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giving rise to novel missing energy signatures at the LHC. We perform a two-parameter

global analysis of the LHC Higgs data available till date to determine the optimal invisible

Higgs branching fraction in this scenario, and obtain a 2σ (1σ) upper limit of 0.25 (0.15).

A detailed cut-based analysis is carried out thereafter, demonstrating the viability of our

proposed signal vis-a-vis backgrounds at the LHC.
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1 Introduction

After the recent discovery [1, 2] of a Higgs boson with mass around 125GeV, a major goal

is to establish whether it is ‘the’ Standard Model (SM) Higgs boson or a first glimpse of

some Beyond Standard Model (BSM) physics at the LHC. A precise determination of the

discovered Higgs boson characteristics will be crucial in resolving some of the outstanding

issues of the SM, and in particular, understanding the mechanism of electroweak symmetry

breaking and its relationship to the BSM. The experimental results so far [3–6] show no

significant deviation from the SM Higgs sector expectations, and already put severe con-

straints on various new physics models (see, for instance, [7–15]). However, they still do

not exclude the possibility of a non-standard Higgs boson.

A precise measurement of the total decay width of the Higgs boson (h) through its line

shape is very difficult at the LHC due to its tiny value: for the SM with mh = 125GeV,

Γh = 4.07MeV [16]. Hence, a better way to identify a non-standard Higgs boson is by

studying its non-standard decay modes (for a review, see e.g., [17]). This is also crucial

in case of a statistically significant discrepancy between the measured and SM expected

Higgs signal strengths which could be due to either suppression or enhancement of the

Higgs production cross section as well as its partial decay widths.
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A particularly interesting non-standard Higgs decay which is very sensitive to large

BSM contributions is its invisible decay mode [18], since the SM invisible Higgs branch-

ing ratio (BR) is very small: BR(h → ZZ∗ → 4ν) ≃ 0.001 [19]. Dedicated searches for

the Higgs decay into invisible final states were performed at the LEP [20], and no signal

was found for Higgs mass up to 114.4GeV. The LHC prospects of determining the invis-

ible Higgs BR have been analyzed in refs. [21–30]. The current experimental limits for a

125GeV invisible Higgs BR are < 0.65 from ATLAS [31] and < 0.75 from CMS [32] at 95%

CL derived from the direct search pp → Zh → ℓℓ /ET . Global fits to the existing LHC data

provide a stronger constraint on BRinv < 0.28 at 95% CL [13] (for other recent global fits,

see [33, 34]).

From a phenomenological point of view, the compelling evidence for the existence of

dark matter (DM) and its ‘WIMP-miracle explanation’ (for a review, see e.g., [35]) suggest

that given suitable mass and unsuppressed coupling to the Higgs, the invisible decay to DM

could be significant. In fact, this can occur in many well-motivated BSM scenarios, e.g.,

MSSM with neutralino DM [36–43], models with extended scalar sector [44–49], Majoron

models [50–54], large extra dimension [55, 56], etc. The possibility of Higgs decaying to DM

has gained renewed interest in view of the recent claims from some DM direct detection

experiments such as DAMA/LIBRA [57], CoGeNT [58], CRESST-II [59], and more recently

CDMS-II [60], in favor of a light DM in the mass range 5–50GeV, with a large DM-nucleon

scattering cross section of 10−5 − 10−7 pb. This provides a strong motivation to examine

the invisible Higgs decays in some BSM scenarios accommodating a light DM.

Due to various well-known theoretical reasons (see e.g., [61]), low-scale supersymmetry

(SUSY) remains as one of the most attractive BSM scenarios, in spite of the null results

from SUSY searches at the LHC so far [62, 63]. In R-parity conserving SUSY models, the

lightest supersymmetric particle (LSP), if electrically neutral, provides a natural WIMP

DM candidate (for a review, see [64]). In the Minimal Supersymmetric Standard Model

(MSSM), the lightest neutralino is the usual DM candidate, as the other viable candidate,

namely, the scalar superpartner of the left-handed (LH) neutrino (the LH sneutrino), is

strongly disfavored due to constraints from DM relic density and direct detection as well

as the invisible decay width of the Z-boson [65, 66]. However, in the minimal Supergravity

(mSUGRA)/constrained MSSM (cMSSM) [67] with gaugino and sfermion mass unification,

the recent LHC data disfavor a light neutralino mass below about 200GeV, as demonstrated

by the global fits [68–71], thus excluding the possibility of Higgs decaying to neutralino

DM.1 For other implications of the recent experimental results for mSUGRA, see e.g., [76].

On the other hand, the neutrino oscillation data require at least two of the three SM

neutrinos to have a tiny but non-zero mass (for a review, see e.g., [77]) which calls for

some new physics beyond SM/MSSM. Thus, it would be interesting if a simple extension

of the MSSM to explain the neutrino oscillation data can also accommodate a light DM

candidate while satisfying all the existing experimental constraints. Such a scenario was

recently studied in ref. [78] within the framework of cMSSM supplemented by a SM singlet-

1In a more general version of the MSSM it is still possible to have a light neutralino satisfying all the

experimental constraints [72, 73] though these cases turn out to be highly fine-tuned (see e.g., [74, 75]).
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pair sector to explain the non-zero neutrino masses and mixing by a low-scale inverse seesaw

mechanism [79, 80]. It was shown that in contrast with the pure cMSSM scenario, this

allows a light DM in the form of a mixed sneutrino with mass around mh/2, required to

have a large annihilation rate via s-channel Higgs resonance.

Due to the large Yukawa couplings allowed in the model which are responsible for an

efficient annihilation of the sneutrino DM, the lightest CP -even Higgs boson can have a

large invisible branching ratio to sneutrino final states. This in turn leads to novel missing

energy signatures at the LHC. Here we analyze this possibility in detail by performing a

two-parameter global fit with the latest LHC Higgs data to determine the optimal invisible

Higgs branching ratio allowed in this model, and find a 2σ (1σ) upper limit of 0.25 (0.15).

This in turn puts an upper limit of O(0.1) on the Dirac Yukawa coupling in the model.

We further show that the model parameter space allowed by the invisible Higgs decay

constraints can be completely ruled out in case of null results at the next generation

DM direct detection experiments such as LUX and XENON1T. Finally, we select a few

benchmark points satisfying all the experimental constraints, and carry out a detailed cut-

based analysis, demonstrating the viability of our proposed signal in two Higgs production

channels, namely, vector boson fusion (VBF) and associated production with Z, vis-a-

vis SM backgrounds at
√
s=14TeV LHC. We find that a signal significance of 3σ can be

achieved in the VBF channel with an integrated luminosity as low as 200 fb−1, whereas in

the Zh channel it requires a luminosity of at least 600 fb−1 for our chosen benchmark points.

The paper is organized in the following way. In section 2 we give a brief description

of the model. In section 3, we scan the model parameter space to select a few benchmark

points for a viable light sneutrino DM candidate. Then we perform a global χ2-analysis

with the available LHC Higgs data to obtain the 1σ and 2σ allowed ranges of invisible

Higgs branching fraction. In section 4 we present a collider analysis for the invisible Higgs

decay signature at the LHC, focusing on two of its production channels, namely, VBF and

Zh, for a few chosen benchmark points satisfying all the experimental constraints. Our

conclusions are given in section 5. In the appendix, we list all the ATLAS and CMS Higgs

data sets used in our global analysis.

2 An overview of the model

In the supersymmetric version of the inverse seesaw mechanism [79, 80], all the light neu-

trino masses can be generated at tree-level by adding three pairs of SM singlet superfields:

N̂ c
i and Ŝi (with i = 1, 2, 3) having lepton number −1 and +1 respectively. Thus the

sneutrino LSP is in general a linear combination of the superpartners of the LH neutrino

and the singlet fermions. Several embeddings of this set up have been discussed in the

literature within the MSSM gauge group [81] as well as with extended gauge symmetries

such as SU(2)L × SU(2)R × U(1)B−L [82–84], SU(2)L × U(1)Y × U(1)B−L [85, 86] and

SU(2)L × U(1)Y × U(1)R [87]. In this paper, we choose to work within the MSSM gauge

group and take a hybrid approach for the model parameters similar to that in refs. [78, 81]

to find suitable benchmark points, i.e. a low energy input for the MSSM singlet fermion

sector and for the lepton-number violating soft SUSY-breaking sector while a top-down
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approach for the MSSM sparticle spectrum with mSUGRA boundary conditions at the

high scale without necessarily imposing any features of a specific Grand Unified Theory

(GUT) framework. The mSUGRA boundary conditions for the MSSM sector enables us

a direct comparison with the pure cMSSM case for its collider phenomenology [78]. The

low-energy inputs for the singlet sector are chosen to satisfy all the low-energy constraints

in the lepton sector. It is reasonable to choose them directly at the SUSY-breaking scale

since the Renormalization Group (RG) running effects from the singlet sector on the pure

cMSSM sector are expected to be small (as can be seen, for instance, from the RG equations

in ref. [83] in the context of a particular SO(10) GUT model), and hence, it is equivalent to

choosing a corresponding set of RG-evolved high-energy inputs, thus making our analysis

independent of any specific GUT embedding. Henceforth, we will refer to this hybrid model

generically as the Supersymmetric Inverse Seesaw Model (SISM).

The SISM superpotential is given by

WSISM = WMSSM + ǫaby
ij
ν L̂

a
i Ĥ

b
uN̂

c
j +MRij

N̂ c
i Ŝj + µSij

ŜiŜj , (2.1)

µS being the only (tiny) source of lepton number violation in the superpotential. The soft

SUSY-breaking Lagrangian is given by

Lsoft
SISM = Lsoft

MSSM −
[
m2

N Ñ c†Ñ c +m2
SS̃

†S̃
]

−
[
ǫabA

ij
ν L̃

a
i Ñ

c
jH

b
u +Bij

MR
Ñ c

i S̃j +Bij
µS

S̃iS̃j + h.c.
]
. (2.2)

As a result of the LH neutrinos mixing with the singlet ones, the tree level neutrino mass

matrix is 9× 9 in the basis {νL, N c, S}:

Mν =




0 MD 0

MT
D 0 MR

0 MT
R µS


 , (2.3)

where MD = vuyν is the Dirac neutrino mass matrix, vu = v sinβ being the vacuum expec-

tation value (vev) of the Ĥu superfield in MSSM, with v ≃ 174GeV. In the limit ‖µS‖ ≪
‖MR‖ (where ‖M‖ ≡

√
Tr(M †M)), we can extract the 3×3 light neutrino mass matrix as

Mν =
[
MDM

T−1

R

]
µS

[
(M−1

R )MT
D

]
+O(µ2

S) ≡ FµSF
T +O(µ2

S) . (2.4)

As can be seen from eq. (2.4), the smallness of neutrino mass now additionally depends

on the small lepton-number violating parameter µS instead of just the smallness of the

Dirac mass MD and/or heaviness of MR as in the canonical type-I seesaw case [88–92]. For

µS ∼ O(keV), we can easily bring downMR toO(TeV) range even with comparatively large

Dirac Yukawa couplings of O(0.1), thus leading to a rich collider phenomenology [78, 93–96]

as well as observable lepton flavor violation (LFV) effects [82, 97–107].

2.1 Fitting neutrino oscillation data

The effective light neutrino mass matrix is usually diagonalized by the unitary Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix. But due to its mixing with heavy neutrinos in

– 4 –



J
H
E
P
1
0
(
2
0
1
3
)
2
2
1

the matrix structure of Mν in eq. (2.4), the light neutrino mixing matrix will receive

additional non-unitary contributions. Thus, the full (non-unitary) light neutrino mixing

matrix U diagonalizing the light neutrino mass matrix in eq. (2.4) has to be derived from

the 9× 9 unitary matrix V diagonalizing the full mass matrix given in eq. (2.3), i.e,

VMνVT = diag(mi,mRj
), (i = 1, 2, 3; j = 1, 2, . . . , 6), (2.5)

and by decomposing it into the blocks

V9×9 =

(
U3×3 K3×6

K′
6×3 N6×6

)
. (2.6)

For ‖MD‖ ≪ ‖MR‖, it is sufficient to expand U up to leading order in F = MDM
T−1

R :

U ≃
(
1− 1

2
FF †

)
U ≡ (1− η)U (2.7)

where U denotes the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix that di-

agonalizes the light neutrino mass matrix and η = 1
2FF † is a measure of the non-unitarity.

In order to satisfy the LFV constraints simultaneously with the sneutrino DM relic

density constraint, we choose to work with diagonal MR and MD, and accordingly fit µS

to be consistent with the neutrino oscillation data. We use the following global fit values

for the oscillation parameters [108]:

∆m2
21 = (7.62± 0.19)× 10−5 eV2, ∆m2

31 = (2.53± 0.09)× 10−3 eV2,

sin2 θ12 = 0.320± 0.016, sin2 θ23 = 0.490± 0.065, sin2 θ13 = 0.026± 0.004. (2.8)

2.2 Sneutrino mass matrix

In the scalar sector, due to mixing between doublet and singlet sneutrinos we have an

analogous 9 × 9 complex (or 18 × 18 real) sneutrino mass squared matrix. Assuming CP

conservation in the soft SUSY-breaking Lagrangian (2.2),2 we can decompose this mass

matrix into two 9× 9 real block-diagonal matrices corresponding to CP -even and CP -odd

sneutrino states. The corresponding mass term in the Lagrangian looks like

Lν̃ =
1

2
(φR, φI)

(
M2

+ 0

0 M2
−

)(
φR

φI

)
, (2.9)

where φR,I = (ν̃R,I
Li

, Ñ cR,I

j , S̃R,I
k ) (i, j, k = 1, 2, 3) and

M2
±=




m2
L̃
+MDM

T
D+ 1

2m
2
Z cos 2β ±(vuAν − µMD cotβ) MDMR

±(vuAν − µMD cotβ)T m2
N+MRM

T
R+MT

DMD BMR
±MRµS

MT
RM

T
D BT

MR
± µSM

T
R m2

S+µ2
S+MT

RMR±BµS


 ,

2The addition of extra CP phases do not affect any of the collider aspects studied in this paper; hence

they were taken to be zero for simplicity.
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where m2
L̃
denote the soft SUSY-breaking mass squared term for SU(2)L-doublet sleptons.

The real symmetric CP -even and CP -odd mass squared matrices M2
± can be diagonalized

by 9× 9 orthogonal matrices G± as follows:

G±M2
±GT

± = diag
(
m2

ν̃R,I
i

)
(i = 1, 2, · · · , 9). (2.10)

The corresponding eigenvalues ofM2
± are almost degenerate in nature, with the degeneracy

between ν̃Ri and ν̃Ii lifted only due to the small lepton number breaking parameter µS . We

will choose some benchmark points for which the lightest sneutrino mass eigenstate is the

LSP, and will serve as a light DM candidate.

3 Invisible Higgs decay

Our goal in this section is to find the prospects of the lightest CP -even Higgs boson decay-

ing into two light DM particles in the form of sneutrino LSP, thereby leading to a missing

energy signal at the LHC. In the SISM being discussed here, we have 5 mSUGRA parame-

ters m0,m1/2, tanβ,A0, sign(µ) at high scale and the additional inverse seesaw parameters

MD,MR, µS , BµS
and BMR

whose input values are chosen at the low scale. For simplicity,

we have assumed these low-energy neutrino sector parameters to be diagonal (apart from

µs whose structure is fixed by neutrino oscillation data) so that we can easily satisfy the

LFV constraints. Also, the trilinear Aν term in the soft SUSY-breaking Lagrangian which

controls the Higgs BR to sneutrinos is taken to be (Aν)ij = A0(yν)ij . Note that we require

a large A0 in order to have a large radiative correction to the lightest CP -even Higgs mass

as required by the LHC observation, whereas the Dirac Yukawa coupling yν is also required

to be large in order to provide an efficient annihilation channel for the sneutrino LSP. These

two seemingly uncorrelated effects inevitably lead to a large invisible BR for the Higgs in

the SISM.

3.1 Light sneutrino DM

It was shown in [78] that the observed DM relic density for light sneutrino LSPs in the SISM

is obtained by resonant enhancement of the annihilation cross section in the Higgs-mediated

s-channel process: ν̃LSPν̃LSP → ff̄ (where f denotes the SM fermion). This is illustrated

in figure 1 which was obtained by choosing the input parameters in a sample range

m0 ∈ [0.1, 2.5] TeV, m1/2 ∈ [0.65, 2.5] TeV, A0 ∈ [−3, 3] TeV,

diag(yν) ∈ [0.01, 0.2], (MR)11 ∈ [100, 800] GeV, (3.1)

and for a fixed tanβ = 10, sign(µ) = +1, (MR)22,33 = 1 TeV, BµS
= 10−4 GeV2, and

BMR
= 106 GeV2. We have chosen the mSUGRA parameter ranges shown here keeping

in mind the LHC exclusion limits on the cMSSM parameter space [62, 63]. The parameter

scan was performed using SSP [109], with the SISM implemented in SARAH [110–112], and

the sparticle spectrum was generated using SPheno [113, 114], while DM relic density was

calculated using micrOMEGAs [115, 116]. All the points shown in figure 1 are required to

– 6 –
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Figure 1. Sneutrino relic density as a function of the sneutrino LSP mass for our SISM input

parameter scan. The horizontal shaded band shows the Planck 3σ preferred range.

have the lightest CP -even Higgs mass in the range 125±2GeV to be consistent with the lat-

est LHC Higgs data [3, 5]. The horizontal blue band indicates the 3σ preferred range from

Planck data: Ωh2 = 0.1199±0.0081 [117]. It is clear that for the sneutrino LSP mass below

W -boson mass, the observed DM relic density is obtained only near the Higgs-resonance

region, thus requiring the sneutrino DM mass in the SISM to be around mh/2. The other

possible resonance around mZ/2 is suppressed in this case due to small mixing between the

SU(2)L-doublet and singlet neutrinos, as required to satisfy the Z-invisible decay width

constraint from LEP [118]. Note that in figure 1, the observed relic density can also be sat-

isfied for sneutrino LSP in the 80–200GeV mass range due to its large annihilation rate into

WW,ZZ and hh final states. Since our main focus in this paper is on light sneutrino DM

and Higgs invisible decay, we do not consider this mass range in our subsequent analysis.

The same interaction that leads to the Higgs-mediated s-channel annihilation of the

sneutrino DM in our model also leads to a direct detection signal via t-channel Higgs

exchange. In figure 2 we have plotted the spin-independent DM-nucleon scattering cross

section predictions as a function of the sneutrino LSP mass for the corresponding points

in figure 1. We also show the subset of points satisfying the relic density constraints.

The solid line indicates the current limit from XENON100 data [119]. We also show the

projected limits from XENON1T [120] and LUX [121] experiments. As evident from the

plot, a few of the allowed points are already ruled out by the XENON100 data, while all of

the low-mass points satisfying the relic density constraints can be ruled out by LUX and

XENON1T projected limits in case of a null result.

From figures 1 and 2 we infer that it is indeed possible to have the lightest Higgs

boson decaying into two sneutrino LSPs, while satisfying the DM relic density and direct

detection constraints. We have also checked that all the points shown in figures 1 and 2 are

well below the current indirect detection cross section limits from Fermi-LAT [122, 123].

3.2 The invisible decay width and current data

In order to ascertain how much invisible BR of the Higgs is allowed in our model, we

perform a global analysis with all the LHC Higgs data available so far (see appendix).
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Figure 2. Spin-independent direct detection cross section as a function of the sneutrino LSP mass

for our SISM parameter scan. The red (+) points satisfy relic density . 0.13. The current experi-

mental limit from XENON100 and the projected limits from LUX and XENON1T are also shown.

Input parameter BP1 BP2 BP3

m0 (GeV) 996.45 745.48 614.00

m1/2 (GeV) 750.00 1014.17 1083.00

A0 (GeV) −2858.00 −2775.09 −2600.00

Table 1. The mSUGRA input parameters for three chosen benchmark points.

Since the neutrino sector parameters of the SISM do not affect the Higgs production or

decay rates into the SM final states, and only affect its invisible decay into sneutrino final

states, we can parametrize their effect in terms of a single free parameter, namely, the

invisible BR ε which relates the visible and invisible partial widths of the Higgs boson as

Γinv =
ε

1− ε

∑
Γvis . (3.2)

For the MSSM sector of the SISM, we choose a few benchmark points (BPs) by fixing

m0,m1/2 and A0 as shown in table 1, and vary the remaining parameter, namely, tanβ

to compute the low-energy SUSY spectrum using SPheno [113, 114]. The benchmark

points given in table 1 were selected from the sample scan ranged over the values given in

eq. (3.1) by requiring them to satisfy the constraints coming from higgs and squark-gluino

mass bounds. We have fixed the sign of the MSSM µ-parameter to be +1 throughout our

analysis since µ < 0 is strongly disfavored by the muon anomalous magnetic moment as

well as by the B → Xsγ branching ratio. Note that all the benchmark points shown in

table 1 require an electroweak fine-tuning at the percent level, which is mandatory given

the current LHC data (see e.g., [124]). For the trilinear term A0, a large negative value is

required to obtain the correct Higgs mass (mh = 125 ± 2GeV) for our choices of m0 and

m1/2 (which are consistent with the general results from other mSUGRA parameter scans,

e.g. [124]). We have checked that all our benchmark points lead to a stable electroweak

vacuum and do not lead to charge- and/or color-breaking minima.
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Figure 3. 1σ and 2σ contours for ε and tanβ from χ2 minimization obtained for BP1. The green

line indicates 1σ reach and the red line indicates 2σ reach of the parameters.

For each combination of the high-scale parameters given in table 1, we perform a global

analysis in the ε-tanβ plane using 10 data points in various Higgs decay channels from the

published results of CMS and ATLAS, as listed in appendix. For each of the variables,

with the other one marginalized, we compute the χ2 function, defined as

χ2 =
∑

i

(µi − µ̂i)
2

(δµ̂i)2
, (3.3)

where µi’s are the Higgs signal strengths calculated from the model and are functions of

the model parameters:

µi = Rprod
i × Rdecay

i

Rwidth
. (3.4)

Here Ri’s are the ratios of the model predictions for the Higgs production cross sections

and partial decay rates for various channels, and similarly R is the ratio of the total width,

with the corresponding SM expectations:

Rprod
i =

(
σprod
i

)

SISM(
σprod
i

)

SM

, Rdecay
i =

(
Γdecay
i

)

SISM(
Γdecay
i

)

SM

, Rwidth =

(
Γwidth

)
SISM

(Γwidth)SM
, (3.5)

and µ̂i’s are the experimental best fit values of the signal strengths as listed in appendix,

δµ̂i’s being their reported 1σ uncertainty. When the reported uncertainties are asymmetric

in nature, we consider the positive uncertainty for (µi − µ̂i) > 0 and the negative one for

(µi − µ̂i) < 0.

We have varied tanβ between 2 and 50, and ε between 0 and 0.7. Note that large

tanβ & 50 is disfavored by the recent LHCb results on Bs → µ+µ−, and very low tanβ . 2

are usually not considered due to radiative electroweak symmetry breaking arguments. The

1σ and 2σ contours for tanβ and ε for various ‘snapshot’ values of the high-scale parameters

are presented in figures 3, 4 and 5. We have chosen the benchmark points for signal

prediction, ensuring that we stay within 2σ for both of the fitted parameters (ε and tanβ).

As manifested in these contour plots, the minimum χ2-value is obtained for ε = 0, 0.037

and 0.04 for BP1, BP2 and BP3 respectively and intermediate values of tanβ around 30-40
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Figure 4. 1σ and 2σ contours for ε and tanβ from χ2 minimization obtained for BP2. The green

line indicates 1σ reach and the red line indicates 2σ reach of the parameters.
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Figure 5. 1σ and 2σ contours for ε and tanβ from χ2 minimization obtained for BP3. The green

line indicates 1σ reach and the red line indicates 2σ reach of the parameters.

Parameter BP1 BP2 BP3

1σ 2σ 1σ 2σ 1σ 2σ

ε < 0.07 < 0.16 < 0.15 < 0.24 < 0.15 < 0.25

tanβ 12.0-38.8 6.9-38.8 14.5-31.6 5.7-31.6 12.3-29.1 5.6-29.2

Table 2. The 1σ and 2σ limits on the invisible Higgs BR and the MSSM tanβ parameter obtained

from the marginalized plots (figures 3–5) for the chosen benchmark points in SISM.

for all the benchmark points. Also, there exists an upper limit on ε to be consistent with

the LHC Higgs data. The 68.27% (∆χ2 = 1) and 95.45% (∆χ2 = 4) CL limits derived from

figures 3–5 are summarized in table 2, and also shown in figure 6. These limits are com-

parable to those obtained in a recent model-independent global fit [13], and much stronger

than the direct search limits from associated production of Higgs with Z [31, 32] as well

as those derived from monojet searches [29].
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for the three benchmark points in our model. The black dots indicate the best fit values of tanβ

and ε obtained from our analysis.
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Figure 7. The invisible Higgs branching fraction as a function of the Dirac Yukawa coupling. The

1σ and 2σ upper limits on the invisible branching fraction derived earlier are also shown.

3.3 Upper limit on the Dirac Yukawa coupling

An upper limit on the invisible Higgs branching ratio, as derived in table 2 from a global

analysis of the LHC Higgs data, will put an upper limit on the magnitude of the Dirac

Yukawa coupling in the model. To illustrate this, we show in figure 7 the variation of the

invisible Higgs branching fraction as a function of the Yukawa parameter, (yν)11. This plot
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satisfying the 2σ upper limit on the invisible Higgs BR. The circled points also satisfy the relic

density constraint.

is obtained for a fixed A0(∼ −2.8 TeV) and fixed BMR
and BµS

as given below eq. (3.1).

However, other parameters are varied in the ranges mentioned in eq. (3.1). Note that, the

invisible higgs BR is insensitive to other entries of yν . We obtain a spread of the points

as during the scan the Higgs mass fluctuates a little bit around its central value. Also the

MR parameters vary which means that the LSP mass is not fixed at a particular value. It

roughly varies between 20–62GeV, and for most of the points, lie in the 30–62GeV range.

As can be seen from the plot, the invisible Higgs branching fraction roughly grows with the

Yukawa coupling in the kinematically allowed region. Thus an upper limit on the Dirac

Yukawa coupling in the model follows from the upper limit on ε, as can be read off from the

1σ and 2σ lines in figure 7. Note that the upper limit of order of 0.10 on yν derived from

this analysis is stronger than those derived from the Higgs visible decay [125] for a heavy

neutrino mass larger than the Higgs mass. Comparable limits on yν in similar TeV scale

seesaw models are obtained from charged-lepton flavour violating decays for the range of

heavy neutrino masses we have considered here [126, 127].

The bound on ε also constrains the allowed parameter space for the DM-nucleon elas-

tic scattering cross section in this model. This is shown in figure 8 which is basically a

zoomed-in version of figure 2 focusing on the light DM region and with only those points

obeying the 2σ(< 25%) limit on ε. As can be seen from the plot, all these points are just

below the current sensitivity of XENON100 experiment, but can be completely probed by

the future experiments such as LUX and XENON1T.

3.4 Some benchmark points

In table 3 we present some benchmark values of the remaining model parameters not

shown in table 1 as allowed by the invisible Higgs decay constraints. We have chosen

the neutrino sector parameters to be diagonal, except for µS which was fixed by fitting

the central global fit values of the neutrino oscillation parameters given in eq. (2.8). For

illustration, we have assumed a normal hierarchy of neutrino masses with m1 = 10−5 eV

and the Dirac CP phase δ = 0 in the PMNS matrix. It is clear from the choice of mSUGRA
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Input parameter BP1 BP2 BP3

tanβ 25 20 25

yν (0.095,0.090,0.090) (0.074,0.064,0.064) (0.0701,0.010,0.010)

MR (GeV) (192.7,1000,1000) (679.16,1000,1000) (798,1000,1000)

BµS
(GeV2) 10−4 10−4 10−4

BMR
(GeV2) 106 106 106

µS (eV)




0.55 6.06 1.92

6.06 107.86 87.97

1.92 87.97 116.73







11.25 38.73 12.29

38.73 213.51 174.15

12.29 174.15 231.08







17.30 307.19 97.46

307.19 8738.55 7127.59

97.46 7127.59 9457.73




Table 3. Benchmark values of tanβ and the low scale neutrino sector parameters for the chosen

benchmark points in table 1.

parameters in table 1 that our low-energy MSSM particle spectrum is consistent with the

current limits from direct SUSY searches [62, 63]. We also calculate the other low-energy

observables in the flavor sector using SPheno and in the DM sector using micrOMEGAS for

the particle spectrum generated from SPheno using the input values shown in tables 1

and 3. These results, summarized in table 4, ensure that the chosen benchmark points

are consistent with all the existing collider, cosmological and low energy constraints listed

below (within their 3σ allowed range, where applicable): (i) mh = 125± 2GeV [5, 6], (ii)

Ωh2 = 0.1199±0.0027 [117], (iii) σSI < 5×10−9 pb for mDM ≃ 50–60GeV [119], (iv) δaµ =

(26.1± 8.0)× 10−10 [128] and δae = (109± 83)× 10−14 [129], (v) BR(B → Xsγ) = (3.21±
0.33) × 10−4 [130], (vi) BR(Bs → µ+µ−) =

(
3.2+1.5

−1.2

)
× 10−9 [131], (vii) constraints from

the LFV decays [132], and (viii) non-unitarity constraints in the neutrino sector [133, 134].

4 Collider analysis

The possibility of an invisible Higgs signature at the LHC has been explored both the-

oretically [22, 23, 26–30] and experimentally [31, 32, 135]. These studies show that the

most promising Higgs production channel for detecting an invisibly decaying Higgs is the

vector boson fusion (VBF), and the next promising channel is its associated production

with Z. In the VBF channel, Higgs is produced from vector bosons originated by radiation

off two initial state quarks along with two jets, and subsequently decays into invisible final

states: pp → qqh → qq + /ET . Thus the final state consists of two jets widely separated

in rapidity together with large missing transverse energy. In the Zh associated production

channel, the Z decays into two oppositely charged leptons and the Higgs decays invisibly:

qq̄ → Z + h → ℓ+ℓ− + /ET . Note that the leptonic decay channel of Z is known to be

cleaner than its hadronic counterpart with b-jets. One can also look for an associated Wh

production where W decays leptonically to give rise to a ℓ+ /ET final state. However, the

signal acceptance efficiency in this channel is found to be very small, and hence, the corre-

sponding exclusion limit is much worse than that from the Zh channel [136]. In addition to

these channels, the dominant Higgs production channel at the LHC, namely, gluon-gluon

fusion (ggF), can give rise to a monojet+large /ET signal with the jet coming from initial
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Parameter BP1 BP2 BP3

mh (GeV) 124.69 125.79 125.78

ΩDMh2 0.114 0.122 0.112

σSI (pb) 3.38× 10−10 5.26× 10−10 5.56× 10−10

δaµ 3.1× 10−10 2.5× 10−10 3.4× 10−10

δae 7.0× 10−15 5.7× 10−15 7.8× 10−15

BR(B → Xsγ) 2.9× 10−4 3.1× 10−4 3.1× 10−4

BR(Bs → µ+µ−) 3.7× 10−9 3.5× 10−9 3.6× 10−9

BR(µ → eγ) 5.2× 10−22 1.1× 10−22 3.5× 10−22

BR(τ → eγ) 9.8× 10−21 2.1× 10−21 6.6× 10−21

BR(τ → µγ) 1.6× 10−16 3.5× 10−17 1.1× 10−16

BR(µ → 3e) 1.1× 10−22 8.9× 10−25 2.7× 10−24

BR(τ → 3e) 6.8× 10−22 2.5× 10−23 7.7× 10−23

BR(τ → 3µ) 2.8× 10−16 3.0× 10−19 7.9× 10−19

|ηee| 3.67× 10−3 1.79× 10−4 1.16× 10−4

|ηµµ| 1.22× 10−4 6.18× 10−5 1.51× 10−6

|ηττ | 1.22× 10−4 6.18× 10−5 1.51× 10−6

Table 4. The Higgs mass, relic density, spin-independent cross section, anomalous magnetic mo-

ments and the relevant low-energy flavor sector observables in the SISM for the three chosen BPs.

state radiation and Higgs decaying invisibly. But the QCD background for this process

is too large, and moreover, it is hard to isolate the new physics effects only for the Higgs

invisible decay since these effects could also show up in loops to modify the ggF production

cross section. The
√
s = 7TeV search results in this channel [137, 138] were translated to a

weak upper limit on ε < 0.4–0.6 [29] depending on the jet pT threshold selection. Finally,

the other relevant Higgs production channel, namely in association with top pairs, has

a much smaller cross section [16], and involves complex final states which require a very

sophisticated analysis. Therefore, we will focus on the VBF channel with 2 jets+/ET final

states and the Zh channel with ℓ+ℓ− + /ET final states for the collider analysis of invisible

Higgs signature in our model. We show our analysis results for
√
s = 14TeV LHC.

4.1 Event generation

The SUSY particle spectrum and various decay branching fractions in our model have

been calculated using SPheno [113, 114]. The SLHA files are then fed to PYTHIA (ver-

sion 6.409) [139] for event generation. The initial and final state radiation of quarks and

gluons, multiple interactions, decay, hadronization, fragmentation and jet formation are

implemented following the standard procedures in PYTHIA. The factorization and renormal-

ization scales µR and µF respectively are both set at the parton-level center of mass energy
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√
ŝ. We have used the CTEQ5L [140, 141] parton distribution functions in our analysis. The

jets with pT > 20 GeV and |η| < 4.5 have been constructed using the cone algorithm via

PYCELL. To simulate detector effects, we take into account the smearing of jet energies by

a Gaussian probability density function of width σ(E)/Ej = (0.6/
√

Ej [GeV]) + 0.03, Ej

being the unsmeared jet energy [142].

Following are the selection cuts that we have used to find the final state leptons and jets:

• For final state electrons and muons we use pT > 15 GeV and pT > 10 GeV respec-

tively. For both, we take |η| < 2.4.

• Lepton-lepton separation ∆Rℓℓ > 0.2, where ∆R =
√
(∆η)2 + (∆φ)2.

• Lepton-jet separation ∆Rℓj > 0.4.

• Scalar sum of ET deposits by hadrons within a cone of ∆R ≤ 0.2 around a lepton

must be less than 0.2pℓT to ensure lepton isolation.

• Jet-jet separation ∆Rjj > 0.4.

Depending on the hadronic or leptonic signal final states, we use specialized selection

criteria, as discussed below.

4.2 The VBF channel

In this case, the two leading high pT jets in the final state are produced in forward and

backward directions with rapidities opposite in sign and widely separated. Also due to the

invisible decay of the Higgs, one expects a large amount of missing energy. These features

largely help to reduce the SM background. The dominant SM background for this signal

can come from:

(i) W+ jets, where W decays leptonically and the lepton escapes detection.

(ii) Z + jets, where Z decays into two neutrinos.

(iii) mismeasured QCD events giving fake missing energy.

The contributions from non-VBF processes, for instance, from hard QCD production of

a single Higgs or a Higgs with associated quarks and gluons, must also be taken into ac-

count for the signal. Despite its poor efficiency to pass the background reducing cuts,

due to its large production cross section the ggF channel can contribute 4-5% of the VBF

signal [143, 144]. The following cuts have been used to reduce the background:

• Absolute rapidity difference between the two leading jets, |ηj1 − ηj2 | > 4.0. To en-

sure that the two jets are produced in forward and backward directions, we require

ηj1 · ηj2 < 0.

• A jet veto with pT > 40GeV in the central region since we don’t expect any jets in

the rapidity gap of the two jets for a pure VBF process. We discard jets with |η| < 2.5
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Channel Production cross section (pb) Cross section after cuts (fb)

BP1 (VBF) 3.76 0.99

BP1 (others) 125.9 0.16

BP2 (VBF) 3.72 1.55

BP2 (others) 125.4 0.25

BP3 (VBF) 3.73 1.72

BP3 (others) 125.7 0.25

W + n-jets 56848.54 46.57

Z + n-jet 10198.72 24.90

Table 5. Final cross sections obtained for all the signal and SM background channels for a 14 TeV

LHC run. For the background channels, the cross sections in the 2nd column are those of the final

states, i.e, W and Z decays into lepton-neutrino and two neutrino channels respectively. The cross

sections in the 3rd column are the ones obtained after all the selection and background reduction

cuts. n-jets corresponds to 0, 1, 2, 3 jets combined result.

• Invariant mass of the two leading jets, Mjj > 1.8 TeV .

• A /ET cut of 100 GeV.

The /ET and Mjj cuts reduce the background efficiently, and also reduce the QCD contri-

butions significantly. We note here that two additional cuts have been occasionally used

in the literature for isolating events with invisible final states. These are ∆φ(j, /ET ) and

∆φ(j1, j2). We have checked that these cuts reduce the signal cross section to far too a level

in our case. Therefore, we have dropped them and used the optimal set of event selection

criteria mentioned above.

The cross sections for the signal corresponding to the benchmark points chosen earlier

as well as dominant backgrounds coming from W +n-jets and Z+n-jets (n = 0, 1, 2, 3) are

shown in table 5. The background events were generated using Alpgen [145] at the partonic

level and then passed to PYTHIA for showering. While interfacing, we have incorporated

the MLM [146] prescription to match between the hard jets generated by Alpgen and the

soft radiation jets generated by PYTHIA in order to avoid double counting. Since the back-

ground channels have huge inclusive cross sections, we generated at least ∼ 107 unweighted

events for all the channels in Alpgen in order to get proper convergence. For the signal

cross section, we show the values obtained for VBF as well as for other hard processes

gg → h, qq̄ → gh, qg → qh and gg → gh. It is clear that, despite the large production

cross section, contributions to the signal coming from channels other than VBF channel

are very small after applying all the cuts. Also the SM backgrounds are hugely suppressed

after all the cuts, optimized for a good signal significance, S√
S+B

, where S and B stand for

the signal and background strengths respectively. From table 5, we find that for BP1 with

the maximum (2σ allowed) invisible branching ratio εmax = 0.16 for the Higgs, we obtain

a 3σ signal significance at 500 fb−1 whereas for BP2 and BP3 with εmax = 0.24 and 0.25

respectively, we can obtain a 3σ significance at 200 fb−1.
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Figure 9. Normalized transverse mass distribution for the di-lepton system in the Zh signal and

combined SM background events at 14 TeV LHC.

4.3 The Zh channel

In this channel, we are interested in the leptonic decay of Z leading to a same-flavor,

opposite-sign dilepton plus large missing energy from the invisible decay of the Higgs. The

dominant SM background in this case comes from:

(i) WW production, where both the W ’s decay leptonically.

(ii) WZ production, where Z decays into two charged leptons and W into a charged

lepton and neutrino, and one charged lepton misses detection.

(iii) ZZ, where one Z decays into two charged leptons and the other into two neutrinos.

(iv) tt̄ production followed by t → Wb, where both the W ’s decay leptonically and the

b-jets escape detection.

We use the following cuts to reduce the SM background:

• A jet veto with pT > 20 GeV and |η| < 4.5 since the signal consists of no jets.

• Dilepton invariant mass |MZ −Mℓℓ̄| < 10GeV since the two charged leptons in the

final state come from Z-boson decay.

• Di-lepton transverse mass M ℓℓ
T ≥ 150 GeV, where M ℓℓ

T =
√

pℓℓT /ET [1− cosφ(pℓℓT , /ET )].

This is because the Z-boson and the Higgs are more likely produced back-to-back

for the signal, thus leading to a harder transverse mass distribution for the di-lepton

system, as can be seen from figure 9.

• /ET > 100GeV since the signal is expected to have a harder /ET distribution, as

verified by figure 10.

Table 6 shows the production cross sections and final cross sections after all the cuts for

the signal corresponding to the chosen benchmark point as well as for the SM background.

As can be seen from table 6, this channel has a huge SM background which can easily
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ground events at 14 TeV LHC.

Channel Production cross section (pb) Cross section after cuts (fb)

BP1 0.53 0.35

BP2 0.51 0.51

BP3 0.51 0.52

WW 76.51 0.38

ZZ 10.58 7.77

WZ 28.95 8.83

tt̄ 370.20 0.92

Table 6. Cross sections obtained for all the signal and SM background channels for 14 TeV LHC.

The 2nd column shows the production cross sections for various channels and the 3rd column after

all the selection and background reduction cuts.

dominate over the signal events. The signal significance factor is quite low in this case for all

the benchmark points. For BP2 and BP3 with a maximum invisible BR of Higgs ε ∼ 0.25,

the signal can achieve a significance of 3σ only at 600 fb−1 luminosity, whereas for BP1,

to get such significance, we need to go beyond 1300 fb−1 at 14 TeV center of mass energy.

The reason for better LHC detection prospects for BP2 and BP3 compared to BP1

can be understood by comparing their corresponding particle spectra. The invisible higgs

branching ratio ε depends on the masses of the Higgs, LSP sneutrino and the Higgs-

sneutrino-sneutrino coupling. Since the masses of the parent and daughter particles are

almost identical for all the three cases, what makes the difference in the invisible decay

width is the coupling which depends on the amount of mixing of the singlet sneutrinos

with the left-handed ones. The singlet components dominate the lightest sneutrino mass

eigenstates for all the three benchmarks because of the large BMR
term in the off-diagonal

of the sneutrino mass matrix given by eq. (2.2). This parameter does not change for the

three benchmark points and as a result, the right-handed components are not expected to

vary much from BP1 to BP3. However, these components also depend on the matrices m2
N ,

m2
S and MR. Here m2

N and m2
S scale as m2

0. Now from BP1 to BP3, m0 keeps decreasing
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and MR keeps increasing. Hence the diagonal terms in eq. (2.2), although comparable,

keep increasing slightly. This brings down the right-handed contribution in the lightest

state by a very small amount from BP1 to BP3 (to be precise, the component comes down

from 0.716 to 0.710). On the other hand, as the absolute value of the trilinear term Aν

in eq. (2.2) decreases from BP1 to BP3, it brings down the left-component and increases

the right-handed component. As a result of these competing effects, the left-component of

the sneutrino LSP, and hence, the Higgs invisible decay width increases from BP1 to BP3,

thus enhancing the LHC detection prospects.

Before concluding this section, we wish to emphasize an important distinction of our

scenario from similar signals in the MSSM with a neutralino LSP which could otherwise

obliterate the distinct collider signals of our model. As already pointed out in [78], the

pure cMSSM case can be distinguished from the SISM case by studying the same-sign

dilepton+jets+/ET signal which is enhanced in the SISM case. Also the SISM case has

a much harder /ET tail compared to the cMSSM case which can be used as another dis-

tinguishing feature of our model. Finally, the “residual MSSM backgrounds” can be re-

duced/removed by studying the effective mass distribution of the events, defined as the

scalar sum of the lepton and jet transverse momenta and missing transverse energy:

Meff =
∑

|pℓT |+
∑

|pjT |+ /ET . (4.1)

Taking into account the current limits on the sparticle masses, the Meff distribution of

events arising from sparticle production will be considerably harder in the pure MSSM case

than in our case. Note that the cascade decays involving chargions can also be used to mea-

sure the mass of the sneutrino LSP at the LHC applying the mT2
endpoint technique [147].

5 Conclusion

We have shown that supplementing the cMSSM framework with inverse seesaw mechanism

for neutrino masses can give rise to a light sneutrino DM candidate with mass around

50 GeV while being consistent with all the existing collider, cosmological as well as low-

energy constraints. Such a light scalar DM also leads to the possibility of the lightest CP

even Higgs boson in the MSSM decaying invisibly into two such DM particles induced by a

soft trilinear coupling. We have explored this possibility in details by performing a global

χ2-analysis of all the available LHC Higgs data so far, and derive 2σ (1σ) upper limits of

0.25 (0.15) on the invisible Higgs decay branching ratio in this scenario. These in turn

put upper limits of order 0.1 on the Dirac Yukawa coupling in this model. We further

show that the model parameter space allowed by the invisible Higgs decay branching ratio

limits is fully accessible in the near future DM direct detection experiments such as LUX

and XENON1T, and can be ruled out completely in case of a null result from these ex-

periments. Finally, we have explored the prospects of the invisible Higgs decay signature

at the
√
s = 14TeV LHC for a chosen set of benchmark points. We find that a signal

significance of 3σ can be achieved in the VBF channel with an integrated luminosity as

low as 200 fb−1, whereas in the Zh channel, it requires a luminosity of at least 600 fb−1

for our chosen benchmark points.
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Channel µ̂ Experiment

h → γγ 1.55+0.33
−0.28 ATLAS [148]

0.78+0.28
−0.26 CMS [149]

h → ZZ∗ → 4l 1.43+0.40
−0.35 ATLAS [148]

0.9+0.30
−0.20 CMS [150]

h → WW ∗ → 2l2ν 0.99+0.31
−0.28 ATLAS [148]

0.80+0.20
−0.20 CMS [151]

h → bb̄ 0.20+0.70
−0.60 ATLAS (VH) [152]

1.00+0.50
−0.50 CMS (VH) [153]

h → τ τ̄ 0.7+0.7
−0.6 ATLAS [154]

1.10+0.4
−0.4 CMS [155]

Table 7. Data set used in our analysis, with the values of µ̂i in various channels and their 1σ

uncertainties as reported by the ATLAS and CMS collaborations.

Acknowledgments

We are extremely thankful to the anonymous referee for carefully reading the whole

manuscript, making many valuable suggestions, and checking some of the numerical re-

sults. We thank Sanjoy Biswas, Pushan Majumdar, Dipan Sengupta, and Florian Staub

for useful correspondence, suggestions and comments at different stages of the work. SB and

SM wish to thank Arindam Chatterjee and Satyanarayan Mukhopadhyay for some useful

suggestions and comments. The work of PSBD is supported by the Lancaster-Manchester-

Sheffield Consortium for Fundamental Physics under STFC grant ST/J000418/1. SM

acknowledges the hospitality of RECAPP, (HRI), Allahabad that led to this fruitful collab-

oration, and also wishes to thank the Department of Science and Technology, Government

of India for a Senior Research Fellowship. S.B. and B.M. thank the Indian Association

for the Cultivation of Science, Kolkata, for hospitality while this project was in progress.

The work of SB and BM was partially supported by funding available from the Depart-

ment of Atomic Energy, Government of India for the Regional Centre for Accelerator-based

Particle Physics, Harish-Chandra Research Institute. Computational work for this study

was partially carried out at the cluster computing facility in the Harish-Chandra Research

Institute (http://cluster.hri.res.in/).

A Higgs data sets

In table 7 we list the latest Higgs data sets available from the combined
√
s = 7 and 8TeV

LHC run in five visible Higgs decay channels: γγ, ZZ∗ → 4ℓ, WW ∗ → 2ℓ2ν, bb̄ and τ τ̄ .

For each channel, we show the experimental values of the signal strengths µ̂i together with

its 1σ uncertainty, as reported by the ATLAS and CMS collaborations [148–155].
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