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ABSTRACT
The Australia Telescope Compact Array and the Very Large Array are currently being upgraded
to operate with wide bandwidths; interferometers dedicated to the measurement of cosmic
microwave background anisotropies are being designed with large instantaneous bandwidths
for high sensitivity. Interferometers with wide instantaneous bandwidths that do not operate
with correlators capable of decomposing the bands into narrow channels suffer from ‘band-
width smearing’ effects in wide-field imaging. The formalism of mosaic imaging is extended
here to interferometers with finite bandwidths to examine the consequences for the imaging
of wide fields if very wide instantaneous bandwidths are used. The formalism presented here
provides an understanding of the signal processing associated with wide-band interferome-
ters: mosaicking may be viewed as decomposing visibilities over wide observing bands and,
thereby, avoiding ‘bandwidth smearing’ effects in wide-field imaging. In particular, the for-
malism has implications for interferometer measurements of the angular power spectrum of
cosmic microwave background anisotropies: mosaic-mode observing with wide-band radio
interferometers decomposes wide-band data and synthesizes narrow filters in multipole space.

Key words: instrumentation: interferometers – methods: observational – techniques: interfer-
ometric – cosmic microwave background – radio continuum: general.

1 I N T RO D U C T I O N

When observing continuum radio sources, the sensitivity of a radio
interferometer depends on the square root of the bandwidth, apart
from other factors. For this reason, arrays are usually designed to
have the maximum continuum bandwidths permitted by the state
of the art. In addition, the instantaneous observing bandwidths of
existing interferometer arrays are often upgraded over time as the
technology associated with sampling rates, transmission bandwidths
and correlator speeds improve.

Interferometer arrays that Fourier synthesize images of relatively
bright celestial sources are often dynamic range limited owing to
artefacts resulting from calibration errors and other systematics; it
is in the imaging of the relatively weak sources that thermal noise
proves to be the limiting factor. The radio interferometer imaging of
cosmic microwave background (CMB) anisotropies, in total inten-
sity and in polarization, is an example of an astrophysical problem,
where the thermal noise limitation, arising partly from the limited
bandwidths in radio interferometers, provides a strong argument in
favour of using bolometers – which are intrinsically wide-bandwidth
devices – for the detection instead of radio interferometers.

Interferometer bandwidths are limited by the state of the tech-
nology. If the visibility correlations are to be measured by digital
correlators, the wide-bandwidth analogue signals from the antenna
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elements would have to be sampled at appropriately high speeds.
Interferometers in use today that have the widest bandwidths do not
digitize the antenna signals; their correlators are analogue multipli-
ers. And an interesting proposal for a dedicated CMB interferometer
uses bolometer detectors to measure the interferometer fringe (Ali
et al. 2002).

When the celestial source that is being imaged has an intensity dis-
tribution over a wide field, or sources distributed over a wide field
are being imaged together, wide-bandwidth interferometers have
special problems and the visibilities suffer from an effect known as
‘bandwidth smearing’ (see, for example, Bridle & Schwab 1999;
Cotton 1999). An alternate description of this effect is in Section 2
for the case where a simple two-element interferometer observes
sources distributed over a wide field. In Section 3, the formalism
of wide-field mosaicking is extended to a wide-bandwidth interfer-
ometer. The analysis shows that just as mosaic imaging techniques
may be adopted for overcoming the limitations posed by the size
of the antenna elements, mosaic imaging may also be adopted for
overcoming the limitations posed by the size of the bandwidth. Later
sections discuss the use of wide-bandwidth interferometers in wide-
field surveys of the sky and measuring the angular power spectrum
of CMB temperature anisotropies.

It may be noted here that the ‘bandwidth smearing’ problem in
wide-field Fourier synthesis imaging may be avoided by adopt-
ing ‘narrow’-bandwidth synthesis or ‘wide’-bandwidth synthesis
techniques (Cotton 1999). These methods may not only avoid the
problem but also improve the imaging fidelity. However, these
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bandwidth synthesis methods require that the interferometer cor-
relations be measured separately in multiple frequency channels
covering the observing band; in other words, a spectral-line corre-
lator is required for the continuum imaging.

2 W I D E - F I E L D I M AG I N G

Consider an idealized case where two isotropic antenna elements
with infinitesimal effective area, operating at a wavelength λ and
corresponding frequency ν = c/λ, form an interferometer with spac-
ing b; c here denotes the speed of light. The propagation delays in
the receiver chains are assumed to have been equalized so that co-
herent radiation arriving in phase at the two antenna elements will
produce a zero-phase interferometer response. The interferometer
response, to the brightness distribution over the sky, is the coher-
ence function C(s, ν) at the spatial frequency s, where s = b/λ. The
sky brightness distribution results in an electromagnetic (EM) field
on the ground and the measured visibility represents the coherence
between the EM fields at the locations of the two antenna elements,
this spatial coherence function depends only on the spacing b and its
orientation with respect to the sky and not on the absolute locations
of the elements. The coherence function may be expressed as an
integral of the sky brightness I(r, ν) over the celestial sphere:

C(s, ν) =
∫

I (r , ν)e−2πi(s·r ) d�, (1)

where s is the baseline vector: s = b/λ, and r is a unit vector towards
the sky solid angle element d� (Clark 1999). It is assumed here
that the radiation is spatially incoherent across celestial sources
and that the sources are extremely distant as compared with the
spacing b.

In the discussions that follow, we assume that the on-line integra-
tion times are sufficiently small, so that ‘time-averaging smearing’
effects are negligible. Additionally, we restrict the imaging to suf-
ficiently small sky regions so that a two-dimensional (2D) Fourier
transform relationship between the sky brightness distribution and
the spatial coherence function is a valid approximation. Within this
approximation, if the unit vector r0 points towards the interferom-
eter phase centre, and the vector ξ = (r − r0) defines offsets from
the phase centre, s · r in the kernal of equation (1) may be replaced
by s · ξ.

2.1 Effects arising from the use of finite antenna apertures

If the effective apertures of the antennas cover finite areas on the
ground, the interferometer response will be an integral of the spatial
coherence function over the spatial frequencies sampled by the base-
line vectors between elements of one antenna aperture and elements
of the other aperture.

To take a specific example, assume that the antennas forming the
interferometer have identical circular apertures, uniformly illumi-
nated, with diameter d and with a spacing b between their centres.
The antenna apertures are assumed to be in the same plane as the
interferometer baseline vector and, therefore, the antenna pointing
coincides with the interferometer phase centre. The antenna con-
figuration on the ground (real space) is shown in Fig. 1(a). The
interferometer response (measured visibility) is an integral of the
spatial coherence function over one of two circular regions, with ra-
dius d/λ, of the spatial frequency domain; these circular regions are
located symmetrically in the 2D spatial frequency space with their
centres b/λ from the origin. These sampling regions are shown in
Fig. 1(b). The values of the coherence function at points in the spa-
tial frequency plane that are inversion symmetric about the origin

are complex conjugates of each other and the implementation of the
complex correlator determines the choice of the sampling region.
The spatial frequencies are sampled over the range (b − d)/λ to
(b + d)/λ with a weighting that linearly decreases from the centres
of the circular sampled regions to zero at the edges. For the spe-
cial case where the antenna apertures are adjacent and b = d, the
coherence function is sampled over the range 0–2d/λ.

Interferometers with finite antenna apertures provide visibilities
that are integrals over spatial frequency space: the weighted averag-
ing effectively results in a loss of information on the detailed varia-
tions of the coherence function over distances in spatial frequency
that are smaller than 2d/λ. The weighting function in spatial fre-
quency space has a Fourier transform that is the antenna far-field
radiation power pattern and, therefore, in the sky domain, the aver-
aging (in spatial frequency space) results in that the interferometer
response to brightness away from the antenna pointing centre is
attenuated by the primary beam pattern of the antennas. The inter-
ferometer does not respond to brightness outside the primary beam
and this is a problem for wide-field imaging.

To appreciate better the effect of using antennas with finite-sized
apertures, consider the case where a single discrete source is present
at a location offset from the centre of the primary beam, which
is also the interferometer phase centre. Let the vector ξ = (r −
r0) define the source position. The spatial coherence function at
a location s in spatial frequency domain will have a phase −2 π

(s · ξ). Moving along the spatial frequency plane in a direction
parallel to ξ (in a direction that has the same direction cosines as ξ),
the phase will wind with period (1/ξ ) wavelengths, where ξ is the
magnitude of the vector offset ξ. The visibility measurements are
a weighted average over circular regions of diameter 2d/λ, across
which the phase winds (2dξ/λ) times. If the source is offset by a
distance ξ = λ/(2d) = c/(2dν), the phase of the coherence function
winds through 2π rad across the sampled circle in spatial frequency
domain and the response is severely attenuated. It is this averaging
of a rotating coherence function vector, across spatial frequency
space, that results in the loss of information on the sky brightness
distribution and is usually called the ‘primary-beam attenuation’.

2.2 Bandwidth related effects

A baseline vector b, between an element of one of the apertures form-
ing the interferometer and an element of the other antenna aperture,
will sample the coherence function at the spatial frequency bν/c.
Therefore, if the receivers and correlator electronics operate with
a finite bandwidth and provide an average visibility measurement
over a band covering the range of frequencies ± 	ν around a cen-
tre frequency ν 0, the two elemental apertures with baseline b will
average the coherence function over a trace in 2D spatial frequency
space from b(ν 0 − 	ν)/c to b(ν 0 + 	ν)/c.

The finite observing bandwidth results in that the measured vis-
ibility is an average of the coherence function across spatial fre-
quency space just as the finite apertures result in the visibilities
being an average. This averaging across the finite band will result
in a loss of information on sky intensity distribution if the traces,
corresponding to each pair of elemental apertures, average over a
varying coherence function.

In the example we have been considering of an interferometer
formed between a pair of circular and uniformly illuminated aper-
tures, the finite bandwidth results in that the circular regions sampled
in spatial frequency space scale with increasing frequency. The di-
ameter of the sampled regions scales from 2d(ν 0 − 	ν)/c at the
bottom of the frequency range to 2d(ν 0 + 	ν)/c at the highest
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Figure 1. (a) The configuration and dimensions of the aperture elements forming the interferometer in real space. (b) The visibility sampling in spatial
frequency space. (c) The change in the sampling of the spatial frequency domain across the observing band.

observing frequency. The centre of the circular region also shifts
outwards from b(ν 0 − 	ν)/c to b(ν 0 + 	ν)/c. The movement of
the circular sampling region in spatial frequency space, from one
end of the observing band to the other, is depicted in Fig. 1(c).

The averaging of the coherence function in the spatial frequency
domain, owing to the finite antenna size, is weighted by a func-
tion that is the cross-correlation between the illumination patterns
of the two apertures that constitute the interferometer. In the case of
identical antennas, the weighting function is the autocorrelation of
the illumination, which is also the Fourier transform of the far-field
radiation power pattern. The averaging that results from the finite
bandwidth is a separate averaging of the coherence function in the
spatial frequency domain; in this case the weighting function is de-
fined by the bandpass response of the interferometer. The observed
visibility may, therefore, be written as a double integral of the co-
herence function in spatial frequency space:

V (s0) =
∫ ∫

[C(s, ν)Ws(s − s0, ν) ds] Wν(ν − ν0) dν, (2)

where s0 is the baseline vector between the centres of the apertures,
in wavelengths, at the centre frequency ν 0. Ws(s, ν) is the autocor-
relation of the aperture illumination at frequency ν and is, in gen-
eral, a frequency dependent sampling function in spatial frequency
space. W ν(ν) is the weighting function corresponding to the band-
pass shape. The weighting functions are assumed to be normalized
so that their integrals are unity.

Consider the coherence function at a baseline b0 owing to a
celestial source that is offset from the interferometer phase cen-
tre and at a location defined by the vector ξ. Additionally, let the
source offset be along the baseline; i.e. let s0, which is equal to
b0/λ, and ξ be vectors with the same direction cosines in their re-
spective planes. The coherence function at this spatial frequency
will have a phase −2πb0νξ/c and the phase will wind through
2b0ξ	ν/c turns across the band of ± 	ν. A source offset by
c/(2b0	ν) will have a coherence function that winds through 2π rad
across the observing band. It is the loss of information arising from
this averaging across the observing band that is called ‘bandwidth
smearing’.
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The number of phase turns across the observing bandwidth will
exceed the number of turns across the visibility space covered by
finite apertures if (	ν/ν 0) > (d/b0). The averaging length, in spatial
frequency space, owing to the finite aperture is proportional to d/b0,
whereas that owing to the finite bandwidth depends on 	ν/ν 0. The
relative magnitudes of these two quantities decides which effect
dominates in any interferometer.

3 M O S A I C K I N G W I T H A W I D E -
BA N D I N T E R F E RO M E T E R

Scanning the sky with an interferometer, and using the scan data
to reconstruct the distribution in the coherence function across the
spatial frequencies sampled by the apertures forming the interfer-
ometer, was proposed by Ekers & Rots (1979). As far as I know,
Rao & Velusamy (1984) were the first to explicitly implement this
observing scheme and decompose interferometer visibility data in
the spatial frequency domain and then use the finely sampled visi-
bility data to reconstruct wide-field images. I extend this formalism
below to the case where an interferometer mosaic observes a wide
field using a very wide bandwidth.

Consider the case where the arms of a two-element interferometer
are phased towards the phase centre r0 and the individual antennas
also point towards r0 so that the offset in the pointing of the antennas
from the phase centre is zero. The observed visibility in this case is

V (s0, 0) =
∫ ∫

[C(s, ν)Ws(s − s0, ν) ds] Wν(ν − ν0) dν. (3)

When the pointing of the antennas is changed from r0 to r, with
the offset denoted by ξ = (r − r0), the coherence function mea-
sured between pairs of elements on the two apertures now picks up
an additional phase gradient. If the antennas are co-mounted on a
common platform, and the pointing and the phase centres are offset,
together, corresponding to the vector ξ, the additional phase is given
by

φ(s) = 2π (ξ · s). (4)

If the antennas are independently mounted, and the interferometer
phase centre is kept unchanged, the additional phase acquired at any
spatial frequency s is

φ(s) = 2π [ξ · (s − b0ν/c)]. (5)

In this second case, the signals from the individual antennas may be
delayed to introduce a differential delay of τ = (ξ · b0)/c between
the antenna pair with baseline b0. Then the pointing, delay and phase
centres of the independently mounted array would be offset through
ξ and the additional phase would be given by equation (4). Assuming
that such differential delays are introduced in the case of arrays with
independently mounted antennas, the observed visibility is given by
(for both mounts)

V (s0, ξ) =
∫ ∫ [

C(s, ν)Ws(s − s0, ν)ei2π(ξ·s) ds
]

× Wν(ν − ν0) dν. (6a)

=
∫ ∫

[C(s, ν)Ws(s − s0, ν)Wν(ν − ν0)]

× ei2π(ξ·s) ds dν. (6b)

Consider the case where the two-element interferometer scans the
sky, moving the pointing of the antennas and the phase and delay

centres together over a range in offset ξ. This is achieved in the co-
mounted case by simply tipping the platform over a range of angles.
If the visibilities V(s0, ξ) are accumulated over a range of ξ and
Fourier transformed to give

V (s0,χ) =
∫

V (s0, ξ)e−i2π(ξ·χ) dξ, (7)

we obtain

V (s0,χ) =
∫ ∫ ∫

[C(s, ν)Ws(s − s0, ν) Wν(ν − ν0)]

× ei2π[ξ·(s−χ)] ds dν dξ (8a)

=
∫ [∫

C(s, ν)Ws(s − s0, ν)Wν(ν − ν0) dν

]

× δ(s − χ) ds (8b)

=
[∫

C(s, ν)Ws(s − s0, ν)

×Wν(ν − ν0) dν

]∣∣∣
evaluated at s=χ (8c)

=
∫

C(χ, ν)Ws(χ − s0, ν)Wν(ν − ν0) dν . (8d)

The δ-function above represents the Dirac δ-function. The Fourier
transformation of the visibility data acquired in different pointings
is seen to yield a weighted average of the coherence function. The
averaging in equation (8d) is over frequency and not over spatial
frequency and, therefore, this method of deriving the visibilities
in spatial frequency domain is capable of avoiding the problems
associated with bandwidth smearing related effects.

If the coherence function C(χ, ν) is independent of frequency
and only a function of the spatial frequency χ,

V (s0,χ) = C(χ)

∫
Ws(χ − s0, ν)Wν(ν − ν0) dν. (9)

In this case, the Fourier transformation of the visibilities that were
acquired with the interferometer pointed at different offsets yields
weighted samples of the coherence function; the relative weighting
depends on the aperture illuminations of the antennas forming the
interferometer pair and the bandpass shape.

4 D I S C R E T E - S A M P L I N G C O N S I D E R AT I O N S

In practice, the visibilities V(s0, ξ) might be accumulated in a 2D
discrete grid of sky angle offsets spanning a range ± ξ m and with grid
size 	ξ . Let this ‘bed-of-nails’ sampling function (a comb of Dirac
δ-functions) in the sky domain be denoted by �(ξ). For the case
where apertures of diameter d have their centres spaced b apart, and
the observing band is over the range ± 	ν, each complex visibility
measurement is composed of spatial frequencies in the range from
(b − d)(ν 0 − 	ν)/c to (b + d)(ν 0 + 	ν)/c. The complex visibilities
(of the real sky) are band-limited in the spatial frequency domain to
a range of

	s = 2(dν0 + b	ν)

c
= 2

(
d + b

	ν

ν0

)
ν0

c
wavelengths, (10)

which equals approximately 2dν 0/c when the bandwidth is small
and (	ν/ν 0) 	 (d/b). Nyquist sampling, of this signal that is com-
plex and band-limited in the spatial frequency domain, requires that

	ξ <
c

2(dν0 + b	ν)
. (11)
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It may be noted here that if the mosaic observations are made us-
ing an interferometer array of antennas, all with diameters d and
observing over a fixed band covering a range ±	ν around a cen-
tre frequency ν 0, avoiding aliasing in the spatial frequency domain
requires that equation (11) be satisfied for the longest baseline.

Explicit transformation of the visibilities V(s0, ξ) into visibilities
V(s0, χ) distributed over the spatial frequency range given by equa-
tion (10) is possible using equation (9) provided that the Nyquist
sampling criterion is satisfied. The discrete Fourier transformation
(DFT) of the visibilities V(s0, ξ), which are discrete samples in off-
set ξ space, would yield samples of the visibility V(s0, χ) in spatial
frequency. If the mosaic grid measures 2ξ m/	ξ complex visibilities
along any sky dimension, the DFT would yield 2ξ m/	ξ indepen-
dent measures of the complex visibility in the conjugate space which
is the spatial frequency χ domain. Samples spaced 1/(2ξ m) wave-
lengths apart would be independent. These visibility samples are
weighted averages of the coherence function in spatial frequency
domain with a point spread function (PSF) that is determined by
the sampling in ξ space and is independent of the bandwidth; the
samples V(s0, χ) are essentially averages of the coherence function
over spatial frequency ranges that are 1/(2ξ m) wavelengths wide.

The implication here is that even if the observing bandwidth is
large, and in the extreme case if (	ν/ν 0) exceeds (d/b) so that
the attenuation owing to bandwidth smearing exceeds the primary
beam attenuation in the individual fields, mosaicking observations
with a sampling that satisfies equation (11) can image large fields of
view. The DFT to spatial frequencies would decompose the observed
visibilities – that are integrals of the coherence function over wide
spatial frequency ranges corresponding to the wide bandwidths used
– into samples that correspond to regions that are effectively 1/(2ξ m)
wavelengths wide. Just as mosaicking has the ability to decompose
the observations made with wide-aperture antennas into visibilities
corresponding to those obtained with small aperture arrays, mosaic
mode observing has the ability to decompose the visibilities made
with wide bandwidths into those corresponding to narrow bands.

The DFT to spatial frequencies decomposes the observed vis-
ibilities into 1/(2ξ m) wavelength wide bins and, as stated above,
these visibilities V(s0, χ) are samples of the coherence function,
weighted by functions that are defined by the aperture illumina-
tion and bandpass shape, and convolved by a PSF �′(χ) that is the
Fourier transform of the sampling function �(ξ):

V (s0,χ) =
[

C(χ)

∫
Ws(χ − s0, ν)Wν(ν − ν0) dν

]
⊗ �′(χ),

(12)
where the operator ⊗ denotes convolution. The weighting function

Wsν(χ) =
∫

Ws(χ − s0, ν)Wν(ν − ν0) dν (13)

is computable from the aperture illuminations of the antennas form-
ing the interferometer pair and the bandpass shape, �′(χ) is also
computable from the adopted mosaic grid on the sky. In terms of
these known functions, the derived visibilities may be expressed in
the form

V (s0,χ) = [C(χ)Wsν(χ)] ⊗ �′(χ). (14)

Samples of these visibility estimates, which are separated by
1/(2ξ m) wavelengths, are independent and may be used to recon-
struct images of the sky. These images are that of the true sky inten-
sity distribution convolved by a PSF that is the Fourier transform
of the weights W sν(χ). The image would be tapered by the DFT of
�′(χ), which is simply the top-hat function �(ξ) that encompasses
the entire sky area covered by the mosaic pattern.

5 T H E P OW E R S P E C T RU M
O F C M B A N I S OT RO P I E S

Assuming that the sky temperature anisotropies in the CMB are
Gaussian random fluctuations with random phase, they may be com-
pletely described by the Cl coefficients of spherical harmonic de-
compositions. Observations of CMB anisotropies attempt to mea-
sure the angular power spectrum, which is the distribution of l(l +
1)Cl/(2π) over multipole l space.

The Cl coefficient represents the anisotropy power at multipole
mode l and in the limit of large l and small sky angles, the spherical
harmonic decomposition approximates to a Fourier decomposition
and the distribution of anisotropy power over l space is simply re-
lated to the distribution of the variance in observed visibilities over
spatial frequencies. A spatial frequency s0 corresponds to a multi-
pole mode l0 = 2πs0 and the variance in CMB visibilities that are
measured over a band 	s is a measure of the CMB anisotropy over a
multipole range 	l = 2π	s. Interferometer measurements of CMB
anisotropy hence provide estimates of Cl power in which the tele-
scope filter functions are defined by the aperture illuminations of
the antennas and the projected baseline length. If the interferometer
mosaic images a wide field, these visibility data at multiple point-
ings might be used to derive visibilities corresponding to narrow
filters in spatial frequency space. Therefore, mosaic mode observa-
tions are a method for decomposing the interferometer Cl measure-
ments into those corresponding to narrow telescope filter functions
in l space: mosaic observing improves l-space resolution (White
et al. 1999; Subrahmanyan 2002). Moreover, it has been argued that
drift scanning the sky, using a co-mounted antenna array operated
as interferometers, is a useful technique for rejecting systematics
(Subrahmanyan 2002); drift scanning is an implementation of the
mosaicking technique.

Towards any single pointing, a wide-bandwidth interferometer
samples a range in l space and the anisotropy variance is averaged
over this range to produce the interferometer response. When a
wide-band interferometer observes CMB anisotropies over a wide
field in mosaic mode, as discussed in the preceding sections, the
visibilities obtained in the multiple pointings may be transformed
to yield visibilities distributed in spatial frequency χ . In the small
angle approximation where l = 2πχ,

V (s0, l) = [C(l)Wsν(l)] ⊗ �′(l). (15)

The variance in V(s0, l) is an estimate of the anisotropy power at
multipole order l = |l| and this is independent of the instantaneous
bandwidth of the interferometer. The mosaic mode effectively de-
composes the measurements that are averages over wide bandwidths
– and, consequently, averages over wide l-space domains – into nar-
row l-space filters that are defined by �′(l).

6 S E N S I T I V I T Y C O N S I D E R AT I O N S

Consider the case where a two-element interferometer, consisting
of apertures of diameter d and baseline b, observes an n × n mosaic
of pointings for a total time t (the time spent at each pointing is
t/n2). Assume first that the observations are made using a narrow
bandwidth (	ν/ν 0) 	 (d/nb). Assume further that the pointings are
separated by the required Nyquist rate of (c/2dν 0). The signal-to-
noise ratio (SNR) in the measurement of the flux density of a point
source that appears in any one of the pointings will be proportional
to d2

√
t/n. If, instead, this interferometer that is formed of apertures

of diameter d observes the source position for the entire time t, the
SNR would be proportional to d2

√
t .
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If the interferometer consisted of a pair of apertures of size d/n
and the entire field were observed as a single pointing for the same
total time t, the SNR would be proportional to d2

√
t/n2. Using n2

such apertures with diameter d/n and simultaneously measuring
n2 correlations recovers the SNR that is proportional to d2

√
t/n.

If an array consisting of 2 × n2 such apertures were used, with a
total collecting area corresponding to the area of the two-element
interferometer with apertures of diameter d, and if all n4 correlations
were simultaneously measured, the SNR would increase further and
be proportional to d2

√
t . This last value is the same as that expected

in the case where a two-element interferometer with apertures of
diameter d observes a source for the entire time t; however, the
observation with apertures of size d/n provides this high sensitivity
over the entire mosaic field which is larger by factor n × n.

If the fractional bandwidth exceeds d/(nb) – so that bandwidth
smearing effects are significant over the wide mosaicked field – but if
the constraint (	ν/ν 0) 	 (d/b) is satisfied, mosaic observations of
the wide field using the d-sized apertures and covering the wide field
in n × n pointings would not be compromised in sensitivity. How-
ever, non-mosaicked observations of the wide field using d/n-sized
apertures and the wide bandwidths would suffer from bandwidth
smearing effects.

If (	ν/ν 0) � (d/b), the number of mosaic pointings would have
to be significantly increased. If (	ν/ν 0) = k(d/b), the pointing grid
size 	ξ would have to be reduced by factor (1 + k). A mosaic obser-
vation using a two-element interferometer consisting of apertures
of diameter d, covering a grid of size n(1 + k) × n(1 + k), would
detect point sources in the wide field with a

SNR ∝
(

d2
√

t

n

) √
k

(1 + k)
. (16)

This SNR has a maximum at k = 1 corresponding to the case where
(	ν/ν 0) = (d/b) and the mosaic is made with a grid size on the sky
of

	ξ = c

4dν0
. (17)

The analysis suggests that when interferometers with wide instan-
taneous bandwidths are used for the mosaic imaging of wide fields,
including the particular case of mosaic-mode CMB observations,
the optimum bandwidth corresponds to the case where (	ν/ν 0) =
(d/b); the SNR degrades if the instantaneous bandwidth used ex-
ceeds (2d/b)ν 0.

Interferometers with wide fractional bandwidths are of particular
interest at high frequencies where errors due to telescope pointing
and interferometer phase may be significant. therefore, the limita-
tions arising from such errors are considered below.

Any systematic pointing error of magnitude εp in the antennas
forming the wide-bandwidth interferometer would result in phase
errors in the complex visibilities following the decomposition in
spatial frequency space. These errors would vary across spatial fre-
quencies and lie in the range (εp/θν0−	ν) to (εp/θν0+	ν), where θ ν is
the full width at half maximum (FWHM) of the primary beam at fre-
quency ν. The limiting factors to the quality of mosaic images made
using interferometer arrays was discussed by Cornwell, Holdaway
& Uson (1993) for the case where the visibility was obtained in nar-
row bands. In the case of mosaic imaging with a wide-bandwidth
interferometer, the image fidelity (defined as the ratio of the value of
an image pixel to the error between the true sky and reconstructed
image) is, in particular, limited by telescope pointing errors. The

fidelity is limited approximately to

�P E ≈
√

NAθν0

εp (1 + b	ν/dν0)
, (18)

where θν0 is the FWHM of the primary beam at frequency ν 0, N A is
the number of antenna elements in the array and εp is the systematic
pointing error associated with any antenna; it is assumed that the
errors are uncorrelated between antennas.

Mosaic scanning is also limited by time varying phase errors that
introduce a varying phase error over the sky scans. If εφ is the rms
phase error (in radians) during the scanning then the visibility ampli-
tudes following the decomposition in spatial frequency space would
have fractional errors of the order of εφ . In the case of interferometer
mosaic imaging, assuming that these errors are antenna based (as
would be expected for atmospheric phase errors), the image plane
fidelity would be approximately limited by these errors to N A/εφ .

7 S U M M A RY

Wide-band interferometers – in which the band is not finely sub-
divided in multichannel receivers – instantaneously sample a wide
domain in spatial frequency space. Mosaic imaging of wide fields,
which are made by covering the wide fields with a grid of pointings
and subsequently transforming the visibilities that are measured in
the multiple pointings to visibility space, yields samples of the vis-
ibilities distributed in the spatial frequency domain. The formalism
of mosaic imaging of wide fields has been extended here to the case
where the interferometers operate with wide instantaneous band-
widths. The mosaicking technique may be viewed as effectively de-
composing wide-band data into spatial frequency bins. The formal-
ism presented here develops the understanding of the mosaicking
technique that reconstructs wide-field images without ‘bandwidth
smearing’ effects.

The signal-to-noise ratio in a mosaicking interferometer improves
as the bandwidth is increased; however, the usefulness of the wide
band for wide-field imaging diminishes once the bandwidth exceeds
(2d/b)ν 0. Admittedly, a multichannel receiver improves upon the
sensitivity of the mosaicking interferometer; however, the gain is
marginal if the total band is less than (2d/b)ν 0. The considerations
discussed here are relevant both to the case where the mosaicking
interferometer attempts to reconstruct sky images and to the case
where the mosaicking interferometer attempts a measurement in
spatial frequency space of the angular power spectrum of the sky
brightness fluctuations.
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