Model checking time-constrained scenario-based
specifications®

S. Akshay!2?, Paul Gastin', Madhavan Mukund?, and K. Narayan
Kumar?

1 LSV, ENS Cachan, INRIA, CNRS, France
{akshay,Paul.Gastin}@lsv.ens-cachan.fr

2 Chennai Mathematical Institute, Chennai, India
{madhavan,kumar}@cmi.ac.in

—— Abstract

We consider the problem of model checking message-passing systems with real-time require-
ments. As behavioural specifications, we use message sequence charts (MSCs) annotated with
timing constraints. Our system model is a network of communicating finite state machines with
local clocks, whose global behaviour can be regarded as a timed automaton. Our goal is to verify
that all timed behaviours exhibited by the system conform to the timing constraints imposed by
the specification. In general, this corresponds to checking inclusion for timed languages, which is
an undecidable problem even for timed regular languages. However, we show that we can trans-
late regular collections of time-constrained MSCs into a special class of event-clock automata that
can be determinized and complemented, thus permitting an algorithmic solution to the model
checking problem.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2010.204

1 Introduction

In a distributed system, several agents interact to generate a global behaviour. This interaction
is usually specified in terms of scenarios, using message sequence charts (MSCs) [8]. Protocol
specifications typically include timing requirements for messages and descriptions of how to
recover from timeouts, so a natural and useful extension to MSCs is to add timing constraints
between pairs of events, yielding time-constrained MSCs (TCMSCs).

Infinite collections of MSCs are typically described using message sequence graphs (MSGs).
An MSG, a finite directed graph with nodes labelled by MSCs, is the most basic form of a
High-level Message Sequence Chart (HMSC) [9]. We generalise MSGs to time-constrained
MSGs (TCMSGs), where nodes are labelled by TCMSCs and edges may have additional
time constraints between nodes.

A natural system model in this setting is a timed message-passing automaton (timed
MPA), a set of communicating finite-state machines equipped with clocks that are used to
guard transitions, as in timed automata [4]. Just as the runs of timed automata are described
in terms of timed words, the interactions exhibited by timed MPAs can be described using
timed MSCs—MSCs in which each event is assigned an explicit timestamp. The global state
space of a timed MPA defines a timed automaton and in this paper we focus on this simplified
global view of timed message-passing systems, though our results go through smoothly for
the distributed system model as well.

* Supported by ANR-06-SETI-003 DOTS, ARCUS Ile de France-Inde, cMI-TCS Academic Alliance.

@@@@ © S. Akshay, Paul Gastin, Madhavan Mukund, K. Narayan Kumar;

licensed under Creative Commons License NC-ND
IARCS Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Editors: Kamal Lodaya, Meena Mahajan; pp. 204-215

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.204
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Akshay, Gastin, Mukund, Narayan Kumar

Our aim is to check if all timed MSCs accepted by a timed MPA conform to the time
constraints given by a TCMSG specification. To make the problem tractable, we focus on
locally synchronized TCMSGs—those for which the underlying behaviour is guaranteed to
be regular [7]. In general, our model checking problem corresponds to checking inclusion
for timed languages, which is known to be undecidable even for timed regular languages [2].
Fortunately, it turns out that timing constraints in a TCMSG correspond to a very restricted
use of clocks. This allows us to associate with each TCMSG an (extended) event clock
automaton that accepts all timed MSCs that are consistent with the timing constraints of
the TCMSG. These event clock automata can be determinized and complemented, yielding
an algorithmic solution to our model checking problem.

The paper is organized as follows. We begin with some preliminaries where we introduce
(timed) MSCs and MSGs and state the model-checking problem. In Section 3 we introduce
MSC event clock automata and show that they can be determinized and complemented. The
next section has the main technical result: translating locally synchronized TCMSGs to finite
state MSC event clock automata, which yields a solution to the model-checking problem in
Section 5.

2 Preliminaries

2.1 Message sequence charts

A message sequence chart (MSC) describes the messages exchanged between a set Proc of
processes in a distributed system. The first diagram in Figure 1 is an MSC involving two
users and a server. Each process evolves vertically along a lifeline. Messages are shown by
arrows between the lifelines of the sender and receiver.

Each message consists of two events, send and receive, and is labelled using a finite set
of message labels. For instance, the events u; and a; are the send and receive events of a
message labelled req from process p (Userl) to process g (Server). Each pair of processes p
and ¢ is connected by a dedicated fifo channel (p, ¢)—for example, the messages sent at s;
and sy are on channel (r,¢) and the second message cannot be received before the first one.

Since processes are locally sequential, the set of events E, along a process p is linearly
ordered by a relation denoted <,,. In addition, for each message sent along a channel (p, q),
the send and receive events of the message are related by an ordering relation <p,. Thus, for
example, a1 <44 a5 and az <4, ug. Together, the local linear orders <,, and the message
orders <,, generate a partial order < over the set of events—for instance, uz < s3.

Finally, we label each event using a finite alphabet Act of communication actions. We
write plg(m) to denote the action where p sends message m to ¢ and p?q(m) to denote the
action where p receives message m from gq. We abbreviate by p!q and p?q the set of all actions
of the form plg(m) and p?q(m), respectively, over all possible choices of m.

Overall, an MSC can then be captured as a labelled partial order M = (E, <,) where
A E — Act associates each event with its corresponding action. A cut is a subset of events
that is downward closed: ¢ C E is a cut if J¢ = ¢, where Jce={e € E |3’ € c. e <¢€'}.

Like any partial order, an MSC can be reconstructed upto isomorphism from its linearisa-
tions, i.e., words over Act that extend <. In fact, the fifo condition on channels ensures that
a single linearisation suffices to reconstruct an MSC. In this way, an MSC M corresponds to
a set lin(M) of words over Act and a set £ of MSCs defines the word language (J,;c lin(M).
We say that a set of MSCs L is regular if its associated word language is regular.

205

FSTTCS 2010

206

Model checking timed scenarios

Userl Server User2 Userl Server User2 Userl Server User2
p q T p q r p q T
req req req
U1 a1 reg_{s1 u1 a1 Teq_4S1 1,uy fw/Sh 1
AN
az az SN 2, a2
\
rant rant 3,6]! rant
up|? as gl 3 1361, \ 3.5, us g as,3.5
[071} N [0 3] \\ I [072O]
52 P Sa ! 52,5
confirm re confirm / / confirm req ’
U3 fi as J u3 fi Ga " L/ 6, us fi aq,6
as S3 as 53 7, a5 s3,7
/ deny / deny / deny
ae ae 8, as

Figure 1 Different views of a system with two users with a server

2.2 Time-constrained message sequence charts

A time-constrained MSC (TCMSC) is an MSC annotated with time intervals between pairs
of events. We restrict timing constraints to pairs of distinct events on the same process and
to the matching send and receive events across messages. Intervals have rational endpoints
and may be open or closed at either end.

For example, in the second diagram in Figure 1, the constraint [0, 3] between as and ay
bounds the time that the Server waits for a User to confirm a grant. On the other hand, the
constraint [0, 1] between ag and ug bounds the time taken to deliver this particular message.

A TCMSC over Act is a pair 9 = (M, 1), where M = (E, <,) is an MSC over Act and
7 is a partial map from E X E to the set of intervals such that (e,e’) € dom(7) implies that
e # ¢ and either e <, ¢’ or e <), €’ for some processes p and gq.

2.3 Timed message sequence charts

A timed MSC (TMSC) describes a concrete timed behaviour in the MSC setting. In a
TMSC, we assign events timestamps that are consistent with the underlying partial order.
Thus, a TMSC over Act is a pair T = (M,t) where M = (E, <, \) is an MSC over Act and
t: E — Ry¢ is a function such that if e < ¢’ then t(e) < ¢(e’) for all e,e’ € E.

For instance, consider the TMSC in the third diagram of Figure 1. The message sent at
as is received instantaneously while the message sent at sq is received 3 time units later.

A timed word over Act is a sequence (ag,t1)(az,t2) - (an,t,) where ajas - - - a, is a word
over Act and t; <ty < --- < t, is a nondecreasing sequence over R>(. The set of timed
words over Act is denoted TW 4. A timed linearisation of a TMSC is thus a timed word in
TW 4.¢. We let t-lin(7") denote the set of timed linearisations of TMSC T'. A single TMSC
may admit more than one timed linearisation if concurrent events on different processes have
the same timestamp. As for untimed MSCs, under the fifo assumption for channels, a timed
MSC can be reconstructed from any one of its timed linearisations.

With this definition, TCMSCs can be considered as abstractions of TMSCs and timed
words. For instance, we will say that the TMSC in Figure 1 realises the TCMSC in the
same figure since each interval constraint between events in the TCMSC is satisfied by the
time-stamps of the corresponding events in the TMSC. In this way, a TCMSC 91 defines a
family of TMSCS—the set of all TMSCs that realise 9%, which we denote Lj,.(9%). We
also consider the set Ly,(M) = Ure,,,. o) t-1in(7) of timed words that realise 9.

Akshay, Gastin, Mukund, Narayan Kumar

M T
Tomy F TS
1
(2’3]J [0,3] 1[1’1] 05— " 15
ma 2.6 2.5
mi
my 2.9 o 3.0
2
ma 4.8 5.0
m3

Figure 2 A TCMSG, with a TCMSC and a TMSC that it generates

2.4 Message sequence graphs

A message sequence graph (MSG) is a directed graph in which nodes are labelled by MSCs.

We begin with a graph G = (V,—,v;, Vr) with nodes V, initial node v;, € V, final
nodes Vr C V and edge relation —. An MSG is a structure & = (G, LM, ®) where LM
is a set of basic MSCs and ® : V — LM associates a basic MSC with each node. An
accepting path in G is a sequence of nodes vgvy - - - v, that starts in vy, and ends in some
node of Vi where each adjacent pair of states is related by —. This path defines an MSC
O (vovy -+ - vp) = P(vg) 0 ®(v1) 0 -+ 0 B(vy,), where o denotes MSC concatenation. When we
concatenate two MSCs M; = (Et, <!, \;) and My = (E?, <%,)\;) we attach the lifelines in
My below those of M; to obtain an MSC M; o My = (E' U E%, <, \) where A combines \;
and Ay and < is generated by <' U <?U {(e1,e2) | Ip. e1 € E}, ez € EZ}.

Since each accepting path in an MSG defines an MSC, we can associate with an MSG
® a language L(®) of MSCs. In general, it is undecidable to determine whether £(®) is
regular [7]. This is because processes move asynchronously along the MSC traced out by
accepting paths and there is no bound, in general on this asynchrony. However, there is a
sufficient structural condition to guarantee regularity [3,10].

Given an MSC M, we construct its communication graph CG(M) as follows: the vertices
are the processes and we have a directed edge (p, q) if M contains a message from p to g. An
MSC M is said to be connected if the non-isolated vertices in CG(M) form a single strongly
connected component. An MSG & is said to be locally synchronized if for every loop m in
&, the MSC ®(m) is connected. Intuitively, this means that every message sent in a loop is
implicitly acknowledged, because if p sends a message, there is a path in the communication
graph back to p. This ensures that all channels are universally bounded—there is a uniform
bound B such that across all linearisations, no channel ever has more than B pending
messages. Thus, if & is locally synchronized, £(®) is a regular set of MSCs.

2.5 Time-constrained message sequence graphs

We generalise MSGs to the timed setting in a natural way. In a time-constrained MSG
(TCMSG), states are labelled by TCMSCs rather than basic MSCs. In addition, we also
permit process-wise timing constraints along the edges of the graph. A constraint for process
p along an edge v — v’ specifies a constraint between the final p-event of ®(v) and the
initial p-event of ®(v'), provided p actively participates in both these nodes. If p does not
participate in either of these nodes, the constraint is ignored. Formally, a TCMSG is a
tuple & = (G, LT, ®, EdgeC) where G = (V, =, v;n, V) is a graph as before, ® : V. — £T¢

207

FSTTCS 2010

208

Model checking timed scenarios

labels each node with a TCMSC from a set £7¢ and EdgeC' associates a tuple of constraints
with each edge—for convenience, we assume that any edge constraint not explicitly specified
corresponds to the trivial constraint (—oo, 00).

Fach accepting path in a TCMSG defines a TCMSC. Given a path wvovy ---v,, we
concatenate the TCMSCs ®(vg), ®(v1),...,P(v,) and insert the additional constraints
specified by EdgeC. We define L1¢(®) to be the set of all TCMSCs over Act generated
by accepting paths in G. We also let Lyme(®) = Ugmeﬁm(@) Liime(M) and L4,,(B) =
UimecTc(cs) L1y (9M). Figure 2 shows a TCMSG, a TCMSC that it generates and a realizing
TMSC.

2.6 Timed automata

We can formulate many types of machine models for timed MSCs. One natural choice is
a message-passing automaton (MPA) equipped with (local) clocks. In a timed MPA, we
have one component for each process p, which is a finite state automaton over actions of the
form plg(m) and p?q(m). Each component also has local clocks that can be used to guard
transitions. The global state space defines a timed automaton over Act.

A timed automaton over an alphabet ¥ is a tuple A = (Q, A, gin, F, Z) where @ is a finite
set of states, ¢;, € @ is the initial state, F' C @) are the final states and Z is a set of clocks
that take values over R>¢. Each transition in A is of the form ¢ £ X, q where q,¢ € Q,
a € ¥, X CZ and ¢ is a boolean combination of clock constraints of the form = op ¢ where
x € Z,c€Qspand op € {<,<,>,>}. This transition is enabled if the current values of all
clocks satisfy the guard ¢. On taking this transition, the clocks in X are reset to 0. As is
standard, time elapses between transitions, transitions occur instantaneously and such an
automaton accepts timed words from TWy. More details can be found in [2,4].

For our purposes, we only need the following two results about timed automata.

Given timed automata A; and As, we can construct a timed automaton A, such that
L(A12) = L(A;) N L(As).

Checking whether the language of a timed automaton is empty is decidable.

2.7 The model checking problem

We are interested in timed automata over Act whose languages can be interpreted as timed
MSCs. A timed word in TW 4. corresponds to a linearisation of a timed MSC provided
the timed word is well-formed and complete. A word w over Act is well-formed if for each
channel (p,q), in every prefix v of w, the sequence of messages received by ¢ from p in
v is a prefix of the messages sent from p to ¢ in v. A well-formed word w is complete if
#Hprg(w) = #42p(w) for each matching pair of send-receive actions, where # x (u) counts the
number of occurrences in u of X C Act. Finally, a well-formed word w is B-bounded if,
in every prefix v of w, #,14(v) — #47p(v) < B for each channel (p,q). Correspondingly, a
timed word is said to be well-formed (complete, B-bounded) if its projection onto Act is
well-formed (complete, B-bounded). Well-formedness captures the intuition that any receive
action has an earlier matching sending action. Completeness guarantees that all pending
messages have been received. B-boundedness promises that no channel ever has more than
B messages.

Given a timed automaton A over Act and a TCMSG specification &, the model checking
problem is to check that every timed word accepted by A realises some TCMSC in L7c(®).
Since A may accept timed words that are not well-formed or not complete, this implicitly
includes checking that A accepts only well-formed and complete timed words in TW 4.

Akshay, Gastin, Mukund, Narayan Kumar

From this, it is clear that the model checking problem corresponds to checking whether
L(A) C L4,(®). To make the problem tractable, we restrict our attention to locally
synchronized TCMSGs, so that L4,(®) is a timed regular language. Unfortunately, checking
inclusion is undecidable even for timed regular languages [2]. To get around this, we introduce
a more restricted machine model for timed MSCs called MSC event clock automata, which
are closed under complementation. It turns out that L,(®) can be recognized by MSC
event clock automata, yielding a solution to our model checking problem.

3 An extended event clock automaton — the MSC-ECA

We now define MSC event clock automata or MSC-ECA. These will be used to capture
exactly the guards that occur in the TCMSGs that we have defined. We denote an MSC-ECA
over Act by C = (Q, Act, 0, qo, F'), with states @, initial state go € @ and final states F' C Q.
A transition in ¢ is of the form (¢, p,a,q’) where ¢,¢' € Q,a € Act and ¢ is a conjunction
of event clock guards, which are of two types: either Y’; eI or Msg™! € I, where I is an
interval, as used in TCMSC timing constraints. We interpret these guards over timed words.
Let 0 = (a1,t1) -+ (an,tn) € TW 4. Then at a position 1 < j < n, we define

(D1) 0,7 E Y’; € I if the time elapsed between the k'-previous p-action a; in o and this
action a; is in the interval I.

(D2) o,j = Msg™* € I if a; is a receive action and the time elapsed since the occurence of
its matching send action a; is in the interval I.

In both these definitions, note that action a; is uniquely defined, i.e., there is at most one
position ¢ that matches a given position j with respect to a given event clock guard.

Now, we define runs of C over timed words. For a timed word o = (a1,t1) - - (an, tn), we
say there is a run of C from ¢ to ¢’ on o, denoted ¢ % ¢’ in C, if there exists a sequence of
transitions ¢ = qo —— ... 222 ¢, such that for all j, 1 < j <n, 0,j = ;. The timed
word o is said to be accepted if it has a run from the initial to some final state in F. We
denote by L4,(C) the set of timed words accepted by the MSC-ECA C.

3.1 Determinization and complementation of MSC-ECA

We now prove that MSC-ECA can be determinized and complemented, which is crucial for
solving the model checking problem. We obtain this by constructing a deterministic and
complete version of any given MSC-ECA. Intuitively, this works as for classical ECA’s and
the main reason is that there are no explicit clocks. Since the reset of an event clock only
depends on the timed word being read and not on the path followed in the automaton, we
can use the subset construction.

More precisely, let C = (Q, Act, d,qo, F) be a finite MSC-ECA. The set of states of
the universal automaton C*" is 2¢. For a set X C @ and an action a, we let T(X,a)
denote the set of transitions in ¢ having action a and a source state in X. Then, for some
T CT(X,a) =T, we denote by target(7”) the set of target states of transitions in 7" and
we define

(1", T) = /\ o A /\ 2

t=(q,p¢,a,q4')ET’ t=(q,pt,a,q')ET\T"

Then, we denote the set of transitions of C*™ by A, where we say that X 24X e Aif
there exists 7" C T = T(X, a) such that ¢ = p(T",T) and X' = target(T").

209

FSTTCS 2010

210

Model checking timed scenarios

Note that, once we have fixed X, a and the set T”, the transition is uniquely defined.
true,a

Also for X =), we have T'(X,a) = () and the only possible transition is) —— (. The
crucial property of C*"* is that it is deterministic and complete (and finite, if C is).

» Lemma 1. Given any timed word o = (a1,t1) - (an,tn) € TW act, there exists a unique
run Xo 22 X 2% X, 22 X, of CUMY oon o starting from Xo = {90}

Moreover, X,, = {q € Q| q = q in C}.

By suitably choosing the final states, C*"" will accept either the same language as
C or its complement. Let F; = {X € 29 | FN X # (0} and F, = 29\ F;. Define
Cuniv = (29 Act, A, {qo}, F;) for i = {1,2}. From Lemma 1 we obtain:

> Corollary 2. We have L4y(Ci™) = L£44,(C) and Lw(CE"%) = TW 40t \ L1 (C).

3.2 From MSC-ECA to TA

Not every MSC-ECA can be translated into an equivalent (classical) timed automaton. The
problem comes from the event guards Msg™' € I, which may require infinitely many clocks
if channels are unbounded. Fortunately, thanks to the locally synchronized assumption on
TCMSGs, we are only interested in bounded channels. Let B > 0. We show below how to
construct a timed automaton Bg from an MSC-ECA C = (Q, Act, 0, qo, F') such that BCB and
C are equivalent when restricted to B-bounded channels.

Let K = max{k | Y} € I occurs in some guard in 0}. A state of BZ is either a dead state
denoted L or a tuple s = (s,b,7,@,3) where s € Q, b = (by)peproc € {0,1}F7¢ (b, = 1 if
we have already seen at least K p-events), m = (n,)peproc € {0,..., K —1}F7¢ (n,, is the
number of p-events already seen modulo K), @ = (apq)p.qeProc € {0,..., B} Proc® (oup,q 1s
the number of ¢?p events modulo B + 1), 8 = (B,.4)p.qeProc € {0, ... B}P"’C2 (Bp.q is the
number of plg events modulo B + 1). The set of all states is denoted @)’ and the initial state
is 50 = (s0, (0), (0), (0), (0)). The set of clocks is YU Z where Y = {y,, | p € Proc,0 <i < K}
and Z = {z;,q | p,q € Proc,0 < i < B}. We will reset clock y;, when executing the i
p-event mod K. Also, 2;7(1 will be reset when executing the i** plq event mod B + 1.

We say that channel (p, q) is empty if a4 = Bp 4 and full if 5, 4 = @} o + B mod (B +1).
The set of transitions dgp is defined as follows: Assume s 2% &' in C with a € Act,. Then,
we have three types of transitions in BZ. (Recall that p!g and p?q abbreviate all actions of
the form plg(m) and p?q(m), respectively.)

(Tr1) (s,b,m,a,B) truead | i in BE if either a € plg and channel (p,) is full (the bound
was exceeded), or a € p?q and channel (p, q) is empty.

— —. ¢aR - = . .
(Tr2) (s,b,m, @,) LALLNEA b/,ﬁ’,a',ﬁ/) is in BE if we are not in the above case and the

following conditions hold:

L. b, =1if n, = K — 1 and b, = b, otherwise. Also, b;. = b, for # p.
2. ;:(np—i-l)modKandn’T:nr for r # p.
3. if a € plg, then B, , = (Bpq +1) mod (B +1) and B, ., = By o for (', q') # (p, @)

Also@ =a, R = {y,", zﬁf}jq} and ¢ is ¢ where Y¥ € I is replaced with

(K+n;—k) mod K

false ifb, =0and k >n,
Yp € I otherwise

Akshay, Gastin, Mukund, Narayan Kumar

4. if a € p?q, then aj , = ag, + 1 mod (B + 1) and ay, ,» = ag,p for (¢',p") # (¢,p).

Also B =B, R = {yp*} and ¢’ is ¢ where Y¥ € I is replaced as above and
Msg ! € I is replaced with z4%* € I.
(Tr3) L bruead,) s in BE for all a € Act.
In the following, we call a timed word w weakly well-formed (wwf) if for each channel
(p, q), in every prefix v of w, we have #47p(w) < #p14(w). This weak form does not require
the send message sequence to be the same as the received one. Let TWﬁ’C‘;’f denote the set
of timed words o € TW 4., which are both wwf and B-bounded. We can define different

notions of acceptance (i.e., final states) on BE constructed from C to derive the results below.

» Proposition 3. Let C = (Q, Act,d,q0, F) and BE = (Q', Act, (Y U Z),05z) be as above.

1. With final states F' = {(s,b,m, @, B) | s € F} the timed automaton BE accepts the
language L4, (C) N TWféVtVf.

2. If C is complete (i.e., it has a run on every timed word over Act) then with final states

F"" = {1} the timed automaton BE accepts the complement of TWE’CVtVf.

Proof. (Sketch) Let 0 = (a1,t1) - (am,tm) be a wwf and B-bounded timed word. Consider

$1,a1 $2,02 Pm,qm

a path m = s¢ S1 sm of C. We can build inductively a path

’ ’ ’
w101, pa,a2,R2 P @m R . e
7 =55 — 5] = s I g, of BCB starting from its initial state sg and

using (7r2) only. Then, we can prove that if ¢ has a run through 7 in C (i.e., 0,i = ¢; for

alli € {1,...,m}) then o has a run through 7’ in BF. Hence we obtain one inclusion of (1).

For the converse inclusion, we start with a path of BCB starting from its initial state

’ ’ ’
. p1.01,R pa,a2,R2 Prnr@m, R .
5o and which does not reach L: 7' = 59 — 5 = ™, §,,. Since

we did not reach L, the timed word o = (ay,t1) - (am, tm) must be wwf and B-bounded.

Moreover, transitions in 7’ comes from (7r2) only and we can recover a corresponding path
¥1,a1 2,02 PmAm

=8 S1 e Sm in C. Again, we can prove that if o has a run through
7' in BE then o has a run through 7 in C.
Statement (2) can be proved easily. <

4 From a locally synchronized TCMSG to a finite MSC-ECA

The main result is that locally synchronized TCMSGs define timed regular languages.

» Theorem 4. If & = (G, LTC, &, EdgeC) is a locally synchronized TCMSG, then there
exists a finite MSC-ECA C, such that L1,(C) = Ly(®).

In the untimed case, the corresponding result has been stated and proved in different
ways [3,5,6,10]. We describe a different proof that is more suitable for the timed version.

We want to simulate the global run of a TCMSG by keeping a finite amount of information
in the states of the MSC-ECA. Intuitively, we keep the sequence of nodes along the TCMSG

path that have been started but not completed (at least one executed event but not all).

Since the TCMSG is locally synchronized, the number of such nodes is always bounded.
We replace segments of nodes in the TCMSG path that have not been started yet by
a special gap symbol #. Nodes will be inserted at gaps whenever necessary, making sure
that the sequential run of the MSC-ECA is compatible with the TCMSG path. In fact, the
insertion must satisfy two conditions: (1) when we insert a node it must not conflict with
the events that have already occurred in later nodes and (2) finally, after all insertions, we

211

FSTTCS 2010

212

Model checking timed scenarios

do obtain a path in the MSG. The latter is done by checking that when we fill a gap the
corresponding bordering nodes have an edge in the graph.

We also replace segments of fully executed nodes of a TCMSG path by the set of processes
that have been active in these nodes, so that we ensure condition (1) above.

For a node u, let E* be the set of events in the MSC labelling u. We define an extended
node to be a pair (u,c) where u € V and ¢ C E* is a cut of E* that contains the events
that have been executed in node u. For simplicity, we extend the set of vertices V with
two dummy vertices >, < and add edges from > to the initial vertex v;, and from every final
vertex v € Vi to 4. We also set E” = () = E< so that for u € {>, <}, the only extended node
is (u, 0). The set of all extended nodes is denoted EztNodes. An extended node (u, ¢) is said
to be completed if ¢ = E“. Note that (>,0) and (<, ?) are completed by default.

A state o of our new automaton C is a sequence of extended nodes, gaps and subsets of
processes: a € IT* where II = ExtNodes W {#} & 2F7°¢. The initial state is ag = (>, 0)#(<, 0).
Final states are of the form (>, (0)P(<, () where P C Proc.

An extended event of o € IT* is a pair (e, o (u,c)) where e € E* and aq(u,c¢) X a—i.e.,
a1 (u, ¢) is a prefix of a. We say that the extended event (e, o (u,¢)) is executed in o if e € ¢
and enabled in « if the following hold:

(E1) It has not been executed, i.e., e & c.

(E2) All events within the node which are below it (in the partial order) have been executed,
i.e., for all ¢’ € E* with ¢/ <% e, we have ¢’ € c.

(E3) If e belongs to process p, then all p-events on any node occurring before this node in
« have been executed, i.e., if e € £ then for all o (v, ') X a1, we have E;j/ cc.

We introduce notation to describe the set of processes that participate in nodes, paths
or states. For a node u € V, OProc(u) = {p € Proc | Ef # 0} denotes the set of
processes that participate (occur) in u. This is extended to V* as a morphism. Also, with
OProc((u,c)) = OProc(u), OProc(#) = 0 and OProc(P) = P, it extends to IT*. In addition,
for 8 € ITI*, EProc(8) denoting the set of processes having executed events in 3, is given
by the morphism defined by EProc((u,c)) = {p € Proc | E} N ¢ # 0}, EProc(#) =) and
EProc(P) = P.

Now, the transitions can be defined by saying that at any state a we can choose to
execute an enabled (extended) event or add a new (extended) node in a gap of the state, in
which case we must execute an enabled event on the new node.

We first define the node insertion operation as a macro oy #as — o (u, #)al, which is
said to hold if

(I1) for every process that participates in u, there is no executed event in the segment ao
on that process, i.e., OProc(u) N EProc(as) = 0.
12) o € {a1,1#} and if o) = ay then oy = o (v,¢) and v — v in G.
1 1 1
13) ob € {9, #as} and if af, = ap then as = (v,c)ay and v — v in G.
2 2 2

Next, we explain how completed nodes are deleted from a state «. To check (I1) we
need to preserve the set of executed processes, hence a completed node u will be replaced
by OProc(u). We also preserve (do not throw away) the nodes around a gap in « so that
conditions (I2)—(I3) can still be checked. Finally, we preserve nodes that start an edge
constraint which needs to be verified later (this is useful for guards defined in the transition

. . . . d
relation below). Formally, we define the reduction as a rewrite operation o ——% o’. There
are two rewrite rules:

(R1) a1 PPy redn, a1(P U P")as, i.e., two adjacent process sets can be merged.

Akshay, Gastin, Mukund, Narayan Kumar

redn

(R2) ai(v, EV)ag — a1 OProc(v)as (a completed node is replaced by the set of processes
participating in it) if the following hold:

(C2.1) veV,e#ay € II*#, € # ag & #IT* i.e., the node v is not next to a gap or at

the beginning or the end.

(C2.2) (i) either the first symbol of as is an extended node (v’,¢’) and if both E
and E;j/ are nonempty, then some event in E;jl has occured (hence the edge
constraint, if any, has already been checked),

(ii) or ag € 2P7¢I1* in which case there is no unchecked edge constraint.

» Lemma 5. The rewrite system defined by the operation Tedn, s confluent.

Using the above lemma we conclude that, from any state «a, after any maximal sequence
of reductions, we reach the same state, which we denote by Red().

Now, we can define the transition relation: o =% o is a transition in C if there exists
B = B1(u,c)P2 and an extended event (e, B1(u,c)) enabled in S such that

(i) either 8 = a, i.e., the enabled event is already present in the current state,

(ii) or @ = a1#ay = B1(u,0)Bs = B. Hence, ¢ =0, 1 € {a1, 1 #} and Bs € {az, #as}

and all the following conditions hold:

(T1) a= A“(e).
(T2) The guard ¢ checks all local and edge constraints—i.e.,

Y= < /\ ‘P(u,el,e,f)> A ©°49¢ where, (1)

e'cEv I€T|tv (e’ e)=1I

o(u,e e, 1) :{

Msg™tel ifdp,qp#qst € <gp €

Yhel ife,e’ € By and [{e" € By | e <, e <} e}l =k

Y} el if B = pBi(v,c”) and for some p € Proc, we have
and @°%°¢ = EdgeC((v',u),p) = I and e = min(E}) (3)

true otherwise
(T3) o = Red(B1(u,c)B2) where ¢ = cW {e}.

Observe that, once the state and the enabled event which is to be executed are fixed,
the transition that is taken and indeed the state reached after the transition are uniquely
determined. We can also observe that every reachable state a of C is valid. By this we mean
that it satisfies the following properties:

(V1) Every # symbol in « is surrounded by nodes from EztNodes. Also « starts with (>, 0)
and ends with (<, ().

(V2) For any two consecutive extended nodes in «, there exists an edge between the nodes
in G, i.e., for all ay(u,c)(v,) < a, we have u — v’ in G.

(V3) Executed events in « are downward closed:

a. For all ag(u,c) 2 a, if e € cand ¢ <" e then €’ € c.

b. For all ay(u,c)az(v',c¢') 2 a,ife € Ej and e’ € ¢'N El’j/ for some p, then e € c.

213

FSTTCS 2010

214

Model checking timed scenarios

In order to get finiteness of the automaton C, we need to restrict to states that are
both reachable and completable. Formally, we call a state a completable if whenever
a = aq(u, ¢)#(v,)ag, there is f € V7T such that ufv is a path in G and OProc(8) N
EProc((v,c)az) = 0. Note that, in order to be co-reachable in C, a state must be com-
pletable.

» Lemma 6. If & is locally synchronized, the set of states of C which are both valid and
completable is finite.

Proof. (Sketch) It is enough to show that the length of each valid, completable state of
a € IT* is bounded. By definition, every extended node in « has at least one executed event.
Using the locally synchronized assumption, one can prove the following properties about a
loop in a state.

» Claim 7. Let a(u, ¢)B(u, ')y be a valid completable state of Cg”. If (u, ¢)p is not completely
executed or if # occurs in 3, then EProc((u,c’)y) & EProc((u,c)B(u,c')y).

Now, consider a loop a(u,c)B(u,c’)y in a valid completable state. If 5 has no # and
(u, c)p is completely executed, then oo = o/#. Indeed, otherwise the completed node (u,c)
would have been deleted. Along with the previous claim this implies that we can bound the
number of occurences of a node u in a path by 2| Proc|. From which we can conclude that we
have a bound of 2| Proc||[V| on the number of extended nodes in a path. But we know that
each # or P C Proc must have an extended node next to it on the left. So we can conclude
that the length of the path is O(|Proc||V|). Thus C is finite. <

The main result is stated in the following proposition.
» Proposition 8. L£,(C) = L4,(®).

The proof which is long and technical is omitted for lack of space. It can be found in [1]
where it is split in three main steps. First we construct an MSC-ECA with infinitely many
states: we guess the full path of the TCMSG initially and we keep it in all states along the
run to avoid the complication of node insertions and node deletions. Next, we introduce the
automaton with gaps, dealing with node insertions but not yet with node deletions. This
automaton is still infinite. Finally we introduce node deletions to obtain the automaton C
constructed above. At each step we prove the equality of the timed languages, either directly,
or using bisimulation at the abstract level of paths.

5 Solving the model checking problem

Now, we are in a position to solve the model checking problem.

» Theorem 9. For a locally synchronized TCMSG & and a timed automaton A, the model
checking problem Ly,(A) C L1,(®) is decidable, i.e., it is decidable to check if for all timed
words o generated by A there exists some I specified by & such that o is a linearisation of
a TMSC T which realises M.

Proof. We have to prove that £, (A)N(TW act\ L (®)) = 0. By Theorem 4 we can construct
an MSC-ECA C such that £4,(C) = L4 (®). Using the complementation construction of
Section 3.1 we can build a deterministic and complete MSC-ECA C’ = C¥"* such that by
Corollary 2 we have L4,(C') = TW a¢t \ L1 (C) = TWaer \ Liw(®).

Since & is locally synchronized, there is a bound B > 0 such that each timed word
0 € L1,(8) is wwf and B-bounded: L4,(6) C TWE;;Vf. Consider the timed automaton B

Akshay, Gastin, Mukund, Narayan Kumar

associated with C' and the bound B by the construction of Section 3.2. For final states of
BE we choose F' U F” as defined in Proposition 3. We get L4,(B5) = (TW ¢ \ TW?;‘;Vf) u
(Lea(C) N TWENT) = (TWaer \ TWSET) U (TWENT £4,(8)). Using Li(&) € TWS
we deduce Etw(Bg) =TWact \ L1w(8).

Hence, the model checking problem is reduced to checking emptiness of the intersection
of two timed automata, A and Bg,, which is indeed decidable. <

—— References

1 S. Akshay, P. Gastin, M. Mukund and K. Narayan Kumar: Model checking time-
constrained scenario-based specifications. Technical Report LSV-10-16, ENS Cachan, 2010.
Available at http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports.

2 R. Alur and D. Dill: A Theory of Timed Automata. Theor. Comput. Sci., 126 (1994)
183-225.

3 R. Alur and M. Yannakakis: Model checking of message sequence charts. Proc. CON-
CUR’99, Springer LNCS 1664 (1999) 114-129

4 J. Bengtsson and Wang Yi: Timed Automata: Semantics, Algorithms and Tools, Lectures
on Concurrency and Petri Nets 2003, Springer LNCS 3098 (2003) 87-124.

5 J. Chakraborty, D. D’Souza, and K. Narayan Kumar. Analysing message sequence graph
specifications. Technical Report IISc-CSA-TR-2009-1, IISc Bangalore, 2009.

6 M. Clerbout and M. Latteux. Semi-commutations. Inf. Comp., 73(1) (1987) 59-74.

7 J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagarajan: A
Theory of Regular MSC Languages. Inf. Comp., 202(1) (2005) 1-38.

8 ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU, Geneva (1999).

9 S. Mauw and M.A. Reniers: High-level message sequence charts. Proc. SDL’97, Elsevier
(1997) 291-306.

10 A. Muscholl and D. Peled: Message sequence graphs and decision problems on Mazurkiewicz
traces. Proc. MFCS’99, Springer LNCS 1672 (1999) 81-91.

215

FSTTCS 2010

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/rapports

	Introduction
	Preliminaries
	Message sequence charts
	Time-constrained message sequence charts
	Timed message sequence charts
	Message sequence graphs
	Time-constrained message sequence graphs
	Timed automata
	The model checking problem

	An extended event clock automaton – the MSC-ECA
	Determinization and complementation of MSC-ECA
	From MSC-ECA to TA

	From a locally synchronized TCMSG to a finite MSC-ECA
	Solving the model checking problem

