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ABSTRACT

Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization (EoR)and estimation of its
basic physical parametersareprincipal scientific aims of many current low-frequency radio telescopes. Here we
describe the Cosmological H I Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with
data from the Murchison Widefield Array, to compute the two-dimensional and spherically-averaged power
spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of
realistic instrumental and foreground models to form the optimal estimator, thereby maximizing the likelihood of
unbiased signal estimation, and allowing a full covariant understanding of the outputs. CHIPS employs an inverse-
covariance weighting of the data through the maximum likelihood estimator, thereby allowing use of the full
parameter space for signal estimation (“foreground suppression”). We describe the motivation for the algorithm,
implementation, application to real and simulated data, and early outputs. Upon application to a set of 3 hr of data,
we set a 2σ upper limit on the EoR dimensionless power at =k 0.05 h Mpc−1 of D < ´7.6 10k

2 4 mK2 in the
redshift range z=[6.2–6.6], consistent with previous estimates.

Key words: Astronomical instrumentation, methods and techniques – early universe – methods: statistical –
techniques: interferometric

1. INTRODUCTION

Detection of a neutral hydrogen signal from the Epoch of
Reionization (EoR)and estimation of its basic physical
parametersare primary science goals of current and future
low-frequency radio telescopes,e.g., the Murchison Widefield
Array (MWA;22 Lonsdale et al. 2009; Tingay et al. 2013),the
Precision Array for Probing the Epoch of Reionization
(PAPER;23Parsons et al. 2010); the Low Frequency Array

(LOFAR;24van Haarlem et al. 2013),the Long Wavelength
Array25(Ellingson et al. 2009),and the Hydrogen Epoch of
Reionization Array.26 The neutral hydrogen signal during the
EoR corresponds to brightness temperature fluctuations in the
gasand traces conditions within the intergalactic medium
through a suite of radiative and collisional processes (Furla-
netto et al. 2006). The spatial structure of the signal, as a
function of redshift, traces the evolution of the first ionizing
sources of radiation in the universe (e.g., Mesinger et al. 2011,
2014; Fialkov et al. 2014; Pacucci et al. 2014; Pober et al.
2014; Watkinson & Pritchard 2014). These studies also predict
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the signal amplitude to be weak (10 s mK), compared with
other sources in the sky (100 s K), and with radiometric noise
associated with the internal electronics of the antennas and
receiver systems. The detection experiment itself is therefore
difficult, and the estimation experiment more so.

Given the current lack of a detection of the signal, and the
lack of an instrument with sufficient sensitivity to directly
image the brightness temperature fluctuations, research is
focused on its statistical detection (Liu & Tegmark 2011;
Dillon et al. 2013; Patil et al. 2014; Ali et al. 2015; Jacobs et al.
2015, and references therein). This has the twofold advantage
of increasing signal strength by integrating over large areas of
the skyand providing a global statistical indication of the
signal (as compared with a local sample obtained by imaging a
small patch of sky). The variance (power) of the temperature
fluctuations is used as a statistical metric in most studies, with
many computing the variance as a function of spatial scale on
the sky (the power spectrum). The probability distribution
function of the signal is expected to follow a zero-mean
Gaussian distribution at early timesand a skewed Gaussian
distribution at late times (Furlanetto et al. 2006; Wyithe &
Morales 2007). The variance, therefore, captures a lot of the
information about the signal. Although the power spectrum has
a well-defined mathematical form, factors such as the weakness
and complexity of the signal, complexity of the instrumental
response function (e.g., frequency- and direction-dependent
[DD]antenna beam response, bandpass response), and pre-
sence of structured, contaminating foregroundsdemand a
careful approach to robustly demonstrate that the power
spectrum of cosmological temperature fluctuations has been
measured. Thus, there are a suite of approaches being
undertaken by different research groups and instruments
(Chapman et al. 2014; Choudhuri et al. 2014; Patil et al.
2014; Dillon et al. 2015; B. Hazelton et al. 2015, in
preparation; Jacobs et al. 2015). In this work, we describe
one of the algorithms being developed for detection of the EoR
signaland computation of a two-dimensional (2D) and
spherically-averaged (1D) power spectrum for the MWA.
Other papers will describe the other algorithms under
development (Paul et al. 2014; Dillon et al. 2015; B. Hazelton
et al. 2015, in preparation). Each has a different approach to
computing the same metric with the same data, allowing robust
cross-referencing and benchmarking of results. Jacobs et al.
(2015) providea high-level description of the MWA EoR
project and algorithms. The key motivations for the estimator
we describe here are (1) inclusion of a full instrument and sky
description in the statistical estimator; (2) working directly with
measured visibility data, where the data description is
computationally tractable; and (3) use of a maximum likelihood
(ML) estimator to form the optimal estimate with full covariant
error analysis.

In Section 2 we briefly describe the MWAand pertinent
design properties that affect how the EoR signal is computed.
In Section 3 the power spectrum is formally defined, and recent
upper limits on EoR detection using the power spectrum are
reviewed. We then introduce the motivation for the Cosmolo-
gical H I Power Spectrum Estimator (CHIPS) algorithm and the
mathematical basis of its computation. Section 5.1 describes
the CHIPS approach to foregroundsand derives the expected
signal from foregrounds in the power spectrum parameter space

(i.e., “the wedge”). The algorithm is then tested with realistic
simulations in Sections 6. Section 7 then describes the
calibration process and the observations used in this work.
CHIPS is then applied to MWA data in Section 8.
Throughout we use a ΛCDM cosmology with

H0=70.4 km s−1 Mpc−1, WM=0.27, Wk=0, WL=0.73
(Bennett et al. 2012). The discrete Fourier transform (DFT)
convention used is such that

å p= -
=

f
N

f ijk N
1

exp 2 , 1k
j

N

j
1

˜ ( ) ( )

for the forward transform. Vector quantities are displayed in
bold italics (r), Fourier-space quantities have tildes ( f̃ ),
Fourier-space matrices are boldfaced (C), and mean values
are overlined (S ). The notation  m~ CS ,˜ ( )compactly
describes a variable that is statistically distributed as a
complex-normal with mean μ and covariance C.

2. THE MURCHISON WIDEFIELD ARRAY

The MWA (Lonsdale et al. 2009; Tingay et al. 2013) is an
aperture-array low-frequency radio telescope operating in
Western Australia in the 80–300MHz frequency range
(instantaneous available bandwidth of 30.72 MHz). Its science
themes include EoR detection, discovery and monitoring of
radio transients and variables, a southern survey covering 3π sr
(Wayth et al. 2015), and solar and heliospheric science
(Bowman et al. 2013). The array consists of 128 tiles, each
of which comprises 16 dual-polarization crossed dipole
antennas in a regular ´4 4grid, with an effective area per
tile A 21 meff

2 (150MHz).
The antennas are connected to analog beamformers and the

signals correlated within an on-site building. Correlated
visibilities in full instrumental polarization flow in realtime
to a computing center located in Perth. The simplicity of the
array design and lack of mechanical steering yielda low-cost
instrument wellsuited to the remoteness and climatic condi-
tions of the desert, but determinethe instrumental response to
signal from the sky. In particular, the regular grid of dipoles
operating as a phased array yields a frequency-dependent beam
response with grating lobes (beam nulls), and the analog
beamforming enforces a discretized grid of pointings on the sky
where the beam is wellbehaved. These design features demand
that the position- and frequency-dependent beam response is
known and that this knowledge must be incorporated into any
estimator (because the beam is the “window” through which
the sky signal is observed).
The 30.72MHz of instantaneous bandwidth is natively

captured at 10 kHz spectral resolution, but the standard
correlation modes yield 40 kHz channels. Each of these fine
channels is contained within 1.28MHz coarse channels (24
across the band), with substantial attenuation between coarse
channels. Typically, two fine channels are flagged with zero
data in these nulls between the coarse channels, leading to a
bandpass shape with a regular spacing of zeroes. Again, this
design feature needs to be correctly accounted for in the
analysisand prevents use of some standard techniques.
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3. METHODOLOGY

3.1. The Power Spectrum Metric

The power spectral density (power spectrum) measures the
spatial covariance of a signal, integrated over a spatial volume,
and corresponds to the Fourier transform of the two-point
correlation function (i.e., the autocorrelation function), x r( ):
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ò
ò

ò
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p
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= -
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= + -

=
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where rT ( ) is the temperature fluctuation (relative to the mean)
at vector position r, and áñ denotes an average over positions in
the volume, V, as a proxy for an ensemble sampling of the
distribution. The power spectrum has the units of tempera-
turesquared times volume (K Mpc2 3)and describes the
integrated power on a given spatial scale, k, averaged over
the volume, V.

The power spectrum can be computed directly from an
image cube, using a three-dimensional Fourier transform of
image intensities to find kS̃( ), and then squaring and normal-
izing by the cube volume, where xS ( ) is the measured
brightness temperature in units of Jy beam−1. The conversion
from brightness temperature to flux density is given by

l
= WS

kT
10

2
Jy, 3K

Jy
26

2
( )

which is the product of the specific intensity and the
observation solid angle, Ω, and k is the Boltzmann constant.

Alternatively, the power spectrum can be computed directly
from observed interferometric visibilities. The visibility is the
mutual coherence of the two electrical signals detected by the
antennas forming a baseline (Thompson et al. 1986). In the flat-
sky approximation, where the field of view (FOV) of the
instrument is small such that sky curvature can be ignored, the
visibility is identically the Fourier transform of the product of
the sky signal and the beam response. For wide FOV
instruments, such as the MWA, this approximation breaks
down, and there is a curvature convolving kernel in the
measured visibility, in addition to the sky signal and beam
response. Thyagarajan et al. (2015a, 2015b) studied this effect
with MWA data, but current estimators, in general, ignore this
effect. The visibility is the natural measurement space of the
instrument (the radiometric noise is uncorrelated between
visibilities)and will be used in CHIPS to compute the power
spectrum directly (without tranforming to and from image
space). Curvature sky terms are handled explicitly in CHIPS,
and this design choice offers a natural departure from other,
image-based power spectrum estimators (Liu & Tegmark 2011;
Patil et al. 2014; Paul et al. 2014; Dillon et al. 2015; B.
Hazelton et al. 2015, in preparation), but has been used for the
angular power spectrum (Choudhuri et al. 2014). A related
estimator, the “delay spectrum” (Parsons et al. 2012, 2014, and
references therein), directly Fourier transforms along each
visibility’s frequency channels, matching a temporal delay with
the position of given sky emission relative to the phase center.

This visibility-based estimator approximates the power spec-
trum on large angular scales, but breaks down for the longer
baselines.
The spherically-averaged (1D) power spectrum computes the

power on three-dimensional spatial scales, = kk ∣ ∣, under the
assumption that the statistics of the signal are isotropic and
translationally invariant (the latter being a fundamental
assumption of the power spectrum, according to the Wiener–
Khinchin theorem). The 1D power spectrum has the advantage
of integrating over the largest parameter space, potentially
increasing signal detectability. The dimensionless 1D power
spectrum, which integrates the total power on a given spatial
scale over the volume, is given by

p
D =k

k
P k

2
. 42

3

2
( ) ( ) ( )

PAPER has published the most competitive 1D limits to date,
relative to theoretical expectations, yielding (22.4 mK)2 at
z=8.4 and h0.15 Mpc < <- k h0.51 Mpc−1 (Ali
et al. 2015). Patil et al. (2014) havedemonstrated the power
of the LOFAR variance statistic, which computes the overall
variance in each spectral channel, with simulated data.
It is advantageous, however, to compute the 2D power

spectrum as a first step, to discriminate between continuum
contaminating foreground sources and the cosmological
spectral-line signal. The structure of foregrounds in 2D space
is described in Section 5.1; however, we comment here that it is
substantially different from the cosmological signal. The 2D
power spectrum has arguments ( ^ k k, ), where

= +k̂ k kx y
2 2 resides in the plane of the sky (angular

scales)and hµk is the line-of-sight component. Hereη is
the Fourier dual of frequency, where we use the fact that the
observed frequency of the neutral hydrogen spectral line is
linearly proportional to distance. Following Morales & Hewitt
(2004) and McQuinn et al. (2006), the transformationsbetween
Fourier dimensions and cosmological coordinates are

p
=^

u
k

D z

2
, 5

M

∣ ∣
( )

( )

p
h=

+
k

H f E z

c z

2

1
, 60 21

2

( )
( )

( )

where D z H f z, , ,M 0 21( ) are the transverse comoving distance,
Hubble constant, rest frequency of the hyperfine transition
(∼1420MHz), and observation redshift, respectively. E(z) is
(Hogg 2000)

= W + + W + + WLE z z z1 1 . 7M k
2 2def( ) ( ) ( ) ( )

3.2. Motivation for CHIPS Algorithm

The high-level design philosophy of CHIPS is to use the data
in such a way as to allow for computationally efficient and
robust parameter estimation and error covariance estimation,
while retaining maximum information. As such, the following
design features have been employed:

1. Calibrated visibilities will be the primary data input—
visibilityspace is the natural measurement space of
interferometric data, where radiometric (stochastic) noise
is uncorrelated and Gaussian distributed with color
dependent on the frequency-dependent system

3
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temperature. In addition, correlations due to point-spread
function sidelobes inherent in image space are naturally
accounted for in visibilityspace, where the measured
information is clearly defined.

2. A least-squares spectral analysis (LSSA) method will be
used to compute the line-of-sight transform from
frequency to spectral space, not the Fourier transform
(Kay 1993)—the MWA bandpass has regular missing
channels, owingto the coarse bandpass edges, and
intermittent missing channels owingto flagged radio
frequency interference (RFI;Offringa et al. 2015). The
Fourier transform cannot be used for irregular and
missing data. LSSA can compute the optimal spectral
representation of the data using all of the available
information.

3. An ML estimate of the cosmological signal (a quadratic
estimator;Kay 1993; Liu & Tegmark 2011; Dillon
et al. 2013) will be computed (an inverse-covariance
weighting)—the ML solution asymptotes to the optimal
solution for large quantities of dataand is appropriate for
the dataset acquired here. It retains the full information
contained within the dataand allows for computation of
the full uncertainty covariance matrix. (Note that this is
not the only estimator that can be used efficiently to
approach this problem.)

4. Foregrounds will be modeled a priori and included in the
estimator (“foreground suppression”)—as discussed in
Section 5.1, foregrounds can be approached in different
ways, depending on the degree of knowledge one
assumes about them (Liu & Tegmark 2011; Dillon
et al. 2013; Chapman et al. 2014; Bonaldi & Brown
2015). Here we take a two-tier approach, where known
foregrounds (sky model of point and extended sources)
are subtracted from the data coherently, and the
remaining signal is treated statistically. CHIPS therefore
uses the full Fourier space for estimation (contrast with
“foreground avoidance” techniques, where the contami-
nated regions are excised).

4. MATHEMATICAL FORMALISM

The derivation shown here describes the formation of the
power estimate in two steps:

1. First, it introduces the computation of the coherently
averaged data from measured visibilities, including the
incorporation of the frequency-dependent beam shape,
curvature terms (w-terms), and the transforming of the
visibilities in frequency to line-of-sight wavenumber (η).
This step is effectively the visibility gridding
(Section 4.1)and the Fourier-like transform to ( hu v, , )
wavenumber space (achieved using LSSA, in Sec-
tion 4.2). The data set, described by nS u v, ,( ), is a
function of location on the uv-plane and frequency.
Practically, it is obtained by gridding measured visibi-
lities onto the uv-plane with the beam kernel (and the w-
kernel) with a weighting that is a function of the system
temperature for that observation and the visibility
weight(µT Wsys , where W is the visibility weight and
corresponds to the number of fine frequency channels
averaged to form the visibility). The beam-weighted
weights are also accumulated and included in the data
covariance matrix, C.

2. Second, the coherent information forms the power
according to an ML estimate, using knowledge about
the data covariance matrix (stochastic noise and fore-
ground contaminants, Section 4.3).

This process is now described in detail.

4.1. Coherent Visibility Data: Angular Modes

We aim to take the large number of measured, calibrated
visibilities and grid them onto a regular grid representing the
uv-plane, in each frequency channel. The true sky signal is
shaped by the antenna primary beam, and the measured
visibilities sample a range of modes. Each datum represents
information from a region of the uv-plane, according to the
beam, and we grid a measurement across this region. For an
instrument with linear crossed-polarization feeds, xx and yy, we
model the correlator output as

y y
y y

y y
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which maps the Stokes visibilities in sky coordinates,
I Q U V, , ,( ˜ ˜ ˜ ˜ ), to the measurement set in instrumental coordi-
nates (Hamaker et al. 1996). Here we are explicitly describing
the relationship in the flat-sky approximation, although the
curvature terms are introduced below. The ´4 4 matrix
encodes projection effects from the parallactic angle, ψ,
polarization leakage, D D,xy yx( ), and the direction-independent,
antenna-based complex gains, g g g g, , ,xx xy yx yy( ). The convolu-

tion accounts for the primary beam shape, B B B B, , ,xx xy yx yy( ˜ ˜ ˜ ˜ ).
To extract the total intensity, Ĩ , we could use all four
polarization outputs from the correlator. Instead, to reduce
computational load, we use only Vxx and Vyy. This choice is
made at the expense of some signal when the zenith angle is
large. Failure to treat individual linear feeds will lead to
polarization leakage if the visibilities are combined without
consideration for beam shape differences (Moore et al. 2013).
Absorbing the complex gains into the beams, B, we write the

xx and yy visibilities as

ò
y y

p
= + +

* *
-

- -

D s
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B
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where

= + + - - -D s ul vm w l m1 1 112 2· ( )) ( )
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is the projection of the baseline vector onto the sky coordinates,
and we have now explicitly included the w-terms in the
equations through the phase integral (final term).

Using the convolution theorem, the mapping from the
underlying sky Fourier representation and the measured
visibilities can be written as

y y= * * + +V G B I Q Ucos 2 sin 2 12xx w xx˜ ˜ ˜ ( ˜ ˜ ˜ ) ( )

y y= * * - -V G B I Q Ucos 2 sin 2 , 13yy w yy˜ ˜ ˜ ( ˜ ˜ ˜ ) ( )

where

ò
p

p

=
- - - -

- -
´ - +

G
i w l m

l m
i ul vm dldm

exp 2 1 1

1
exp 2 14

w

2 2

2 2

def˜ [ ( ( ))]

[ ( )] ( )

explicitly highlights the additional convolution due to curvature
terms. These functions encode the deviation from a strict 2D
Fourier transform between sky and visibilitiesand the spectral
leakage due to the primary beam.

We now expand from considering a single visibilityto a
setand describe these as a vector. In doing so, we extend the
convolutions to describe the transform from the underlying sky,
Ĩ , to the full measurement set of data. We can write the discrete
convolutions as matrix operations, to encode this transforma-
tion, and find the measurements for a set of baselines:

y y= + +V G B I Q Ucos 2 sin 2 15xx w xx˜ ( ˜ ˜ ˜ ) ( )

y y= - -V G B I Q Ucos 2 sin 2 . 16yy w yy˜ ( ˜ ˜ ˜ ) ( )
We are interested in determining the underlying Stokes I sky

distribution at a given angular scale, au , given the measured
visibilities, V u˜ ( ). A vector of ( ´N 1) measured visibilities, Ṽ ,
is generated from an underlying ( ´M 1) sky distribution, Ĩ ,
via an ( ´N M ) matrix transform, G Bw . We can rewrite and
combine Equations (15) and (16) such that
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† † † †

where the square matrix inversion involves inverting an
´M M( ) Hermitian complex-valued matrix, which will be

(almost) diagonal for independent modes, u. Equation (17)
effectively unwraps the effects of w-terms and the polarized
beams, before combining xx and yy information to remove the
polarized component of the sky signal (Q U,˜ ˜ ). The G† matrix
serves to distribute the footprint of the visibilities across the uv-
plane, as dictated by the amplitude of the w-term; for large w,
the Fourier-space beam is effectively broader and the G matrix
captures this. In practice, as discussed by Dillon et al. (2013),
the uv-plane needs to be fully sampled (the matrix full rank) for
this matrix inverse to exist (i.e., there needs to be independent
information in all modes). For the MWA and using rotation
synthesis, this requirement is met for parts of the uv-plane, but
not in general.

There are multiple approaches to handling this, including
computation of the pseudoinverse and simplification of the
matrix by considering only diagonal components. The former
inverts the matrix in regions where there is sufficient
information. The latter effectively ignores the correlations

introduced by the finite extent of the beam across the uv-
planeand reduces the matrix inverse step to a simple weighting
of the data according to the measurements (averaging). It does,
however, still encode the distribution of power across multiple
modes in the uv-plane. The approximation is reasonable given
that the matrix is already highly diagonal. In the testing phases
of CHIPS, as described here, we will implement the latter:

n =

+

-

-

S u v B G G B B G V

B G G B B G V

, ,
1

2
1

2
. 18

xx w w xx xx w xx

yy w w yy yy w yy

diag
1

diag
1

˜( ) ( ) ˜

( ) ˜ ( )

† † † †

† † † †

This introduces an error, for each polarization, with the XX
polarization expression:

n n=S u R I u, , . 19XX XX XX˜ ( ) ˜ ( ) ( )

Herethe error matrix, RXX , is

= -R B B B Bdiag . 20XX XX XX
1def ( ( )) ( ) ( )† †

The same applies to the YY polarization, where the error matrix,
in general, is different, depending on the shape of the beams for
each telescope pointing. In general, this can invalidate the
canceling of the Q and U linear polarization signals in
Equation (17)because there is now the potential for mismatch
between the two polarizations. In practice, the XX and YY
polarizations are not combined in CHIPS at this point (the
results described in this work remain in the two instrumental
poarizations)because the current MWA beam model is known
to be imperfect. In thefuture, this mismatch will need to be
further studied for leakage effects.

4.2. Least-squares Spectral Analysis

Upon gridding the data onto the uv-plane for each frequency
channel, the next step is to estimate the line-of-sight
wavenumber information, by transforming the data at each
gridpoint from frequency, ν, to η. For a complete and regularly
sampled set of N complex-valued discrete datapoints
embedded within white Gaussian noise, nS̃( ), the information
contained within a spectral mode, η, can be obtained using the
DFT:

 åh
p

n p h= -
=

-

u v S u v ij N, ,
1

2
, , exp 2 , 21

j

N

j
0

1

( ) ˜( ) [ ] ( )

where h Î -N0, 1[ ]. This can be written in matrix formalism,
where the Fourier transform has convenient properties as a
Vandermonde matrix:

h n=S S , 22˜( ) ˜( ) ( )†

  = . 23( )†

Here hS̃( ) is the complex-valued estimate of the spectral
information in mode η, and  is a square, Hermitian matrix
containing the trigonometric kernel. We have also explicitly
dropped the parameterization by u v, because the transform is
performed for each point on the uv-plane, with the under-
standing that these parameters are carried along for the
computations presented in this section.
When the data have generalized covariance (correlated

samples, unequal weightings), the signal in some spectral

5

The Astrophysical Journal, 818:139 (18pp), 2016 February 20 Trott et al.



mode can be estimated using a generalized ML Fourier
transform. If the data are distributed such that

n n~S CS , , 24˜( ) ( ( ) ) ( )

the optimal estimate is given by (i.e., the inverse-covariance
weighting estimator;Liu & Tegmark 2011; Dillon et al. 2015)

   h n~ -S C S C, , 251˜( ) ( ˜( ) ) ( )† †

where we have used the fact that the Fourier transform is
unitary ( = -1† ). Effectively, this prewhitens the signal (by
suppressing data with a lot of noise and removing correl-
ation)and computes the Fourier transform. The result has noise
properties consistent with a prewhitening operationand with
the reordering of the data according to the summing of phased
data points.

Finally, when the data have incomplete sampling, the above
formalism naturally generalizes and is described by theLSSA.
When there are only M sampled points at locations nj, within N
frequency channels, the generalized least-squares estimate is

h n=S S 26˜( ) ˜( ) ( )

å
p

n p n h= -
=

-

S i M
1

2
exp 2 , 27

j

M

j j
0

1
def ˜( ) [ ] ( )

where h = ¼ N0, , freq[ ] are evenly spaced and <N Nfreq . The
optimal estimator is

     h n~ - - - - -S C C S C, , 281 1 1 1 1˜( ) (( ) ˜( ) ( ) ) ( )† † †

where the LSSA operator has been labeled . Note that now
<M N and the matrix is not square. In general, this method

leads to correlated information between different modes, but
this can be reduced by estimating N M 2freq modes (Vio
et al. 2013).

4.3. Likelihood Function and ML Estimate

Now thatwe have described the computation of the
coherently averaged (gridded and LSSA) data from the
underlying measured visibilities, we can write the likelihood
function of the data to compute the power estimates.

We describe the data with a generalized multivariate
Gaussian, with zero mean, and general covariance matrix, C.
This form describes data that are drawn from a statistical
distribution of possible universes, with temperature fluctuations
that are Gaussian distributed. This covariance matrix contains
all of the terms contributing to the signal in a visibility. The
joint likelihood for the vector of complex-valued coherently
averaged data, hS u v, ,( ), is given by

p
= - -S C

C
S C SL ;

1

det
exp , 29

N
1( ˜ )

( )
[ ˜ ˜] ( )†

where the complex-valued covariance matrix is

= á ñC SS 30def ˜ ˜ ( )†

= + +C C C , 31FG N P ( )

where

=




   


⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
C

p p p
p p p

p p p

32

N

N

N N NN

P

11 12 1

12 22 2

1 2

( )

describes the parameters of interest (the mode powers, aap )and
the correlations between powers imprinted by the instrument
and the experiment (“window functions”). Strictly, the
cosmological information forms a diagonal matrix, with
uncorrelated power between modes, but the imperfect data
correlate contiguous modes. In this implementation of CHIPS,
we assume a diagonal cosmological signal matrix, but do
encode the correlations between modes in the data by capturing
and propagating the covariances introduced by the line-of-sight
transform (LSSA). These correlations are important when
combining modes together to perform the binning to 1D (see
Section 4.3.1). Note that here we are explicitly identifying the
powerin which we are interestedwith the likelihood function
of the coherently averaged data. The other terms in
Equation (31) describe the statistical contribution to mode
( hu v, , ) from foregrounds (CFG) and measurement (radio-
metric) noise (CN). In uv space, measurement noise is
uncorrelated and Gaussian distributed (colored Gaussian noise
[CGN]), where the “color” for a coherently averaged datum
describes the weighting of the noise due to the number of
visibilities contributing to that cell. The statistical foreground
contribution will be treated in Section 5.1.
The ML estimate, obtained by finding the value of a given

parameter that maximizes the likelihood function (or minimizes
the negative log likelihood), is asymptotically efficient
(achieves optimal estimation precision for large datasets).
We aim to determine an expression for the parameters of
interest (mode powers) in terms of the data and data covariance
matrix. The log likelihood function is minimized by differ-
entiating with respect to the parameter, setting to zero, and
solving for that parameter. The derivative of the log likelihood
for a zero-mean generalized Gaussian is given by

h h
¶
¶

=
¶
¶

-
¶
¶a a a

- - -
⎛
⎝⎜

⎞
⎠⎟C

C
S C

C
C S

L

p p
u v

p
u v

ln
tr , , , , ,

33

1 1 1˜ ( ) ˜( )

( )

†

where “tr” denotes the trace of the matrix. For clarity, we now
drop the dependence of the data on ( hu v, , ), with the
understanding that we are working with the data in wavenum-
ber space. Setting Equation (33) to zero, and then using in the
first term the identity = -C C1 and expanding the covariance
matrix into its constituent parts, we find

¶
¶

=
¶
¶a

a a

- - - -
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟C C

C
C C C

C
p

p p
tr tr 341 1

P
1 1defˆ ( )

=
¶
¶

- +
¶
¶a a

- - - -
⎛
⎝⎜

⎞
⎠⎟S C

C
C S C C C C

C
p p

tr , 351 1
FG N

1 1˜ ˜ ( ) ( )†

where =a aap pˆ ˆ denotes our estimate of the power in mode α,
as described in the diagonal elements of the cosmological
power matrix, Equation (32). Note here that the first term on
the right-hand side of Equation (35) is squaring the coherently
averaged dataand therefore producing the desired power-like
quantity.
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Therefore, the estimate of the power in mode α is given by
computation of

=
¶
¶

¶
¶

- +
¶
¶

a

a

a

a

- -

- -

- -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

C C
C

S C
C

C S

C C C C
C

p

p

p

p

1

tr

tr , 36

1 1

1 1

FG N
1 1

ˆ ˜ ˜

( ) ( )

†

where we decouple dependence of the estimator on the mode
powers by making the approximation

» +C C C , 37FG N ( )

under the assumption that + C C CFG N P.
In practice, the data can be split into two and cross-

correlated. This removes thermal noise power from the final
power estimate, at the expense of a factor of 2 in the final
signal-to-noise ratio (S/N) (in temperature; a factor of 2 in
power). Although noise power has been removed from the
estimate, thermal noise uncertainty remains in the final
covariance of the power estimates. Typically, alternate
correlator output data sets are processed into alternate coherent
data vectors, to ensure uniform uv coverage between the two
(this is important for applying the same data covariance matrix
to both datasets). Using this scheme, the cross-correlation
power formed from coherent data vectors, S1 and S2 , is

=
¶
¶

¶
¶

-
¶
¶

a

a

a

a

- -

- -

- -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

C C
C

S C
C

C S

C C C
C

p

p

p

p

1

tr

tr . 38

1 1

1
1 1

2

FG
1 1

ˆ

( )

†

The expected values and covariances are derived in the
Appendixand demonstrate that the expected value of the ML
estimate yields the cosmological power.

The second term in Equation (38) is the foreground power
bias. As discussed in a number of recent papers (Liu &
Tegmark 2011; Dillon et al. 2013, 2015), subtraction of this
term requires an accurate model for the foregrounds. Inaccurate
subtraction leads to bias in the power. Given the relative power
of the foreground and cosmological signal, mis-subtraction will
occur when the foreground power is incorrect at the fraction of
a percent level. To avoid this, we retain the foreground power
biasand allow the noise covariance to indicate which modes
are contaminated (i.e., the second term is set to zero).

4.3.1. Explicitly Including LSSA

To connect the LSSA transform with the ML estimate, we
can take the expression for the optimal power, Equation (38),
which is a function of ( hu v, , ), and insert the LSSA estimate of

hS u v, ,˜( ) from the underlying gridded data, nS u v, ,˜( ). To do
so, we combine Equations (28) and (38) to compute the optimal
(ML) power estimate:

 

   

n n
=a

- ¶
¶

-

- ¶
¶

-

a

a

C C

C C
p

S S

tr
. 39

C

C

p

p

1
1

1
2

1 1( )ˆ
( ( )) ( ( ))

( ) ( )
( )

† † †

† †

The denominator (the normalization) reduces to

å aA , 40
i

i
2∣ ∣ ( )

where Aij are the elements of the inverse-covariance matrix,

 = -A C . 411def ( )†

This then yields the sum over the square of the matrix elements
for the normalization. Finally, the vector of power estimates is
c2-distributed:

   h c~ - - -p p C C, 2 , 422 1 1 1ˆ ( ) ( (( )( )) ) ( )† †

where the (identity) diagonal cosmological signal matrix,
Cd dp, has been dropped.
To compute the spherically-averaged (1D) power spectrum

from the 2D output, we average in elongated cylindrical shells,
allowing for differences in the line of sight and angular modes
for the cosmological signal in redshift space in the conversion
from hu v, , to k (Mpc−1). The ML estimate of the 1D power is
given by weighting the individual 2D mode powers contribut-
ing to a cell, k, with the inverse of their power covariance
matrix. This is the inverse of the covariance term from
Equation (42), with

    = - -C C . 431 1def ( )( ) ( )† †

Thus,





å
= Î

p
P

D Dtr
, 44k

i k i

i

,

,( )
( )†

where the covariance matrix of data is used quadratically to
reflect that we are now working to optimally average power,
and D is a binning matrix thatreduces the full 2D space to the
subspace spanned by Îi k. The numerator terms here come
from performing the matrix multiplication from
Equation (42)and including all of the covariances between
2D modes, i, contributing to binned mode k. The denominator
provides the variances and covariances between the 1D k
modes, encoding the degree of uncertainty on each parameter
and the relationship between estimates. The syntax, i, , denotes
the matrix, , as formed from projecting onto the bin,
including parameter covariances.

5. BUILDING THE DATA COVARIANCE MATRIX

5.1. Foregrounds

Dealing with foreground contamination can be approached
in different ways, all of which rely on the basic distinction that
foreground sources are continuum emittersand therefore have
a smooth spectrum over a small bandwidth, and the
cosmological signal is a spectral line with structure reflecting
the brightness temperature at different spatial depths. This
distinction fundamentally dissociates angular modes from line-
of-sight modesand is the reason for operating with the 2D
power spectrum. In 2D, the power fromflat-spectrum fore-
grounds that could be observed through a perfect instrument
(no frequency-dependent instrumental response, no spectral
incompleteness, and complete sampling of the Fourier
plane)would be contained within the DC (h = 0) mode of
k because the flat-spectrum foregrounds add a simple
amplitude across frequency. For a real instrument and nonflat
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sources, foregrounds occupy a broader region of parameter
space, colloquially termed the “wedge” because of its broad
wedge-like structure in ( ^ k k, ) space. The wedge has been
wellstudied (Datta et al. 2010; Morales et al. 2012; Parsons
et al. 2012; Trott et al. 2012; Vedantham et al. 2012; Hazelton
et al. 2013; Thyagarajan et al. 2013). It results from the
incomplete sampling of the Fourier modes and/or spectral
modes by an interferometerand the migration of the angular
mode sampled by a given baseline as a function of observation
frequency (“modemixing”). A mathematical derivation of the
expected structure of the wedge for the MWA is included in
this section.

Broadly, there are two primary foreground treatment design
options employed in the literature: (1) “avoidance,” where it is
attempted to contain foregrounds to a region of parameter
spaceand ignore this region (e.g., PAPER’s approach;Parsons
et al. 2012; Jacobs et al. 2015); and(2) “suppression,” where
the foreground contribution to the signal is modeled (usingan
a priori source model, nonparametric methods, or a data-driven
model) and the estimator uses this knowledge to suppress
contaminated information. The latter option includes the
nonparametric fitting of low-order polynomials (Bowman
et al. 2009)and the more sophisticated Component Analysis
techniques discussed by Chapman et al. (2012, 2014), Bonaldi
& Brown (2015), and references therein. It also includes
model- and data-driven (parametric) statistical descriptions of
the sky itselfand incorporation of that information (Liu &
Tegmark 2011; Dillon et al. 2013, 2015). These approaches all
have their own advantages and disadvantages. Broadly,
nonparametric approaches are simple to implementbut,
requiring no input physical knowledge, can destroy cosmolo-
gical information and retain foreground signal. Typically, the
metric for an adequate solution is not welldefined. Conversely,
parametric models are designed to include as much physical
information about the foregrounds and cosmological signal as
is available. However, they can be computationally difficult to
implement, are limited by our knowledge of the sky at low
radio frequencies, and can also destroy information if the
models are incorrect. Surveys such as the MWA’s GLEAM
(Wayth et al. 2015) and LOFAR’s MSSS (Heald et al.
2015)will be crucial for improving our understanding.

Ultimately, the key to a robust estimator is to have an
understanding of the limitations and biases of one’s metho-
dand incorporate that knowledge into the methodology and
results. CHIPS aims to do thisand handles foregrounds using a
two-tiered approach: (1) known foregrounds (sky model of
point and extended sources, with updated calibration solutions
and ionospheric corrections) are subtracted from the data
coherently (visibility data) using the Real-Time System (RTS)
calibration (see Section 7); (2) remaining signal is handled
statistically, using an a priori model for the expected
distribution and spectral structure of sources (CHIPS). We
then use a perturbative calculation to ascertain our degree of
confidence in the model (Liu et al. 2015).

We initially employ a two-component statistical foreground
model, consisting of extragalactic point sources and Galactic
synchrotron, described here. The component describing the
Galactic plane is omitted. The Galactic plane is more difficult
to describe statistically, with definite sky position and skewed
statistics. We leave this as an open problem for future work.

Point-source Covariance Matrix

We consider the additional noise-like signal contained within
a visibility due to unmodeled point sources present within the
primary beam (where the Poisson-distributed number of
sources within any differential patch of sky yields the variant,
noise-like signal). To compute the contribution of these
sources, we perform the following calculation. The number
of sources within a small area of the sky is assumed to be
Poissondistributed. For a Poisson distribution, the variance is
equal to the mean.

1. Calculate the Poisson noise due to the random number of
sources within a small patch of sky and a small
range of source flux density + +N S S dS l l dl, ; , ;( (

+m m dm, :))

+ + + =N S S dS l l dl m m dm
dN

dS
dSdldm, ; , ; , , 45( ) ( )

where dN/dS is the source density per unit flux
densityand is given parametrically by

n a=
b-

- -
⎛
⎝⎜

⎞
⎠⎟

dN

dS

S

S
Jy sr . 46

Jy

0

1 1( ) ( )

For this work we use the number counts of Intema et al.
(2011), with a = - -4100 Jy sr1 1and b = 1.59 at
150MHz.

2. Compute the variance on a visibility measurement due to
the Poisson noise from a differential patch of sky at
¢ ¢l m, ;( ) for N sources with flux density nS ( ) located at

sky position ¢ ¢l m,( ) within the beam nB l m, ,( ), the
mean visibility is given by

n
p

á ñ = ¢ ¢
´ - ¢ + ¢

V u v l m

i ul vm

, NSB , ,

exp 2 . 47

( ) ( )
[ ( )] ( )

3. Compute the total variance within a visibility from all
sources (in the simple model where there is no source
clustering, covariance matrices sum because sources are
independent); the total covariance between two visibi-
lities on the same baseline (different frequencies) can be
computed by considering the response of the instrument
at different frequencies, for a fixed location in the uv-
plane. The source number density, primary beam, and uv-
sampling all change, with the latter (the physical source
of the wedge) being encapsulated in the term

n n n=  - ¢nf low( ) , which produces the frequency
phasewrapping that yields the wedge feature in power.
Here n low is the lowest measurement frequency channel,
and n¢ and n denote different frequencies within the
band. The covariance is:

n n
n

n n=
 ¢

 ¢

´

g-⎛
⎝⎜

⎞
⎠⎟C S B l m B l m

dN

dS
dSdldm

, ; , ;

48

PS
2

low
∭ ( ) ( )

( )

a
b

n n
n

n n

p

=
-

 ¢
 ¢

´ -

g b

b

n

- -

-

⎛
⎝⎜

⎞
⎠⎟ l l

u l

S

S
B B

i f dldm

3
; ;

exp 2 Jy , 49

low

max
3

0

2

∬ ( ) ( )

[ ( · ) ] ( )

where Smax is the brightest unmodeled source in the field
(the peeling limit), here taken as 1 Jy. This expression

8

The Astrophysical Journal, 818:139 (18pp), 2016 February 20 Trott et al.



simplifies for a circularly symmetric beam, where the 2D
Fourier transform can be written as a 1D Hankel
transform:

ò

a
b

n n
n

n n p n n

=
-

 ¢

´  ¢  - ¢

g b

b

- -

-

¥

⎛
⎝⎜

⎞
⎠⎟C

S

S

B l B l J ul ldl

3

; ; 2 Jy .

50

PS
low

max
3

0

0
0

2( ) ( ) ( ( )( ))

( )

For a top-hat beam truncated at the horizon (l = 1), the
foreground covariance has a simple form, which is
similar to a sinc function:

a
b

n n
n

p
=

-
 ¢

g b

b
n

n

- -

-

⎛
⎝⎜

⎞
⎠⎟C

S

S

J uf

f u3

2
, 51PS

low

max
3

0

1( )
( )

where n n n=  - ¢nf low( ) and n=u x clow∣ ∣ . Similarly,
a frequency-dependent Gaussian-shaped beam is often a
reasonable approximation to the beam shape:

n sµ -B l l; exp , 522 2( ) [ ] ( )

where

s n n c D, 53( ) ( )

and   0.42and D 4 m are the scalings from an Airy
disk to a Gaussian widthand the tile diameter, respec-
tively. Using thisand the Hankel transform of a
Gaussianyields

 

a
b

n n
n n
n

p
n n n n

=
-

G  G ¢
 ¢

´
 + ¢

-

 + ¢

g

b

b
n

-

-

-

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

C

S

S

c

D

u c f

D

3

1
exp

4
,

54

PS
low

max
3

0

2 2

2 2 2

2 2 2 2

2 2 2

( ) ( )

( )
( )

where Γ indicates the use of a frequency taper function to
reduce spectral leakage (e.g., a Hanning window, as used

here). For a real, frequency-dependent MWA beam, the
foreground covariance can be computed numerically.

Galactic Synchrotron Covariance Matrix

Galactic synchrotron emission, from electrons spiraling
along our Galaxy’s magnetic field lines, produces emission
on large scales. We use the parameters of Jelić et al.
(2008, 2010) to motivate our model, which also includes the
effects of the MWA primary beam and instrumental
chromaticity.
The intrinsic temperature power spectrum is modeled as

n h
n
n

áD ñ =
- -⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟T u T

u

u
, K , 55BGS

2 2

0

2.7

0

2.55
2( ) ( ) ( )

where h = 0.01 is the fluctuation level relative to the uniform
brightness temperature, =T 253 KB , =u 100 wavelengths,
and n = 100 MHz0 is the reference frequency. The covariance
matrix is a function of the parameteru, to reflect that we expect
the statistics to be rotationally invariant. The apparent steep
spectral index in temperature units is flattened once converting
to flux density (integrated) units for a given instrument, such
that the intrinsic power is

n
l

h
n
n
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⎜ ⎟⎛
⎝
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The truncation of the spectrum due to the primary beam can be
obtained via convolution (via a Fourier transform), and
Figure 1(a) shows the intrinsic and convolved power spectra.
Herethe Fourier transform is used (rather than LSSA) because
the plot uses complete and regularly sampled spacing for

Figure 1. (a) Intrinsic (reddashed line) and beam-convolved (greensolid line) power spectra for the Galactic synchrotron model. (b) Power spectrum for the input
foreground covariance model, including contributions from extragalactic point sources and Galactic synchrotron.
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display purposes. The actual covariance contains the same
incompleteness as the data, when implemented in CHIPS. Note
that the primary beam convolution is frequencydependent,
generating complex structure at small wavenumbers.

Finally, the instrumental chromaticity is included in a similar
manner as for the point-source model, yielding the following
model for the spectral covariance matrix:

ò
n n p n n

p n

¢ = ¢ ¢ ¢

´

C u P u P u

J ul f ldl

, ; 2 , ,
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where ¢P denotes the beam-convolved power.

5.1.1. Total Covariance Matrix

The two foreground components are summed to form the
complete foreground contribution to the data covariance
matrix, as observed by the instrument. After performing a
spectral transform to η-spaceand converting to cosmological
units, the final total foreground contribution to the power
spectrum is shown in Figure 1(b) (coarse bandpass missing
channels are omitted for this plot, for clarity). Note the
presence of coherent streaks of emission beyond the foreground
wedge regionbut parallel to it. This is caused by spectral
structure in the window taper function (in this example, a
Blackman–Nuttall taper is used) interacting with the non-
smooth shape of the MWA primary beam. Note also the
apparent brightening toward the edge of the wedge region.
Naively, the wedge shape in the k direction is dictated by the
primary beam (for a uniform foreground brightness distribu-
tion), suggesting that the edge should be attenuated. However,
as predicted in Thyagarajan et al. (2013) and demonstrated in
Thyagarajan et al. (2015b), wide-field curvature effectively
compresses the sky, increasing the density of emission at the
edge of the wedge.

5.2. Thermal Noise

The final component of the data covariance corresponds to
the thermal (measurement, radiometric) noise. This is the
measurement uncertainty on each visibility due to the finite
number of data samples (information) that contribute to it. We
are effectively estimating the sky signal with a fixed amount of
information, which depends on the signal strength and the
number of samples. The former is set by the system
temperature, which is dominated by sky temperature at low
frequencies, and the latter is set by the bandwidth and sampling
time for each visibility. For a single polarization,

s
n

=
D D

kT

A t
10

2 1
Jy. 6026 sys

eff
( )

When gridding the visibilities onto the uv-plane, as described in
Section 4.1, the noise decreases coherently (with square-root
improvement). This noise reduction therefore follows the
evolution of sampled points in the uv-plane for a nightly track
of the EoR field. Identical observations on subsequent nights
yieldthe same coherent reduction in power. The thermal noise
contribution to the power spectrum therefore maps the
distribution of points in the uv-plane for a nightly track,
thereby reflecting the array configuration.

6. SIMULATIONS

To test the estimator, we generated a set of end-to-end noise-
free simulations of a single 2-minute snapshot of visibilitie-
sand passed them through the pipeline, using a power-law
input power spectrum. The aims of these simulations were to
verify that the slope and normalization were unbiased. We
chose the amplitude of the spectrum arbitrarily ( =A 1 K2), and
the index was set to = -n 1, where =P k A k Kn 2(∣ ∣) . To
produce realistic visibilities, we included the following in the
simulations: (1) the full frequency-dependent primary beam
shape of the instrument,(2) the actual uv distribution of a
zenith-pointed observation, and(3) curvature of the sky (w-
terms).
The simulations were produced by starting with an image-

cube Gaussian random field of brightness temperature fluctua-
tions ( nl m, , ), performing a 3D Fourier transform to k-space,
multiplying by the squareroot of the input power spectrum,
and inverse Fourier transforming back to the real space-
frequency cube. The data were then multiplied by the
frequency-dependent beam shapeand regridded to a curved
coordinate system. Finally, the uv-plane for each frequency
channel was generated by performing a 2D Fourier transform to

nu v, ,( )-space. This cube formed the underlying data from
which the visibilities were sampled according to the baseline
distribution of the MWA (Beardsley et al. 2013).
Figure 2 displays the computed spherically-averaged power

spectrum and input power spectrum, showing agreement
between the two within a few percent.

7. THE RTS AND OBSERVATIONS

Data are calibrated using the MWA RTS (Mitchell et al.
2008; D. A. Mitchell et al.2015, in preparation). The RTS has
been specifically designed to calibrate MWA data at high
cadence, using the full frequencyand DD beam response,
ionospheric modeling and correction, and multisource in-field
calibration using point-source and extended-source models.
MWA EoR observations used in this work were collected in

112 s integrations during which the MWA correlator outputs

Figure 2. Spherically-averaged power spectrum of simulated power spectrum
(red solid line)and input spectrum (blue dashed line). The error bars quantify
2σ uncertainties due to sample variance.
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raw visibilities every 0.5 s. Data are used from the MWA
EOR0field, centered at R.A.=0h, decl.=−27°. This sky
position is chosen to avoid the Galactic plane and yield a
relatively cold sky. RFI was detected and excised using
AOFlagger (Offringa et al. 2012). Each such observation is
independently calibrated by the RTS in a two-stage process.
First, the entire observation is used to determine the direction-
independent Jones matrices (complex gains) of each MWA tile
by fitting the observed visibilities to a model thatconsists of
the 1000 apparently27 brightest sources thatlie within 20° of
the pointing center. This model is constructed from catalogs of
known radio sources using the PUMA algorithm (J. Line et al.
2015, in preparation).28 This method of combining faint
sources into a single high-S/N calibrator is similar to source
clustering as proposed by Kazemi et al. (2013), although in this
case we only construct a single compound source. Following
this averaged calibration stage, the sky model sources are
subsequently individually passed through the RTS Calibrator
Measurement Loop (CML). For each source within the CML,
(i) the model visibilities of all other calibrator sources are
subtracted, (ii) an ionospheric offset and gain29 term is
measured by fitting a phase ramp to the visibilities when
rotated toward the catalog position of the calibrator, and (iii) for
the brightest sourcesDD corrections to the antenna gains are
fitted to the residual visibilities following ionospheric correc-
tion. In practice, a combination of limited processing time,
S/N, and available degrees of freedom limits the number of
sources thatcan receive this full DD treatment. In this work,
five sources are treated as full DD calibrators, and the rest are
only updated for ionospheric effects as above. For the EOR0
field, which has relatively few bright sources, the DD
calibrators have flux densities of∼10−20 Jy. Once the CML
model has converged, the best-fit model of each calibrator
source is subtracted from the visibilities. The RTS is
parallelized over frequency, so that each of the 24 coarse
channels (1.28MHz) is effectively independently calibrated.
One exception to this are the ionospheric offset fits thatare
fitted to al2 dependence over the entire bandwidth. The second
calibration and subtraction step is performed on an 8 s cadence
in order to resolve in time ionospheric fluctuations. Note that
for sources subtracted during this step, the requirement that
they must lie within 20° of the pointing center is removed so
that sufficiently bright sources can be subtracted from
anywhere in the sky. As a result, the lists of sources used in
the two calibration stages are not identical. Subtracting 1000
sources corresponds to a subtraction threshold of ∼350 mJy at
the center of the beam. All calibration operations are performed
at 40 kHz frequency resolution, but the residual visibilities are
averaged to 80 kHz for power spectrum estimation. Hence, the
output from the RTS to the power spectrum estimation module
iscalibrated, withresidual visibilities averaged to 80 kHz
and 8 s.

Different calibration and peeling strategies were tested to
find the optimal calibration settings for these data. Beyond the
usual image-quality and calibration-stability metrics employed
to assess calibration performance, we also used the power
spectrum to assess the impact of different strategies. Three such
modes were (1) self-calibrate with 300 sources, peel 300
sources; (2) self-calibrate with 1000, peel 300 sources; and (3)
self-calibrate with 300 sources, peel 1000 sources. Figure 3
shows the ratio of cross power for strategies 2and 3, relative to
strategy 1(which we expect to leave the most power in the
power spectrum), for the 15zenith-only observations of the
data used in this work. Calibrating on more sources leads to a
more precise calibration solutionand improves the regions of
interest for EoR science. Peeling additional sources reduces
power in the wedge, as expected for removing signal power.
An interesting feature of removing more wedge power is the
reduction in power at higher k , where copies of the wedge
caused by harmonics introduced by the regular coarse bandpass
missing channels leak power beyond low-k modes. Hence,
peeling more sources allows a reduction in foreground power
throughout the 2D power spectrum parameter space. Ulti-
mately, a strategy self-calibrating with 1000 sources and
peeling 1000 sources was employed for the work presented in
this paper.

8. RESULTS

Application to Data

The set of high-band EoR data were taken from a single
night of observations during the first semester of MWA EoR
observing (2013 August 23). These data were chosen to test,
refine, and compare different calibration and analysis meth-
odologies, as described in Jacobs et al. (2015). The original
dataset consists of 160 112 s observations. These data were
refined to a final set of 94 observations, removing pointings
that were>25° from zenithand a pointing heavily affected by
Galactic emission in the sidelobes. As described in Section 7,
the data were calibrated and provided as 8 s visibilities,
yielding 14 time steps per observationand seven per
interleaved data set per observation (temporally interleaved
data are used to compute the cross-power spectrum). After
calibration, we performed a uv cut at a maximum distance of
300 wavelengths at the lowest frequency, within which the
EoR signal is expected to fall, and used the full bandwidth
dataset for the initial analysis (30.72MHz).
The cross-power spectra are produced with CHIPS both

withand withoutthe foreground covariance matrix included in
the estimator. Without foreground covariance, the data are
weighted purely by the system temperature for that observation,
the relative weight of the visibility (determined from the
number of 10 kHz channels contributing), and the uv-sampling
of the instrumentand correspondto the most straightforward
application of a power spectrum analysis. With foreground
covariance, the data are downweighted according to the
modeled and measured noise and signal contamination within
the data.
Figure 4 shows the instrumental north–south and east–west

cross-power polarizations for the full bandwidth. The solid and
dashed diagonal lines correspond roughly to the expected
locations of foregrounds within the main lobe of the MWA
primary beam and the horizon, respectively. There is clear
foreground contribution within the expected region. Note that

27 As attenuated by the primary beam.
28 In addition to the positional matching, PUMA uses entries from known
catalogs and fits a power law to these data points to assess the reliability of the
matching. In practice, each source in the catalog almost always has more than
one flux entry. Contiguous entries are then used in the RTS to compute the
spectral index for that frequency band. The relatively large frequency intervals
between the catalog entries enforce a generally smooth behavior of the sources
in the band considered while preserving the overall spectral energy
distributionfeatures.
29 Ostensibly, this term is intended to account for ionospheric attenuation.
However, at present it subsumes and it is likely dominated by errors in the
interpolated catalog source fluxes.
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this wedge emission is consistent with the input foreground
model, as shown in Figure 1. There is also the clear imprint of
the MWA’s uv-sampling function, which has few very short
and few very long ( >k 0.08 hMpc−1) baselines. The copies of
the wedge are visible at regular intervals in k , corresponding to
the comb-like bandpass sampling function of the MWA. The
errors and expected noiseand the measured signal-to-error
ratio can also be computed (Figures 5 and 6). The error is
computed using Equation (42) for the thermal-noise-only data
covariance matrix, as considered for the estimator (foreground
data covariance contribution is omitted here). The expected
thermal noise is computed by gridding visibilities with a
thermal noise contribution given an average system tempera-
ture of =T 240sys Kand propagating through the same
estimator. This system temperature was estimated by matching
the observed noise (obtained through the difference in the even
and odd data sets) to unity-valued gridded visibilities. Note that
this is only the thermal noise contribution, and the signal-to-
error plot shows all of the high ratio detections expected in the
foreground-dominated regions. The signal-to-error plotshows

behavior consistent with thermal noise away from the
contaminated wedge and bandpass harmonics regions.
When the foreground contribution is included in the data

covariance matrix, power is effectively removed from the
contaminated regions, and the errors reflect those parts of the
parameter space (Figure 7(b)). The errors at the locations of the
coarse bandpass features are also elevated, but this is not
obvious from the plots as shown. The small signal-to-error ratio
in the wedge indicates that these modes are highly contami-
nated and should be downweighted in the final binning from
2D to 1D. The ratio is close to unity in the wedge, suggesting
that the foreground covariance is capturing the contamination
appropriately. These data can then be averaged in cylindrical
bins and normalized to obtain the spherically-averaged
dimensionless power spectrum. Instead of treating the full
bandwidth, which corresponds to a redshift range of 6.2–7.5
and therefore is highly likely to contain signal evolution, we
follow Dillon et al. (2015) and split the coherent data into three
contiguous 10.24MHz bins, corresponding to redshifts
z=[6.2–6.6], [6.6–7.0], and [7.0–7.5], and compute the 1D
power spectra for those (Figure 8) for the E-W polarization

Figure 3. Ratio of the power in two calibration and peeling strategies, relative to a standard strategy of self-calibrating with 300 sources and peeling 300 sources, as
described in the text. Self-calibrating on more sources (left) produces a more well-calibrated data set and yields improvement in the non-foreground-dominated regions
of the power spectrum. Leaving the calibration the same but peeling more sources removes power from the foregrounds, thereby yielding lower power in the wedge
and coarse bandpass harmonics. The diagonal dashed and solid lines refer to where flat-spectrum foregrounds would lie if contained within the main lobe of the
primary beamand the horizon, respectively.

Figure 4. E-W (left) and N-S (right) cross-power spectra when foregrounds are excluded from the estimator. Both polarizations demonstrate foreground power
consistent with smooth point sources and large-scale Galactic emission. The N-S polarization has additional power beyond the theoretical edge of the main primary
beam lobe (into the region approaching the horizon) and corresponds to Galactic emission rising or setting during the observations.
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(which shows reduced foreground leakage from the Galaxy).
This is effectively using the top and bottom plots from Figure 7
as the power and errors, but with the reduced bandwidth (it is
not exactly this process, because the inverse-covariance
estimator also uses all of the off-diagonal error terms, which
are not represented in the 2D error plots). Unlike Dillon et al.

(2015), however, we do not exclude any wedge contribution
hereand instead allow the estimator to “work within the
wedge” and downweight contaminated modes. The only data
cut performed is to remove the =k̂ 0 and =k 0 bins, which
show large contamination and a poor foreground model
response. Both the thermal-noise-only and the full thermal

Figure 5. Error and expected noise computed from the input visibility weights and a system temperature of 240 K at 170 MHz, for both instrumental polarizations.

Figure 6. Signal-to-error ratio (ratio of cross power to errors) for both polarizations where the errorterm only includes the thermal noise contribution to the estimator
(no foreground contribution). As expected when the foreground contribution is excluded from the estimator, the foreground-dominated wedge and coarse bandpass
harmonics showhigh signal-to-error ratio detections of signal.
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Figure 7. Cross-power spectra, errors, and signal-to-error ratios for the two instrumental polarizations, when the foreground model is included in the estimator. The
small signal-to-error ratio in the wedge indicates that these modes are highly contaminated and should be downweighted in the final binning from 2D to 1D.
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noise+foreground data covariance matrices are shown. The
error bars reflect 95% confidence regions in both dimensions.
Inclusion of the foreground model increases the uncertainties
on those modes, corresponding to the substantial contamination
in those regions. The full data covariance model increases the
uncertainties such that the results are consistent with thermal
noise+foregrounds across most of parameter space. The
“detections” in the =k̂ [0.03–0.10] hMpc−1 region are due
to power bias from unmodeled foregrounds, recalling that the
power bias term from Equation (36) is omitted from the
estimator.

From these results, we can set 2σ upper limits on the EoR
power spectrum at the point where the 1D power is at a

minimum and we achieve a “detection,” corresponding to
k=0.05hMpc−1. (We omit the inner detection because the
power associated with this bin includes power on the scale of

Figure 8. 1D spherically-averaged E-W polarization power spectra for three redshift ranges, corresponding to the upper, midddle, and lower 10.24 MHz bands of the
data. Both a thermal-noise-only (red) and a full foreground (blue) data covariance model hasbeen used, as well as the full parameter space (no wedge excision).

Table 1
95% Confidence (2σ) Upper Limits on the EoR Power in Three Redshift Bins
at =k 0.05 h Mpc−1, Using the Full CHIPS Estimator and Including All Data

Redshift Dk
2 (mK2)

z=[6.2–6.6] 7.6×104

z=[6.6–7.0] 8.8×104

z=[7.0–7.5] 16.5×104
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the primary beam size). Table 1 lists the upper limits at this
wavenumber for the 3 hr of data in the E-W polarization. While
not competitive with the results from deeper studies with other
telescopes, it is consistent with previously published values,
with a best detection value of Dk

2=(275 mK)2 in the redshift
range z=[6.2–6.6].

9. DISCUSSION AND CONCLUSIONS

The CHIPS estimator is one of several EoR power spectrum
estimators being developed and applied within the MWA
collaborationand broadly among the community with other
low-frequency telescopes. It takes one possible approach to the
substantial systematic problems of structured and bright
foregroundsand complex instrumentation. The primary design
principles for CHIPS include (1) a full instrumental model
(bandpass, frequency- and pointing-dependent primary beam
shape, uv-sampling, observation-dependent system tempera-
ture, instrumental chromaticity); (2) a model-driven foreground
component to the data covariance, drawing on previous
observational studies to extract a realistic statistical model for
an extragalactic point-source population and Galactic synchro-
tron emission; and(3) an ML estimator to tie together the full
sky and instrumental information in a consistent and robust
frameworkand yield a fully covariant set of output
uncertainties.

This approach is not uniqueand likely not the full solution to
addressing this complex task. In particular, the approach to
foregrounds has many options, and others have demonstrated
the benefits of empirical (Dillon et al. 2015) and blind
parametric and nonparametric (e.g., Chapman et al. 2014)
approaches. Ultimately, the approach to foregrounds may
require a combination of these techniques. Conversely, an
understanding of the full impact of the instrumental and
analysis signal chain on the final data productis crucial for
complicated low-frequency telescopes. In this regard, a CHIPS-
like approach is likely to be required for most current and
future instruments.

The results presented here are from a very small amount of
dataand are meant to be interpreted as a proofofprinciple for
the general approach. The outputs are visually as we would
expect given our understanding of the instrument and
expectations of system noise, and quantitatively in one
dimension theyare consistent with previous estimates. In the
regions of parameter space thatwe expect to be thermal
noiselimited, this small data set shows consistency with those
expectations.

The foreground model employed here, while multicompo-
nent, is still very simpleand includes none of the intricacies of
different underlying extragalactic populations (for example,
star-forming galaxies and active galactic nuclei). Being a
statistical model, it also lacks the ability to treat any outlier
emission that remains after peeling (for example, when peeling
sources, the Galactic center and main Galactic plane are not
treated in this current calibration strategy, but are very bright),
leaving additional power in the output power spectrum that
would be contained in the unsubtracted bias term. As we probe
deeper into the data, we will use the new information gleaned
to form better sky models, but this is ultimately an iterative
process at low frequencies, where deep observations are sparse.
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APPENDIX
EXPECTEDPOWERSAND COVARIANCES

To assess the performance of the estimator, we can take the
expected value of the estimate, á ñap̂ , noting that
á ñ =x Ax ACtrT ( ),
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The estimate of the power in mode α is therefore a mixture of
the cross power between mode α and others (denoted β in the
sum), with whitening (decorrelation and weighting) by the data
covariance matrix. This expression reduces to this simple form
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because the derivative
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has only a single nonzero entry, with a corresponding single
nonzero row in the quantity - ¶
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1 . This is for the case where

the cosmological signal is not contaminated, and is confined to
a single mode.

The final weighting matrix for the vector of estimates
contains all of the weighting and correlation due to the primary
beamand weighting and correlation due to the foreground
structure.

Example
In the simplest case, there is no foreground or noise

contribution, and the covariance matrix =C CP. Then, Equa-
tion (62) reduces to
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yielding the true power estimate, weighted by the correlations
between mode α and all other modes. In the limit where there
are no covariances between modes,
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yielding an unbiased estimator.
The covariance matrix of the estimator provides a measure of

its performance. In the case of a general data covariance, the
covariance between powers ap and bp is given by
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We have used the expression for the covariance of a zero-mean
bilinear quadratic form,

=V A V V A V A CA Ccov , 2tr , 721 1 2 1 2 2 1 2( ) ( ) ( )† †

where A1 and A2 are general matricesand the data sets have
means V1 and V2 and covariance C.
Given that we are using derived data as input into the

estimator (coherently averaged visibilities, rather than indivi-
dual measured visibilities), the squaring operates on a small
number of visibilities, yielding a c2-distribution for the data.
(Although the quadratic form formally sums power over the
whole uv range, in practice the localization of the beam makes
most added powers have zero weight. This is by design to
obtain a mostly diagonal covariance matrixand coupling only
between neighboring uv points.) The covariance expression
described above is therefore an input to an underlying skewed
distribution.
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