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Buildings, extensions, and volume growth
entropy

Jayadev S. Athreya, Anish Ghosh
and Amritanshu Prasad

Abstract. Let F be a non-Archimedean local field and let E be a finite
extension of F . Let G be an F -split semisimple F -group. We discuss
how to compare volumes on the Bruhat–Tits buildings BE and BF of
G(E) and G(F ) respectively.
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1. Introduction

Let F be a non-Archimedean local field, so F is a finite extension of the
p-adic numbers Qp or of Fp((t)), the field of Laurent series over a finite
field of p elements. Let E be an extension of F of degree n. Let G be an
F -split semisimple linear algebraic group defined over F . We assume, for
simplicity, that G is simply connected and has a simple root system (the
general case can in fact be reduced to this one). Let G(F ) be the locally
compact group of its F points. The affine Bruhat–Tits building BF of G(F )
is a simplicial complex on which G(F ) acts isometrically and plays a crucial
role in understanding the structure and representations of G(F ). Let BE

denote the Bruhat–Tits building corresponding to E. Then BF can be
thought of as a sub-building of BE and it is natural to compare properties
of BF and BE . For example, take G = SL2, then BF is a q + 1 regular tree
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where q is the cardinality of the residue field of F . If E is an unramified
quadratic extension of F , then the bigger tree BE is q2 + 1 regular (see
Figure 1). In fact, the question of how the tree BF sits in the tree BE turns
out to depend on the ramification properties of the extension. We refer the
reader to §5 in [5] for a lovely discussion.

Figure 1. Embedded trees for SL2 (unramified case).

Now let E/F be as above and let f be the degree of the residue field
extension. Then e = n/f is the degree of ramification of E over F . Fix
valuations v and w on F and E and denote by OF (resp. OE) the respective
valuation rings and by PF (resp. PE), the respective prime ideals in OF
(resp. OE). Then PFOE = P eE ; moreover if $ is a uniformizing element in
PE and π is a uniformizing element in PF then π = $e ·u for some unit u in
OE . Let q be the cardinality of the residue field of F . Let B(F ), N(F ) (resp.
B(E), N(E)) denote the (B,N)-pairs of G with respect to F (resp. E). Let
BF (resp. BE) denote the respective buildings attached to the (B,N)-pairs
and let dF (resp. dE) denote the G(F ) (resp. G(E)) invariant metrics.

In this short note, we compare volumes of balls in BE and BF . Fix a base
point in the building BF and let KF (resp. KE) denote the stabilizer in
GF (resp. GE) of this basepoint. Let µF (resp. µE) denote Haar measures
on G(F ) (resp. G(E)) normalized to give the stabilizers measure 1. These
induce measures on the respective Bruhat–Tits buildings which we also de-
note µF (resp. µE). We recall that the volume growth entropy h(X, d, µ) of
a simply connected metric space (X, d) with respect to a Borel measure µ
is given by the exponential growth rate of the volume of balls, that is,

h(X, d, µ) := lim
R→∞

logµ(B(x,R))

R
.
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Note that h is independent of the normalization of the measure µ, that is,
for any constant c > 0,

h(X, d, cµ) = h(X, d, µ).

With the inclusion BF ↪→ BE , we have 3 metric measure spaces we would
like to compare: (BF , dF , µF ), (BF , dE , µF ) and (BE , dE , µE). Our main
result regarding entropy is:

Theorem 1.1. The volume growth entropies are related by

h(BF , dE , µF ) =
1

e
h(BF , dF , µF ) =

1

n
h(BE , dE , µE),

or, equivalently

nh(BF , dE , µF ) = fh(BF , dF , µF ) = h(BE , dE , µE).

We discuss the construction of the Bruhat–Tits building in §2. The proof
of Theorem 1.1 proceeds by direct computation of volumes of balls. Along
the way, we compare metrics on BF and BE (3.3) a result which may be of
independent interest. In §4, we prove the theorem in the simplified case of
trees before proving it in full generality in §5. The volume growth entropy
for compact quotients of Bruhat–Tits buildings has been computed explic-
itly by Leuzinger [7] who also showed that (appropriately normalized) that
it is equal to the entropy of the geodesic flow. The volume comparison result
in this paper has implications for homogeneous dynamics. Geodesic flows
on quotients of symmetric spaces and buildings have been extensively stud-
ied. In [1], we proved an analogue of the logarithm laws of Sullivan ([14])
and Kleinbock–Margulis ([6]) for function fields. These results describe the
asymptotic behaviour of geodesic trajectories to shrinking cuspidal neigh-
borhoods. Using Theorem 1.1, “relative” versions of logarithm laws can be
established. Details will appear elsewhere.

Acknowledgements. Part of this work was done when A.G. and J.S.A.
were visiting the Institute for Mathematical Sciences, Chennai. They thank
the institute for its hospitality and excellent working conditions. We are
grateful for the anonymous referee’s comments.

2. Definition of the building

Recall from [2, 3, 13] the construction of a principal apartment for G. Let
T be a maximal split torus in G. Denote by X∗ the real vector space X∗(T )⊗
R. Here, as is usual, X∗(T ) denotes the lattice of algebraic homomorphisms
T → Gm. The dual space X∗ can be identified with X∗(T ) ⊗ R, where
X∗(T ) is the lattice of cocharacters Gm → T . Let Φ = Φ(G,T ) ⊂ X∗(T )
denote the root system of G with respect to T .

The affine apartment A(G,T ) is just X∗, together with a hyperplane
configuration Hα+n, where

Hα+n = {x ∈ X∗|α(x) + n = 0}
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is an affine hyperplane in X∗ for each α ∈ Φ and n ∈ Z.
This hyperplane configuration allows us to think of A as a simplicial

complex. The vertices of this simplicial complex are the points in the weight
lattice

Q = {x ∈ A|α(x) ∈ Z for all α ∈ Φ}.
The affine linear functional x 7→ α(x) + n is usually denoted by α + n.

The affine root system is the set of affine linear functionals on A given by

Ψ = {α+ n|α ∈ Φ, n ∈ Z}.

If N denotes the normalizer NG(F )T of T in G(F ), then N contains T (F )
as a normal subgroup with quotient W , which is, by definition, the Weyl
group of G with respect to T . In fact N is a semidirect product:

N = T (F ) oW.

Fix a uniformizing element π in the ring of integers of F . Recall that,
if for each η ∈ X∗(T ), we define πη ∈ T (F ) to be the element η(π), then
η 7→ πη gives rise to an isomorphism

X∗(T )→̃T (F )

T (O)
.

Denote by the ϑ the inverse of the above isomorphism composed with the
quotient map T (F )→ T (F )/T (O).

The affine apartment A is an N -space (in the sense that there is an action
of N on A which preserves the hyperplane configuration). The action is as
follows:

(tw) · η = ϑ(t) + wη.

The reason that the hyperplane configuration is preserved is that

α+ n[(tw) · η] = α(ϑ(t)) + wη) + n

= αw(η) + α(ϑ(t)) + n

= [αw + α(ϑ(t))](η)

so that composing with the N -action on A takes an affine root to another
affine root.

The action of N on A factors through the quotient of N by T (O), which
is called the affine Weyl group of G:

W̃ =
T (F )

T (O)
oW.

To each point x ∈ A is associated a parahoric subgroup Gx of G(F ) such
that N ∩Gx is the isotropy subgroup of x in N . The Bruhat–Tits building
of G is constructed as follows:

B := (G(F )×A)/ ∼
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where “∼” is the equivalence relation on acts on G × A for which (g, x) ∼
(h, y) if there exits n ∈ N such that

n · x = y and g−1hn ∈ Gx
where Gx is the parahoric subgroup corresponding to the point x ∈ A.

For example, if idG denotes the identity element of G(F ), then

(id, x) ∼ (id, y)

if and only if there exists n ∈ N ∩Gx such that n · x = y, which amounts to
requiring that x = y. Thus, A is itself embedded in B as {idG} ×A.
G acts on B via

g · (h, x) = (gh, x).

For example, under this action, g · (id, x) ∼ (id, x) if and only if (g, x) ∼
(id, x), or in other words, if and only if there exists n ∈ N such that n ·x = x
and gn ∈ Gx. Since N ∩Gx is the isotropy subgroup of x in N , g itself must
lie in Gx. Therefore Gx is the isotropy subgroup of (id, x) in G. More
generally, g · (h, x) ∼ (h, x) if and only if (gh, x) ∼ (h, x) if and only if
h−1gh ∈ Gx. In other words, the stabilizer of (h, x) is the parahoric subgroup
hGxh

−1.
Had we chosen a different split torus T ′ which was conjugate to T , we

would have begun with an apartment A′ corresponding to T ′. We would
always be able to find g ∈ G(F ) such that gTg−1 = T ′ The building B′

constructed from B would be isomorphic to B as a G(F )-space by identifying
A′ with g ·A ⊂ B.

These subsets g ·A are known as the apartments of B. A basic fact about
the building is that any two points are contained in an apartment.

Thus, in order to define a metric on B, we take the following strategy:
given x, y ∈ B, we find an apartment g · A such that x and y lie in g · A.
In other words, g−1x and g−1y lie in A. Now A itself has, up to scaling, a
unique W -invariant inner product, and it is the distance between g−1x and
g−1y with respect to a fixed such inner product that we declare to be the
distance between x and y.

We may normalize the metric on B by normalising the W -invariant inner
product on A, which may be achieved by declaring that the diameter of
each connected component of the complement of the union of the hyperplane
configuration Hα+n as α+n varies over the set Ψ of affine roots has diameter
one.

The building B inherits the structure of a simplicial complex from the
apartment A. A simplex in B is a G-translate of a simplex in A.

3. Behaviour under field extensions

Let E be a finite extension of F of degree n. Suppose that the residue
field extension is of degree f . Then e = n/f is the degree of ramification of
E over F . Let PF denote the prime ideal in the ring of integers of F . Then
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Figure 2. Embedded apartments for type C2.

PFOE = P eE . If $ is a uniformizing element in PE and π is a uniformizing
element in PF then π = $e · u for some unit in OE .

Let G be a split semisimple group over F and fix a maximal F -split torus
T . Let AE and AF denote the apartments of G(E) and G(F ) with respect
to T . As sets, these are exactly the same; they are both isomorphic to
X∗(T ) ⊗ R. However, the identity map is not the correct way to identify
AF with AE . Recall that AF and AE come with actions of NF := NG(F )T
and NE := NG(E)T respectively. Let i : NF ↪→ NE denote the emedding
of NF as a subgroup of NE . Let e : AF → AE denote multiplication by e.
Then e is a simplicial embedding of AF in AE . Then the following diagram
commutes.

(3.1) NF ×AF
//

i×e
��

�

AF

e

��

NE ×AE
// AE

Furthermore,

(3.2) G(E)e(x) ∩G(F ) = G(F )x

for each x ∈ AF . We may apply the construction of Section 2 to G(F ) as
well as G(E) resulting in two different buildings, which we denote by BF

and BE respectively. The equations (3.1) and (3.2) imply that the map
i× e : G(F )×AF → G(E)×AE descends to an inclusion of BF in BE .

The stabilizer of the image of (idG(F ), 0) in BF (which is a vertex of BF )
is G(OF ), and similarly, the stabilizer of (idG(E), 0) in BE is G(OE).

Since multiplication by e is an isomorphism AF → AE of simplicial com-
plexes, it follows that, for x, y ∈ AF (which can also be thought of as points
of AE)

(3.3) dE(x, y) = edF (x, y).

Since any two points in BF are contained in some apartment, (3.3) remains
valid for any x, y ∈ BF .
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4. Trees
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Figure 3. Embedded trees for SL2 (totally ramified case).

In this section we sketch a proof of Theorem 1.1, in the case G = SL2, and
thus where the buildings BF and BE are regular trees. We first decompose
the field extension E → F as a chain of two extensions E′ → F and E → E′,
where E′ → F is a totally ramified extension of degree e and E → E′ is an
unramified extension of degree f . We fix notation: log will denote natural
logarithm, and let αR(t) denote the volume of the ball (with respect to
counting measure on vertices) of radius R in a (t+ 1)-regular tree, that is

αR(t) = (t+ 1)tR−1.

We note that

lim
R→∞

logαR(t)

R
= log t.

There is a prime power q = pn so that BF is a q + 1-regular tree, which
immediately yields

h(BF , dF ) = log q.

Here, and below, we drop the measure µ from the definition of entropy as we
will work exclusively with counting measure, taking advantage of the fact
that the entropy h is invariant under scaling. We treat the unramified and
fully ramified cases in turn, before working out the general case.

4.1. Totally ramified extensions. If E/F is a totally ramified extension
of degree e, then the tree BE is formed by subdividing each edge of BF into e
segments by adding e−1 vertices. To each of these, we attach a rooted tree,
where the root has valence q− 2, and all the descendants have valence q+ 1
(q descendants and one parent). Thus, the resulting BE is a q + 1-regular
tree. The metric dE gives each edge length 1, thus, we have

µ(B(R,E) ∩BF ) = µ

(
B

(
R

e
, F

))
= αR

e
(q),

where B(R,E) is the ball of radius R in the metric dE (we will also write
B(R,F ) and B(R,E) to mean balls of radius R in the dF metric and dE met-
rics respectively). In this case, we have that the metric spaces (BF , dF ) and
(BE , dE) are isometric (both being metric q+ 1-regular trees), but (BF , dE)
is not isometric to either, since the inclusion (BF , dF ) ↪→ (BE , dE) is not an
isometry.
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4.2. Unramified extensions. Now consider an unramified extension E →
F of degree f . Here, the tree BE is formed from the tree BF by adding
qf − q edges to each vertex, and then rooted qf + 1-valent trees to each new
vertex (that is, the root has qf -children, and each descendant has qf further
descendants). Here, the inclusion (BF , dF ) ↪→ (BE , dE) is an isometry, but
the metric spaces (BE , dE) and (BF , dF ) are clearly not isometric. Thus,

µ(B(R,E) ∩BF ) = µ(B(R,F )) = αR(q).

4.3. The general case. To construct BE from BF in general, we combine
the two procedures. The extension E is a totally ramified extension of an
unramified extension E′ of F . We thus obtain

µ(B(R,E) ∩BF ) = µ

(
B

(
R

e
, F

))
= αR

e
(q).

Taking logq, dividing by R, and letting R→∞, we obtain, as desired

h(BF , dE , µF ) =
1

e
h(BF , dF , µF ) =

1

ef
h(BE , dE , µE),

and noting that ef = n, we obtain Theorem 1.1.

5. Proof of the Main Theorem

The proof of the Main Theorem follows along similar lines to the argument
in §4. In the three lemmas below, we explicitly compute the volumes of balls
in Bruhat–Tits buildings. The result follows upon taking ratios of volume
entropies.

Fix a set ∆ of simple roots in Φ(G,T ). This determines a maximal facet of
A, whose stabilizer is an Iwahori subgroup I, and a set of simple reflections
which generate W̃ . Let l(w) denote the length of an element of W̃ with
respect to this set of generators.

Lemma 5.1. For any x ∈ B and w ∈ W̃ ,

d(wx, x) � l(w).

This equivalence symbol means that the quantities are bounded between two
constants.

Proof. For η ∈ X∗(T ) let $η denote the image of η($) in T (F )/T (O),

which we may regard as an element of W̃ . By [12], l($η) = 〈ρ, η〉, where ρ
denotes half the sum of positive roots. Consider the hyperplane

H = {x ∈ X∗ | 〈ρ, x〉 = 1}.

If x ∈ X∗ is dominant and non-zero, then clearly, 〈ρ, x〉 > 0 (since 〈α, x〉 ≥ 0
for all α > 0). Therefore, this hyperplane intersects each ray in the dominant
cone at exactly one point. It follows (since the dominant cone is pointed -
see Theorem 1.26 of [8]) that the intersection of H with the dominant cone



FIELD EXTENSIONS 9

is compact. It follows that there exist positive constants C and c such that
for any dominant point x in H,

c < ‖x‖ < C.

By scaling any dominant point of X∗ into H, it follows that

c〈ρ, x〉 < ‖x‖ < C〈ρ, x〉.

Now any w ∈ W̃ can be written as w = $ηw0 for w0 ∈ W and dominant
η ∈ X∗(T ). Since the lengths of elements in the finite Weyl group form a
bounded set, and the metric in A is W -invariant, it follows that d(w ·0, 0) �
l(w). Since B is homogeneous, we get the result for all x ∈ B. �

Let
S(q,R) :=

∑
w∈W̃ , l(w)≤R

ql(w).

Normalize the measure µ on B so that each maximal facet has unit measure.
Then we have:

Lemma 5.2. For every R ≥ 0,

µ(B(x,R)) � S(q,R).

Proof. By Lemma 5.1, d(wx, x) � l(w). By the G(F )-invariance of the
metric on B, it follows that d(IwI, I) � l(w).

Since G acts transitively on B and I is the stabilizer of a maximal facet,
the set of maximal facets of B can be identified with G/I. By the affine
Bruhat decomposition, G is the union of double cosets IwI as w runs over
set of representatives of W̃ in N . Thus,

µ(B(x,R)) �
∑

l(w)≤R

µ(IwI).

Now µ(IwI) is the number of cosets of the form xI in IwI. This number

turns out to be ql(w) (see, for example, [10, Section 4.b]) and the lemma
follows. �

Lemma 5.3. As a function of R,

S(q,R) �W (q)
∏
i

(qmi − 1)qRr,

where r is the (semisimple) rank of G, W (t) is the Poincaré polynomial of
the finite Weyl group of G, the product is over an indexing set of simple
roots of G, and mi is the exponent of the corresponding simple root.

Proof. The polynomial (in the variable q) S(q,R) is the truncation of the

Poincare series of W̃ at qR. This series is given by

W̃ (q) = W (q)
∏
i

1

1− qmi

(see [4, §8.9]). �
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From here on, the proof of Theorem 1.1 is similar to the proof in the case
of trees: firstly note that there exists a constant C, which depends only on
the coefficients of powers of q in the polynomial W (q)

∏
i(q

m−i − 1), such
that

lim
r→∞

logµ(B(x,R))

R
= C log q.

The condition that G is F -split will ensure that the general form of S(q,R)
(and hence the constant C) does not change under extension of fields.

If E/F is a totally ramified extension of degree e, then each edge in BF is
subdivided into e edges in BE . Therefore, the ball of radius eR in BF with
respect to dE is the ball of radius R in BF with respect to dF , so that

h(BF , dE , µF ) =
1

e
h(BF , dF , µF ).

Also, since the extension is totally ramified, there is no change in the residue
field cardinality, so

h(BF , dF , µF ) = h(BE , dE , µE).

For an unramified extension E/F of degree f , dF is the restiction of dE
to BF , so

h(BF , dE , µF ) = h(BF , dF , µF ).

On the other hand, the residue field extension is of degree f , so

h(BF , dF , µF ) =
1

f
h(BE , dE , µE).

As before, since every extension of local fields can be written as a tower
consisting of an unramified extension followed by a totally ramified exten-
sion, the general result follows from these special cases.
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