary probability measure for
P with i(0, 00) = 1.

Now fix €> 0,7 > 0. Then
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FE(X;) < B(k(X):X; <€)
+ E(K(D) : X; €, [k(Dy)] < My)
+ B(k(D;) : K(D))| > M)
where M, is chosen so that
B(|k(Dy)] < [K(Dy)| > My) <7

(using hypothesis (vi)).

Thus,
1 n
—ZEk(Xj'—l) < supk'(:z:) + Mnﬂn,X0(€> OO) + 1
(L <€

implying

n

Tim %Zm(xj_l)
1

< supk(z) + 7
<€

since, if (H) holds, Egn- [n.x,(€,00) =0 Y €>0, . By (ii) supk(z) — 0 as €= 0.

<€
Thus (38) is established and hence the theorem is proved.

O

Remark 5 (Special cases)

1. If f(w,z) = C(w)z(l—2),0 < x < 1is a logistic map then D(w) = supf(w,z) =

€ and g(w,e) = (1 — 2)Ipy(x). Thus, k(D) = —In(l = D) = —In(l - g)y.
So if f; is logistic w.p.l. then the hypothesis i) - vi) of Theorem 7 reduce to
—Ein(1 — £) < oo (see Athreya and Dai 2D).

2. If f(w, z) = C(w)ze~¥)* 0 < z < oo is a Ricker map then D(w) = C(w)/d(w), glw,z) =
e~ 42 k(z) = E(d(w))z. Soif f; is Ricker w.p.l. the hypothesis i) - vi) of The-
7
orem 7 reduce to

Ed(w) < oo, E%(%—’)l < o0
E|inC(w)| < oo, ElnC(w) > 0.

18



Similar reductions can be made in the other two cases, ie Hassel maps and

Vellekoop-Hognas maps.

Now we give a second set of sufficient conditions.

Theorem 8 Let {f;},{C;},{g;} be as in Theorem 6. Suppose

i) iii%ElnClgl(x) = (3, exists and is > 0
ii) i%E(lnClxgl (z))T =0
iii) iifiEl”Cl g1(z) = P, exists and is <0
iv) mlgr}JE(lnCla:gl(a:))” =0

v) k(z) = E|InCygi(z)] is bounded on [a,b] for all 0 < a < b< L.

Then there exists a stationary measure 7 for P satisfying 7(0, L) = 1.

Proof Since P is Feller we can apply Theorem 5. Let V(z) = |inz|.
We shall now show that there exists o, M, a,b € (0,00) such that

E(V(X))|Xo=1z)—V(z) < —a forall z ¢ [a,b]

< M for all z €[0,L]

Again suppressing w and noting that
X, = C1Xo9(Xo)
we see that
a) forz <1

E |InX4| — |lnx|

= —EInCyg:(7) + 2E(InCizg:(2))"
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and for z > 1
E,|InX4| — Inx|
= ElnCyg:(z) + 2E(InCizg:(x))~

By hypothesis (i) - (iv)

lim B X — lina] = —f < 0,
lim Ex}lnXll — ]ln:c] = ,62 < 0
z— L

Choose 0 < a < b < oo such that

for ©<a, ElinXi|-|ina] < 2,

for z>b, ElinX;|—|inz| < %2
Next fora <z < b
|Eo|InX,| — |inz|| < EglinX, — Inz|
= E InCigi(z)] = k(z)
which is bounded in [a, b] by hypothesis (v).

Thus (39) and (40) are verified and so by Theorem 5 there exists a stationary measure
# for P such that #(0, L) > 0. Normalizing 7 by 7(0, L) yields the desired measure
TT.

O

Remark 6 In all the four special cases (logistic, Ricker, etc) the function

= i@

gi(z) = Co —0 as x — 00
J

This says that for large = the growth is sublinear. But in some ecological context
such as arising in resource management procedures it is more realistic to keep g;(x)
bounded away from zero as  — oo. Similarly in some growth models in economics
the possibility of f;(z) — 0o as # — oo is not unrealistic.

The next corollary is easy to verify.

Corollary 2 In the set up of Theorem 8 assume:
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1) EllnC’ﬂ < OO,ElTLCl > 0.

ii) With probability one liﬁ)l gi1(z) = 1’h¢IE g1(z) = n > 0 and there exists 0 < a
such that and a < ix%f gi(z) <sup g1(z) <1

iii) ElnC; + Elnn <0

Then there exists a stationary 7 for P satisfying 7(0, L) = 1.

4 Convergence results

The last section dealt with the existence of stationary measures for the Markov chain
{X,} generated by (22) or equivalently by the iteration scheme

X1 = Cer1XiGi41 (Xt) t=0,1,2,--- (41)

where the pair (Cy, g¢(+)>1) are i.i.d. with 0 < Cy < o0, g:(+) being w.p.l. a continuous
function with g,(0) = 1 and independent of Xo.

The convergence questions that we consider here are

i) the almost sure convergence of the sequence {X,} as t — oo, ie convergence of
the trajectories

ii) the convergence of {X;} in probability and

iii) the convergence of the distribution of X;

Since the state space of the Markov chain {X;} is uncountable one has to look for
results from general state space Markov chains theory. There is a body of results
available for the case when the chain is Harris irreducible (see Numnelin[19]). Un-
fortunately, many of the iterated random maps cases turn out to be not irreducible
especially among those where the collection of functions F sampled from is finite or
countable. In these cases if the maps are interval maps that are monotone then the
Dubins-Freedman theory [13] can be appealed to. The papers by Bhattacharya and
Rao [9], Bhattacharya and Majumdar(8] and Bhattacharya and Waymire [10] have
nice accounts of this in the random logistic maps case.
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On the other hand if the distribution of C; is smooth, for eg, absolutely continuous
then {X;}, turns out to be (under some more hypothesis) Harris irreducible. For
the random logistics case Bhattacharya and Rao [9], Bhattacharya and Waymire [10]
have some nice results under such assumptions.

Motivated by Theorem 6 we give the following definition.

Definition The Markov chain {X;} of (22) or (41) is subcritical, critical or supercritical
according as FinC; < 0,= 0 or > 0.

In the subcritical case, {X,} converges to zero w.p.l. In fact, a slightly more general
result holds.

For the rest of this section {X;};>0 will be as in (41).

Theorem 9 Suppose

Tim %Zzncj(w) = dw) <0 wp.l. (42)
1

Then

Xo(w) =0(p") w.p.l (43)

for any p > %) and hence X,(w) — 0 w.p.L

Proof Since f; € F
Xn+1 = Cn+1Xngn+1(Xn) < Cn—HXn

S Cn+1cn...01X0

Thus
1 1 12
~InX, < =IlnXy+ =) InCj.
nn _“nn o+n§;nC]

Now (42) = (43).
Corollary If EInC; < 0 then (42) and hence (43) holds.

The geometric decay of {X,} can be exploited to establish the log normality of X,,.
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Theorem 10 Assume

i) g,(-) is nonincreasing in [0, 6] w.p.1. for some 6>0
ii) ElnC, <0, E(InC1)? < 00
iif) 0 < k(z) = —Elng(z) < oo for all z and nondecreasing

iv) fy &(fld:c < 00

Then,
InX, —nEInCy 4
1
~C 5 N(0,1) (44)

where o? = V (InCy).
Proof From (41)

InX, — InXo = >_InC; + Y _Ing;(X; 1) (45)

1 1

Since g; is nonincreasing in [0,6] w.p.l. and (43) holds, 1 > g;(X;-1) > g;(aN) for j
large, some constant o and 0 < A < 1.

But —FElng;(aX) < k(aX)
and so E(——jilngj(a/\j)) < %;k(a)\j)
which is finite by by (iii).
Thus, —glngj (aN) < oo w.p.L
= = ilngj(ijl) — 0 w.p.L. (46)
Vvn o
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By the central limit theorem

ilnC’j — nEInCy
1

—~ 4 N(0,1).

Now (45) and (46) yield (44).

Next we turn to the critical case.

In the critical case the occupation measures fi,,(-) defined by (14) all converge
n—1

in distribution to d;. This implies that for every €> 0, ;t— S P(X; >€) = 0, ie
0

an = Pp(X, >€) — 0 in the Cesaro sense. A natural question is whether it can
be improved to full convergence or equivalently does X, — 0 in probability for all
0 < = < oo. For the logistic case, ie when f is a logistic map w.p.l. Athreya and Dai
[2] have shown this by a comparison argument. This is extended below to the present
content assuming that w.p.l. fi is unimodal with a common mode o such that f; is
nondecreasing in [0, @] and nonincreasing in [a, 00).

Theorem 11 Let E(InC;)" < oo and ElnCy = 0. Assume further that there exists
an 0 < o < oo such that w.p.l. fi is nondecreasing in [0, ] and nonincreasing in
[, 00).

Then

X, 5 0 for any initial value Xo =1 (47)

The proof makes use of the following.

Theorem 12 (Comparison Lemma) Let {f;}i>1 be iid. and unimodal as in the
above theorem. Let X, be independent of {f;}i>1.

Let {X,}, {Y,}{Vn} and {Z,} n > 0 be defined by
Xn-H = fn+1(Xn)

Yo = min{fupn(Ya),a}, Yo = min{Xo,a}

Y'fH—l = min{fn-i*l(}}n)aa}a % = &

Z, = min{X,,a}
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Then for alln > 0,Y, > Y, > Z, w.p.l

Proof Since Yy < Yy = «, and fiis nondecreasing in 0,0, 1(Yo) £ fr ()70) implying
Y; = min(f;(Yo), o) < min(f1(Yp), @) = Y;. Now induction yields Y, > Y, for all n.

If Xp < a, then Yy = X, and so
hH(Yo) = filXo) =X,
implying Y; = min{f,(Yo), o} = min{X, o} = Z;.
If Xy > o, then Yy = a and so
fi(Ys) = fi(@) > filXo) = Xu
implying Y3 = min{f1(Yo), a} > min{ Xy, a} = Z1.

Thus Y; > Z;. Induction yields Y, > Z, for all n.

Remark 7 This comparison lemma does not require any conditions as FlnC}.

Corollary 3 For any 0 <€< o, and n > 1

< Py(Y, 2€) < P(Y, >€)

i) P(Ypu >€) < P(Y, 2€)

Proof Clearly i) follows from the comparison lemma. Next, by the Markov property
of {Y,}

P(V,1 >€) = EP(Y, >€ |V1) < P(Y, 2€).

Proof of Theorem 11 By Corollary 3 i) it suffices to show that P(Y, >€) — 0.
But since this is nondecreasing in n this is equivalent to showing

SN

%P(YG >€) =0 (48)

~ ~ n—1 ~
But the occupation measure sequence ) () defined by iy (-) = 5 X P(Y; =€) can
0
be shown to have a nontrivial limit point only if ElnCy > 0 (as in the proof of The-
orem 2). Thus ) ([€,00)) — 0 implying (48).
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Turning now to the supercritical case we know from Theorems 6 and 7 that under some
mild additional hypothesis there is a stationary measure ™ such that 7(0,00) = 1. If
the chain {X,} of (41) happens to be Harris recurrent then the stationary measure
= if one exists is necessarily unique and the distribution of X, converges to in
variation norm.

5 Some open problems

The case of iteration of random logistic maps has been well studied by a number of
authors (see Athreya and Bhattacharya [1] for a review). Many of those results have
been extended to the general class F' of section 3 but many more remain. A few of
them are outlined below.

i) Harris irreducibility: Find appropriate conditions on the distribution of fi(w,-)
and in particular (Cy(w), g1(w,)) to ensure that {X,} is Harris recurrent.

ii) Persistence in the critical case: In the critical logistic case Athreya and Schuh
[5] showed that even though X, — 0 in probability, X, does not go to zero
w.p.l. In fact, there exists a level 0 < § <1 such that for all = outside of a
countable set in (0, 1) P,(X, > B for infinitely many n > 1) = 1. An interesting
problem is to extend this to the present setting.

iii) Nonuniqueness: There are examples (see Athreya and Dai [3]) in the random
logistic case when C takes only two values there are two nondegenerate station-
ary measures. It should be possible to extend that construction to the present
more general setting.

iv) Statistical Inference: Suppose the sequence {X,} has been observed for 0 <
n < N. Using this data one should be able to do statistical inference on the
distribution of (Cy, g1(+)).

Also if it is known that it is supercritical and admits a unique stationary measure
7 then estimating 7 from the data {X, = 0 < n < N} would be very useful.
See Athreya and Majumdar [4]

Acknowledgement The author wishes to thank Professor Mukul Majumdar for several
useful discussions.

26



10.

References

Athreya, K. B. and Bhattacharya, R. N. (2000). Random Iterations of Quadratic
Maps, in “Stochastics in Finite and Infinite Dimensions” in honor of G. Kallian-
pur, 49-58, Birkhauser.

Athreya, K. B. and Dai, J. (2000). Random Logistic Maps I, J. Theor. Prob.,
Vol 13, No. 2, 595-608.

Athreya, K. B. and Dai, J. (2002). An example of nonuniqueness of invariant
probability measure for random logistic maps. Ann. Prob. Vol 30, No. 1,
437-442.

Athreya, K. B. and Majumdar, M. (2001). Estimating the stationary distribu-
tion of a Markov chain, Tech. Report, School of ORIE, Cornell University, (to
appear in Economic Theory).

Athreya, K. B. and Schuh, H. J. (2001). Random Logistic Maps II, the critical
case, Tech. Report, School of ORIE, Cornell University. (To appear in J. Th.
Prob.)

Athreya, K. B. and Stenflo, O. (2001). Perfect sampling for Doeblin chains,
Tech. Report, School of ORIE, Cornell University. (to appear in Sankhya)

Barnsley, M. (1988). Fractals Everywhere, Academic Press, New York.

Bhattacharya, R. N. and Majumdar, M. (1999). On a Theorem of Dubins and
Freedman, J. Th. Prob., Vol 12, 1165-1185.

Bhattacharya, R. N. and Rao, B. V. (1993). Random Iterations of Two Quadratic
Maps in Stochastic Processes in Honor of G. Kallianpur, Edited by Cambanis
et al Springer-Verlag.

Bhattacharya R. N. and Waymire, E. (2000). An approach to the existence of
unique invariant probabilities for Markov processes. Colloq. Limit Theorems
in Prob. & Stat. Janos Bolyai Math. Soc.

27



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dai, J. (2000). A result regarding convergence of random logistic maps, Stat.
and Prob. Letters, 47, 11-14.

Diaconis, P. and Freedman, D. A. (1999). Iterated random functions, SIAM
Review, 41, 45-76.

Dubins, L. E. and Freedman, D. A. (1966). Invariant Probability Measures for
certain Markov processes, Ann. Math. Stat., 37, 837-848.

Hassel, M. P. (1974). Density-dependence in single-species populations, J. An-
imal Ecology, 44, 283-296.

Vellekoop, M. H. and Hégnas, G. (1997). Stability of stochastic population
models, studia scientrarum hungarica, 13, 459-476.

Kifer Y. (1988). Random Perturbations of Dynamical Systems, Birkhauser.

Meyn, S. and Tweedie, R. L. (1993). Markov chains and stochastic stability,
Springer-Verlag.

Mitra, T., Montrucchio, L. and Priveleggi, F. (2001). The nature of the steady
state in models of optimal growth under uncertainty, CAE working paper, no.
01-04, Cornell University.

Nummelin, E. (1984). General irreducible Markov chains and nonnegative op-

erators, Cambridge University Press.

Ricker, W. E. (1954). Stock and Recruitment, J. Fisheries Research Board of
Canada, II, 559-623.

28



