Think It Over

This section of Resonance presents thought-provoking questions, and discusses answers a few months later. Readers are invited to send new questions, solutions to old ones and comments, to ‘Think It Over’, Resonance, Indian Academy of Sciences, Bangalore 560 080. Items illustrating ideas and concepts will generally be chosen.

The Shrinking Unit Ball

The concepts of one, two and three dimensions are familiar to us. We think of a straight line as one dimensional, a plane as two dimensional and space as three dimensional. It is not easy to visualise objects in four or higher dimensional spaces. There are many results about high dimensional spaces that are somewhat counterintuitive. Here is one such result.

For an integer \(n \geq 1 \), let \(\mathbb{R}^n \) be the \(n \)-dimensional Euclidean space. That is, \(\mathbb{R}^n \) is the collection of all ordered \(n \)-tuples \(\bar{x} = (x_1, x_2, \ldots, x_n) \) where each \(x_i \) is a real number. Then \(S_n = \{ \bar{x} : \bar{x} \in \mathbb{R}^n, \sum_{i=1}^{n} x_i^2 \leq 1 \} \) is called the unit ball in \(n \)-space. It is the set of all points within a distance of one unit from the origin.

Thus \(S_1 \) is the line segment \([-1, +1]\) in \(\mathbb{R}^1 \), \(S_2 \) is the unit disc \(\{(x_1, x_2) : x_1^2 + x_2^2 \leq 1\} \) in \(\mathbb{R}^2 \) and \(S_3 \) is the unit ball in \(\mathbb{R}^3 \).

Let \(V_n \) be the ‘volume’ of \(S_n \) in \(\mathbb{R}^n \). For example, \(V_1 = 2 \), the length of \(S_1 \); \(V_2 = \pi \), the area of \(S_2 \); \(V_3 = \frac{4\pi}{3} \), the

Keywords
Riemann integral, unit ball, Euclidean space.
volume of S_3. Noting that

$$V_1 = \int_{S_1} 1 \, dx,$$

$$V_2 = \int \int_{S_2} 1 \, dx_1 \, dx_2,$$

$$V_3 = \int \int \int_{S_3} 1 \, dx_1 \, dx_2 \, dx_3,$$

i.e., the integral of the function $f(x) \equiv 1$ over S_1, S_2 and S_3 respectively, one can define V_n as

$$V_n \equiv \int \int \int_{S_n} 1 \, dx_1 \, dx_2 \ldots dx_n,$$

the Riemann integral of $f(x) \equiv 1$ over the set S_n in R^n. Seeing that $V_1 = 2 < V_2 = \pi < V_3 = \frac{4\pi}{3}$ one is tempted to conclude that V_n is increasing in n. It turns out that $V_n \to 0$ as $n \to \infty$. Can you show this?