
To perform aerial maneuvers, insects must not only generate
sufficient lift to remain aloft, they must also manipulate flight
forces with great precision. Although insects are known to use
their legs and abdomen as control surfaces during flight (Arbas,
1986; Zanker, 1988; May and Hoy, 1990; Lorez, 1995), they
steer and maneuver largely by altering wing motion (Götz
et al., 1979; Ennos, 1989; Robertson and Johnson, 1993;
Wortmann and Zarnack, 1993). Thus, a central hurdle in
understanding how insects steer and maneuver is determining

how modifications in stroke kinematics alter the forces and
moments generated by flapping wings.

In a few cases, researchers have attempted to capture the
free-flight kinematics of maneuvering insects (Ennos, 1989;
Ruppell, 1989). While such analyses are essential because they
reveal what insects actually do with their wings when steering,
free-flight studies are limited because it is not yet feasible to
relate the changes in wing kinematics directly to changes in
instantaneous aerodynamic forces. An alternative approach is
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We used a dynamically scaled mechanical model of the
fruit fly Drosophila melanogasterto study how changes in
wing kinematics influence the production of unsteady
aerodynamic forces in insect flight. We examined 191
separate sets of kinematic patterns that differed with
respect to stroke amplitude, angle of attack, flip timing,
flip duration and the shape and magnitude of stroke
deviation. Instantaneous aerodynamic forces were
measured using a two-dimensional force sensor mounted
at the base of the wing. The influence of unsteady
rotational effects was assessed by comparing the time
course of measured forces with that of corresponding
translational quasi-steady estimates. For each pattern,
we also calculated mean stroke-averaged values of the
force coefficients and an estimate of profile power. The
results of this analysis may be divided into four main
points.

(i) For a short, symmetrical wing flip, mean lift was
optimized by a stroke amplitude of 180 ° and an angle of
attack of 50 °. At all stroke amplitudes, mean drag
increased monotonically with increasing angle of attack.
Translational quasi-steady predictions better matched the
measured values at high stroke amplitude than at low
stroke amplitude. This discrepancy was due to the
increasing importance of rotational mechanisms in
kinematic patterns with low stroke amplitude.

(ii) For a 180 ° stroke amplitude and a 45 ° angle of
attack, lift was maximized by short-duration flips
occurring just slightly in advance of stroke reversal.
Symmetrical rotations produced similarly high

performance. Wing rotation that occurred after stroke
reversal, however, produced very low mean lift.

(iii) The production of aerodynamic forces was sensitive
to changes in the magnitude of the wing’s deviation from
the mean stroke plane (stroke deviation) as well as to
the actual shape of the wing tip trajectory. However, in
all examples, stroke deviation lowered aerodynamic
performance relative to the no deviation case. This
attenuation was due, in part, to a trade-off between lift
and a radially directed component of total aerodynamic
force. Thus, while we found no evidence that stroke
deviation can augment lift, it nevertheless may be used to
modulate forces on the two wings. Thus, insects might
use such changes in wing kinematics during steering
maneuvers to generate appropriate force moments.

(iv) While quasi-steady estimates failed to capture the
time course of measured lift for nearly all kinematic
patterns, they did predict with reasonable accuracy
stroke-averaged values for the mean lift coefficient.
However, quasi-steady estimates grossly underestimated
the magnitude of the mean drag coefficient under all
conditions. This discrepancy was due to the contribution
of rotational effects that steady-state estimates do not
capture. This result suggests that many prior estimates of
mechanical power based on wing kinematics may have
been grossly underestimated.

Key words: flapping flight, quasi-steady force, unsteady
aerodynamics, fruit fly, Drosophila melanogaster, added mass,
delayed stall, rotational circulation, wake capture.
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to measure instantaneous forces on tethered insects (Cloupeau
et al., 1979; Wilkin, 1990; Zanker, 1990b; Zanker and Götz,
1990; Dickinson and Götz, 1996). However, forces and stroke
kinematics measured on tethered insects may not accurately
represent those generated in free flight. Further, since tethered
flight force transducers measure whole-body forces, it is not
possible to resolve the instantaneous aerodynamic forces
generated by individual wings. A third approach is to calculate
the aerodynamic forces generated by arbitrary stroke
kinematics using computational fluid dynamics (Liu et al.,
1998; Wang, 2000). However, because of the critical role of
unsteady mechanisms and three-dimensional flow structure in
insect flight aerodynamics (Ellington et al., 1996; Dickinson et
al., 1999), theoretical or numerical approaches have, as yet,
offered only limited insight into the aerodynamics of steering.

Given the current limitations in studies of both real animals
and numerical simulations, we have chosen to study the
problem of maneuverability using a dynamically scaled model
of a flapping insect. Aerodynamic models have proved
valuable in the study of insect flight, particularly in the
identification and analysis of unsteady aerodynamics (Bennett,
1977; Maxworthy, 1979; Spedding and Maxworthy, 1986;
Dickinson and Götz, 1993; Ellington et al., 1996; Dickinson et
al., 1999). In large part through the use of mechanical models,
researchers have identified an array of mechanisms that
collectively account for the elevated aerodynamic performance
of flapping wings. These include the clap and fling (Spedding
and Maxworthy, 1986), dynamic stall (Dickinson and Götz,
1993; Ellington et al., 1996), rotational lift (Bennett, 1970;
Dickinson et al., 1999) and wake capture (Dickinson, 1994;
Dickinson et al., 1999). Now that the various mechanisms
responsible for the elevated aerodynamic performance of
insect wings have been identified, it is possible to tackle the
question of how animals manipulate such mechanisms to steer
and maneuver.

In this study, we use a dynamically scaled mechanical model
of Drosophila melanogasterto investigate how changes in
wing kinematics affect the production of aerodynamic forces.
In particular, we explore the influence of five behaviorally
relevant kinematic parameters: stroke amplitude, angle of
attack, the timing and duration of wing rotation and stroke
plane deviation. We chose this particular set of parameters
because fruit flies actively vary them during flight maneuvers
(Götz et al., 1979; Zanker, 1990a; Dickinson et al., 1993;
Lehmann and Dickinson, 1998). However, the goal of this
project is not to replicate the precise kinematics of free flying
insects per se, but rather to map aerodynamic forces within a
broad parameter space that encompasses the variation seen
among insects.

From the instantaneous force records, we calculate time-
averaged aerodynamic force coefficients, lift-to-drag ratios and
other measures of aerodynamic performance. The resultant
data set is useful in identifying the kinematic parameters that
most influence the magnitude and direction of aerodynamic
forces generated by flapping wings. In a companion paper
(S. P. Sane and M. H. Dickinson, in preparation), we will

extend the analysis by considering the instantaneous and time-
averaged force moments generated about the yaw, pitch and
roll axes. The comprehensive parameter maps generated in
these studies should be of help to biologists who wish to know
the aerodynamic consequences of observed changes in wing
kinematics as well as to engineers who wish to optimize the
performance of small biomimetic flying robots. In addition,
these data provide experimental validations for numerical
simulations of the fluid motion around flapping wings.

Materials and methods
Most of the instruments and procedures used in these

experiments have been described elsewhere (Dickinson et al.,
1999). We fashioned the wings from 2.3 mm thick acrylic
sheets using an isometrically enlarged planform of a
Drosophila melanogasterwing. The proximal end of the wing
was attached to a two-dimensional force transducer that
measured the forces normal and parallel to the wing surface.
Each force channel measured the shear encountered by two
parallel phosphor-bronze shims equipped with four 350Ω
strain gauges wired in full-bridge configuration. This design
rendered the sensor nearly insensitive to the position of the
force load on the wing as well as to moments around its central
axis. Forces generated by calibration weights placed at the tip,
base, trailing edge and leading edge differed by less than 5 %.
The final calibration was based on a point load at the wing’s
center of area. The proximal end of the force transducer was
attached to a gearbox capable of three degrees of rotational
motion (Fig. 1A). The distal tip of the wing was located 25 cm
from the center of the gearbox. The gearbox was driven via
three coaxial shafts by three stepper motors. The stepper
motors were attached to the shafts by pulleys and timing belts
with a 1:10 gear reduction, such that each 4.5 ° step of the
motor produced a 0.45 ° rotation of the wing. The wings, force
sensor and gearbox were immersed in a tank of mineral oil with
a viscosity of 120 cSt at room temperature (approximately
25 °C). The viscosity of the oil was chosen to achieve a
Reynolds number in the range of 102, although the exact value
varies according to the kinematics for each trial. Since the
forces on the wing are directly proportional to the density of
the surrounding medium, the oil also serves to increase forces
on the wings and to decrease the signal-to-noise ratio of the
force measurements. Mineral oil provides an additional
advantage of electrically and thermally isolating the sensor and
thus reducing noise fluctuations.

Dynamic scaling

To obtain accurate dynamic scaling of an insect, it is
necessary to keep the values of both the Reynolds number
(Re=4ΦnR2ν−1AR −1, where Φis stroke amplitude, nis wingbeat
frequency, R is wing length, νis kinematic viscosity, aspect ratio
AR is 4R2S−1 and S is the surface area of a wing pair; Ellington,
1984c) and the reduced frequency parameter (body
velocity/wing velocity) constant (Spedding, 1993). For hovering
animals as well as the model fly, the reduced frequency
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Fig. 1. Definitions of kinematic parameters. (A) Coordinate system
for the mechanical fly wing. The cartoon shows the three Euler
angles that define the wing position at each instant in time. The mean
stroke plane is a horizontal slice through the sphere described by the
radial coordinates of the wing tip. Instantaneous stroke position, φ(t),
is defined as the angular position of the wing in the mean stroke

plane, measured from dorsal reversal (start of downstroke) to ventral reversal (start of upstroke). Instantaneous stroke deviation, θ(t), is defined
as the angle that the base-to-tip line on the wing makes with the mean stroke plane. A plane that is normal to the base-to-tip line of the wing
(shown in blue) cuts through the wing at the wing chord, shown here as a line with a filled circle denoting the leading edge. The instantaneous
angle of attack, α(t), is the angle that the wing chord makes with the tangent of the wing’s trajectory. (B) Sample wing kinematics plotted over
two complete cycles. Grey and white backgrounds mark downstroke and upstroke, respectively. Stroke position (green) follows a smoothed
triangular waveform. Stroke deviation (red) varies as either a half or full sinusoid in each half-stroke. Half-sine variation yields an ‘oval’ tip
trajectory (shown in C), whereas full-sine variation yields a ‘figure-of eight’ tip trajectory. Angle of attack (blue) varies as a trapezoidal
function. The shape of the function is determined by setting the starting point of the flip, τ0, and flip duration, ∆τ. (C) Schematic diagram of the
six parameters that were varied in the experiments: total stroke amplitude, Φ, maximum stroke deviation, Θ, mid-stroke angle of attack, α, flip
start, τ0, flip duration, ∆τ, and the shape of the wing tip trajectory. This cartoon represents a two-dimensional projection of a three-dimensional
kinematic pattern, as if viewed within the blue plane in A. The broken blue line shows the mean stroke plane. This representation of the stroke
is repeated throughout the paper.
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parameter is zero by definition, since their body velocity is
zero. The free-flight cruising velocity of D. melanogasteris
approximately 20cms−1 (David, 1978), while the mean velocity
of the wing tip is 280cms−1 (Lehmann and Dickinson, 1997).
Thus, even while flying forwards, the reduced frequency
parameter is less than 0.1, indicating that the effect of free-
stream velocity on force generation should be of secondary
importance to the velocity generated by flapping. For these
reasons, our experiments in still fluid, which match the hovering
case, should also serve as a fair approximation for moderate
forward speeds. Thus, the reduced frequency parameter is not
significantly different for cruising D. melanogasterand our
static, hovering model fly. To obtain the correct range of
Reynolds numbers, we used an isometrically enlarged wing
planform of an actual D. melanogasterwing to ensure that the
shape parameters (Ellington, 1984a) were identical to those
of D. melanogaster. Using available data on D. melanogaster
morphology and kinematics (Lehmann and Dickinson, 1997),
we estimated that a wing length of 0.25m, a surface area of the
wing pair of 0.0334m2 (or 0.0167m2 for a single wing), a
kinematic viscosity of 120cSt and a wingbeat frequency of
0.168Hz would allow us to achieve Reynolds numbers in the
same range as those of D. melanogaster.

Stroke kinematics

In the absence of wing deformation, the kinematics of the
wings may be uniquely described by specifying the time course
of three angles: stroke position, φ(t), angle of attack, α(t), and
stroke deviation, θ(t) (Fig. 1B). In all experiments, the angular
position of the wing within the stroke plane was described by a
triangular waveform, which maintains a constant translational
velocity throughout each half-stroke. The waveform was
smoothed to minimize inertial accelerations during stroke
reversal and to match more closely published stroke kinematics
from a variety of insects (Ellington, 1984b; Zanker, 1990a).
For smoothing, we filtered the triangular waveform using a
zero-phase-delay low-pass two-pole Butterworth filter with a
cut-off frequency equal to 10 times the stroke frequency of
0.17 Hz. The peak-to-peak amplitude of the stroke angle
waveform could be varied in each experiment. The angle of
attack was described by a trapezoidal wave function, which
maintained a constant angle of attack during each half-stroke
and constant rotational velocity during stroke reversal. The
shape of this waveform in each experiment was determined by
setting the mid-stroke angles of attack during the upstroke and
downstroke and by specifying the starting and stopping points
for wing rotation. The resulting function was then smoothed
using a low-pass filter with identical characteristics to that used
for the stroke position waveform. We used two functions to
describe stroke deviation: an ‘oval’ pattern in which the wing
tip deviated from the stroke plane according to a half-sine-
wave per stroke period and a ‘figure-of-eight’ pattern in which
the stroke deviation varied as a full sine-wave. These patterns
were chosen because they roughly approximate patterns
described for a variety of insects (Ellington, 1984b; Zanker,
1990a).

To create the kinematic patterns used in this study, we varied
any or all of six parameters: (i) the stroke amplitude, (ii) the
mid-stroke angle of attack during upstroke and downstroke,
(iii) the timing of wing rotation at dorsal and ventral reversal,
(iv) the duration of the stroke reversal, (v) the shape of the wing
tip trajectory (‘oval’ or ‘figure-of-eight’) and (vi) the angular
deviation from the mean stroke plane during the upstroke
and downstroke (Fig. 1C). In most of the experiments, the
deviation amplitude was set to zero, such that the wing tip
remained within the stroke plane throughout the cycle. Under
these conditions, the kinematics of the wing stroke were
symmetrical such that the upstroke and downstroke were
mirror images of one another. Only in trials using ‘oval’ stroke
deviations were the kinematics of the two strokes not identical.
The frequency of the wing stroke (0.17 Hz) remained constant
in all experiments, as did the upstroke-to-downstroke duration
ratio, which was fixed at 1. We constructed the kinematic
patterns using a custom-designed MATLAB program
(Mathworks) to convert the angular trajectories into a series of
stepper motor commands.

Force measurements

Signals from the two-dimensional sensor were acquired
using a National Instruments data-acquisition board (model
BNC 2090) in a PC running custom-designed software written
in MATLAB. Data were filtered on-line with an active four-
pole Bessel filter with a cut-off frequency of 10 Hz and off-line
with a zero-phase-delay low-pass digital Butterworth filter
with a cut-off frequency of 3 Hz, which was 17.6 times the
wing stroke frequency. Apart from increasing the high-
frequency components resulting from motor jitter, increasing
the cut-off frequency of the filter did not alter the time course
of the force traces.

Each experiment consisted of one burst of four consecutive
wing strokes following pre-programmed kinematics. The wing
begins the first downstroke in still fluid, whereas during the
subsequent strokes it moves through a wake created by the
preceding strokes. As a result, the time course of forces
generated during the first stroke is markedly different from
those of subsequent strokes. For this reason, the data from the
first stroke were excluded from this analysis, while those from
the three subsequent strokes were averaged. Thus, each
presented trace represents an average of three force records.
After subtracting gravitational forces, the forces measured
from the normal and parallel channels were transformed into
lift, drag, thrust and radial components.

Added mass

The measured force at the wing base consists of
gravitational, inertial and aerodynamic components. The
gravitational contribution of the sensor and wing mass to the
total force signal was easily calculated and subtracted from the
measured force traces. The inertial components represent the
acceleration forces on the mass of the sensor and wing as well
as the added mass of the fluid around the wing. To examine
the contribution of the inertial effects of the wing mass and
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sensor, we replaced the wing surface with an aerodynamically
neutral inertial model of the wing. The aerodynamically neutral
model was essentially a brass knob with the same mass and
center of mass inside the oil as the Plexiglas wing. Because
of its low surface area, the brass knob generated negligible
aerodynamic forces compared with the Plexiglas wing. For any
arbitrary kinematic pattern, the resulting force traces for the
brass knob could be entirely accounted for by gravity. Thus,
the inertial forces generated by flapping this brass model, and
therefore the Plexiglas wing, were negligible and have been
ignored. Compared with gravity and wing inertia, the non-
circulatory forces due to added mass are more difficult to
measure because the fluid acceleration induced by a moving
wing changes dynamically as the wing rotates, decelerates or
accelerates (Daniel, 1984).

To estimate the magnitude of added mass, we used an
approximation derived for motions of an infinitesimally thin
two-dimensional plate in an inviscid fluid (Sedov, 1965).
Using blade element method, we adapted it to the case of a
three-dimensional wing rotating around an axis located at one-
quarter chord length from the leading edge. The force
contribution normal to the wing surface due to the added mass
inertia is given by:

where ρ is the fluid density, R is the wing length, c– is the mean
chord length, rˆ and ĉ(r̂) are the non-dimensional radial position
along the wing and non-dimensional chord length, respectively
(for nomenclature, see Ellington, 1984a), φ is the angular
position of the wing and α is the angle of attack. Using equation
1, we calculated an estimate of added mass inertia for each set
of kinematics. As illustrated by the representative trace in
Fig. 2, the absolute contribution of added mass to net forces on
the wing was quite small in all cases. Further, by comparing
equation 1 and equation 3 (see below), it can be seen that the
added mass forces (≈ρR2c–2) scale in proportion to aerodynamic
forces (≈ρR3c–) for geometrically similar wings. Thus, for
identical kinematics and geometry, added mass will have the
same physical effect on a model wing as on the wing of a fly,
provided that the Reynolds number is the same. Because both
added mass and aerodynamic contributions are biologically
relevant, we chose not to subtract the inertial estimates from the
presented force traces.

Experimental procedures

To examine the influence of the six kinematic variables on
aerodynamic forces, we divided our analysis into three sets
of experiments. First, we held the values of flip timing
(symmetrical around stroke reversal), flip duration (16 % of
stroke cycle period) and stroke deviation (0 °) constant, while
we systematically varied stroke amplitude and angle of attack.

For each amplitude from 60 to 180 ° in 20 ° increments, we
varied the angle of attack at mid-stroke from 0 to 90 ° in steps
of 10 °. From the results of this 7×10 set of experiments, we
determined the combination of stroke amplitude and angle of
attack that generated maximum mean lift. Using these locally
optimizing values of stroke amplitude and angle of attack, we
systematically varied the values of flip start and flip duration.
Values for flip start indicate when in the stroke cycle the wing
begins to rotate relative to stroke reversal and are expressed as
a fraction of total cycle time (Fig. 1C). Thus, a value of −0.5
indicates that the wing begins rotation 50 % of a stroke period
prior to stroke reversal, whereas a flip start value of 0 indicates
that the wing begins rotation at the instant of stroke reversal.
Values of flip duration, the total time it takes the wing to
complete wing rotation, are also represented as a fraction of
total cycle time. Thus, a value of 0.2 indicates that a flip
requires 20 % of the stroke cycle to complete. In these
experiments, we set the flip to start at various points within the
stroke from −0.5 to 0 in steps of 0.05. For each value of flip
start, we varied the flip duration from 0.1 to –0.5, also in steps
of 0.05. Flip timing, τf, which describes when the mid-point of
a flip occurs within the stroke, may be calculated from:

τf = τ0+ 0.5∆τ, (2)

where τ0 is flip start and ∆τis flip duration. As before, we
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determined the values of flip timing and flip duration that
maximized mean lift within the 11×9 sets of trials. In the third
set of experiments, we explored how aerodynamic forces
varied with changes in deviation from the mean stroke plane
using the values of stroke amplitude, angle of attack, flip
timing and flip duration that maximize mean lift. In a set of 22
experiments, the total stroke deviation was varied from−50 °
(−25 ° during the downstroke, +25 ° during the upstroke) to
+50 ° (+25 ° during the downstroke, −25 ° during the upstroke)
in steps of 10 °. The deviation followed either a half-sine per
stroke or a full-sine per stroke time course, yielding ‘oval’ and
‘figure-of-eight’ trajectories, respectively (Fig. 1B).

Data analysis

Since the conventions for lift and drag existing in current
aerodynamic literature address non-flapping and primarily
two-dimensional kinematic patterns, it is necessary to
modify them slightly for three-dimensional motions. These
modifications are based on the following two considerations.
First, it is convenient to use a reference frame based on the
insect body rather than its wing so that the measurements relate
directly to free-flight studies. Second, the standard convention
should apply when the kinematics reduce to two-dimensional
motion. With these constraints in mind, we adopted the
following convention: net aerodynamic force, defined as the
total force on the wing, is resolved into three components: lift,
drag and radial force. In hovering flight, lift must offset the
gravitational force on the animal’s body mass. Hence, we
define lift as the component of the net aerodynamic force
perpendicular to the mean stroke plane of the wing regardless
of its actual instantaneous trajectory. Since the mean stroke
plane was horizontal in all experiments, lift is always the
vertical force component. Drag is defined as the force
component in the horizontal direction, opposing the wing
movement. The radial component accounts for the remaining
force component in the horizontal plane. For motions with no
stroke deviation, these definitions reduce to the standard
convention: lift is orthogonal to drag, and the radial component
vanishes. With stroke deviation, the total normal pressure force
consists of orthogonal vertical and radial components, each
orthogonal to the drag vector in the horizontal direction.

From the forces on each wing, we calculated the
corresponding mean force coefficients using an equation
derived from blade element theory (Ellington, 1984c;
Dickinson et al., 1999):

where F– is the magnitude of a specific force component (lift,
drag, radial, total) averaged over the stroke, Φ is stroke
amplitude, n is wing beat frequency, dφ̂/dt̂

—
is the mean non-

dimensional angular velocity of the wing and r̂22(S) is the non-
dimensional second moment of wing area. The radial force
component changes sign when the wing crosses the mean
stroke plane. As a result, in the ‘oval’ as well as the ‘figure-

of-eight’ patterns, the mean radial coefficient often averages to
zero and is uninformative. For this reason, we base our
measurement of the average radial force coefficient on the
absolute values. Lift-to-drag ratios were calculated by dividing
the mean lift coefficient by the mean drag coefficient.
Similarly, radial-to-drag ratios were obtained by dividing the
mean absolute radial coefficients by the mean drag
coefficients. To calculate the ratio of mean lift to profile power,
we estimated mean profile power, Ppro

–, based on the time-
averaged product of instantaneous drag, D(t), and
instantaneous velocity, vwing(t):

where T is the stroke period. This calculation of mean profile
power ignores the power required to rotate the wing in place.
Mean lift L– was calculated as the time average of instantaneous
lift throughout the stroke.

Measures of the quasi-steady-state translational force
coefficients CL,t and CD,t were derived from 180 ° sweeps of
wing motion with fixed angles of attack, as described
elsewhere (Dickinson et al., 1999). The equations that best fit
measured translational force coefficients as functions of angle
of attack, α, for the model wing are (Dickinson et al., 1999):

CL,t = 0.225 + 1.58sin(2.13α − 7.2) , (5)
and

CD,t = 1.92−1.55cos(2.04α − 9.82) . (6)

These equations are used to generate quasi-steady
translational estimates for comparison with measured values.

Results
The effects of stroke amplitude and angle of attack

Fig. 3A–H shows eight sample records taken from the full
set of 70 trials to illustrate how the magnitude and time course
of aerodynamic forces vary with stroke amplitude and angle of
attack. These panels also show the lift and drag forces
reconstructed from a quasi-steady model based on measured
translational force coefficients. The quasi-steady predictions
provide a conservative estimate of forces that would result
from a stable leading edge vortex during translation. Any
deviation of a measured trace from the quasi-steady estimate
represents an unsteady effect that is not active during
translation. In all records, the net aerodynamic force is nearly
perpendicular to the wing surface throughout the stroke,
indicating that shear forces measured parallel to the wing
surface are much smaller than the aerodynamic pressure forces
that must act normal to the thin flat wing. The force trajectories
during the downstroke and upstroke, though very similar, are
not precisely identical because of small asymmetries in the
stroke pattern introduced by the gearbox of the model. As
suggested by the reconstructions in Fig. 2, the transient
undershoots in the drag traces at stroke reversal (t=0, 0.5) are
explained in part by added mass inertia.

(4)Ppro=n
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t=0
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Fig. 3. Sample instantaneous
forces for various combinations
of total stroke amplitude Φand
mid-stroke angle of attack α. In
each case, the wing rotation
parameters were kept constant
(flip duration ∆τ=0.16, flip start
τ0=−0.08, flip timing τf=0). Each
panel (A–H) shows a plot of
measured drag (solid red line),
the quasi-steady estimate of drag
(broken red line), measured lift
(solid blue line) and the quasi-
steady lift (broken blue line).
Since the radial forces were zero
for all these kinematic patterns,
they are not plotted. A two-
dimensional diagram of the wing
kinematics is plotted above each
set of traces using the convention
described in Fig. 1C. The wing
chord is shown in light
blue, and the superimposed
black vector indicates the
magnitude and direction of
the instantaneous aerodynamic
force. For convenience, the
kinematic values of stroke
amplitude and angle of attack
used in each trial are printed in
the upper left of each panel.
Values for the measured mean
force coefficients (CD

– and CL
–)

are printed adjacent to each set
of traces. Axis labels given in A
apply to all panels. (A,B) Forces
generated at a 90° angle of
attack with no wing rotation
(α=90°) for a short stroke
amplitude (A, Φ=60°) and
a long stroke amplitude
(B, Φ=180°). Note the enormous
transients in drag at the start of
each stroke due to wake capture.
(C,D) Forces generated at a 50°
angle of attack for a short stroke
amplitude (C, Φ=60°) and a long
stroke amplitude (D, Φ=180°).
The contribution of rotational
circulation is apparent at the end
of each stroke. (E,F) Forces
generated at a 30° angle of
attack for a short stroke
amplitude (D, Φ=60°) and
a long stroke amplitude
(F, Φ=180°). (G,H) Forces
generated at a 0° angle of attack
for a short stroke amplitude
(G, Φ=60°) and a long stroke
amplitude (H, Φ=180°).
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The measured force trajectories display prominent peaks at
the beginning and end of each translational stage that are
absent or smaller in the quasi-steady predictions. In isolating
the mechanisms responsible for these transient effects, it is
useful to consider cases in which there is no wing rotation,
because this removes the potential contribution of rotational
circulation. For example, in Fig. 3A,B, the wing translates
back and forth at a 90 ° angle of attack without rotating. At the
start of each stroke, measured drag far exceeds the quasi-steady
predictions. The fact that there is no corresponding dip in drag
at the end of translation indicates that the prominent drag
transient is not due to acceleration of inertial mass. This
interpretation is consistent with estimates of added mass inertia
using equation 1 (data not shown). Instead, the elevation in
drag at the start of each stroke in Fig. 3A,B is probably due to
wake capture as the wing intercepts the fluid flow field induced
by the shed vorticity of the previous stroke.

The influence of rotational circulation is most easily seen
when the angle of attack during the upstroke and downstroke
is zero (Fig. 3G,H). Under these conditions, the vorticity
generated during the translational phase of the stroke is
minimal and, thus, the magnitude of the wake capture effect
should be small. The influence of the wake is not entirely
absent, however, because the process of rotation generates and
sheds vorticity through which the wing must translate at the
start of each stroke. Further, the vorticity created by rotation is
particularly strong when the translational angle of attack is
zero, because the wing must flip over by 180 ° during stroke
reversal, making the angular velocity of the wing particularly
large. At the end of the each stroke in Fig. 3G,H, the influence
of rotational circulation is manifest as a transient increase in
lift and drag that exceeds the quasi-steady prediction. After
stroke reversal, the continuing rotation of the wing generates
a pressure force with opposite polarity, resulting in negative
lift. The time course of this rotational effect is complicated by
the presence of an added mass inertia and a modest amount of
wake capture at the start of each stroke. The influence of these
multiple mechanisms is manifest by the positive peak in lift
immediately following stroke reversal due to wake capture,
which is followed by the negative peak due to rotational
circulation. The pattern of an early positive peak in lift
followed by a later negative peak is seen throughout the traces
in Fig. 3.

The rest of the traces in Fig. 3 illustrate the complex
interactions among delayed stall, rotational circulation and
wake capture that result from changes in angle of attack and
stroke amplitude. At angles of attack of 30 and 50 °, the wing
generates lift throughout the stroke due to delayed stall
(Fig. 3C–F). The influence of rotational lift is reduced as the
angle of attack increases, however, because the wing flips over
a smaller arc with lower angular velocity. This effect can be
seen by comparing the relative magnitude of the force peaks
at the end of each stroke in Fig. 3B,D,F,H. In contrast, the
influence of wake capture is greater at higher angles of attack
because the vorticity shed into the wake at the end of the stroke
is stronger. This effect can be seen by comparing the relative

size of the force transients at the start of each stroke in the same
panels. Thus, changing stroke amplitude and angle of attack
has a complex but interpretable influence on the magnitude of
the different unsteady mechanisms. The kinematics that
optimize the aerodynamic performance of the wing will reflect
these complex interactions. The maximum mean lift-to-drag
ratio (0.8) occurred at an angle of attack of 30 ° and amplitude
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Fig. 4. Parameter maps of net aerodynamic force and net force
coefficient as functions of stroke amplitude and mid-stroke angle of
attack. For fixed values of wing rotation (flip duration ∆τ=0.16; flip
start τ0=−0.08, flip timing τf=0), stroke amplitude was varied from
60 to 180 ° and angle of attack was varied from 0 to 90 °. In each
diagram, the small open circles indicate the positions of actual
measurements. Values between these measured points have been
interpolated using a cubic spline. Values are encoded in pseudocolor
according to the scales shown beneath each plot. This same format is
used in Fig. 5, Fig. 7 and Fig. 10. (A) Net aerodynamic force, the
vector sum of lift and drag, increases monotonically with increasing
angle of attack and stroke amplitude. (B) Net aerodynamic force
coefficient increases with angle of attack, but decreases with stroke
amplitude.
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of 180 °. The forces corresponding to this optimal condition
are shown in Fig. 3F.

To provide a more comprehensive picture of how force
production changes with kinematics, we calculated the mean
lift, drag and net force coefficients averaged throughout the
stroke and plotted them for all pairs of stroke amplitude and
angle of attack values. Fig. 4A,B depicts the mean total
aerodynamic force, FN

–, and force coefficient, CN
–, in

pseudocolor maps. These two maps differ from one another
because the mean force coefficient is normalized with respect
to the square of stroke amplitude, which is a variable in these
experiments. Thus, while FN

– increases with increasing stroke
amplitude (Fig. 4A), CN

– decreases with increasing stroke
amplitude (Fig. 4B). Both parameters rise with increasing
angle of attack. The influence of stroke amplitude and angle of
attack on the mean lift coefficient CL

– and the mean drag
coefficient CD

– is shown in Fig. 5A,C. For a fixed stroke
amplitude, CL

– exhibits a broad maximum ranging from 1.8 to
2.0 between angles of attack of 40 and 50 °. As expected, CD

–

rises monotonically with increasing angle of attack for any
given value of stroke amplitude. It is worth noting that the

range of CD
– values is much higher than has been previously

reported for Drosophila viriliswings under steady-state
conditions (Vogel, 1967) or estimated on the basis of Reynolds
number (CD≈0.7; Ellington, 1984c). Although much less
pronounced than the dependence on angle of attack, lift tends
to rise, whereas drag falls, with increasing stroke amplitude.

The corresponding maps for the quasi-steady translational
estimates,CL,t

—
andCD,t

—
, are shown in Fig. 5B and Fig. 5D,

respectively. In general, the measured force coefficients are
greater than the predicted quasi-steady force coefficients. This
discrepancy is particularly large for CD–. Further, at high stroke
amplitude, the angle of attack that generates the maximum
CL
–is shifted by approximately 10 ° relative to the quasi-steady
predictions and by as much as 20 ° for the lower stroke
amplitudes. The dependence of stroke amplitude on the
measured lift and drag coefficients is not predicted by the
quasi-steady estimates. The greater difference between
measured and predicted values for smaller stroke amplitudes
underscores the increased importance of rotational effects
under these conditions. Fig. 5E indicates how the mean lift-to-
drag ratio, CL

–/CD
–, varies with angle of attack and stroke
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amplitude. The maximum value ofCL
–/CD

– (0.8) occurred at
stroke amplitude of 180 ° and an angle of attack of 30 °. The
corresponding quasi-steady-state estimates of CL

–/CD
– are

independent of stroke amplitude, with a maximum of 1.1 at
an angle of attack of 20 °. Thus, the quasi-steady model
significantly overestimates aerodynamic efficiency and fails to
account for its dependence on stroke amplitude.

The effects of flip timing and flip duration

In all subsequent experiments, we set the stroke amplitude
to 180 ° and the mid-stroke angle of attack to 45 °, which are
the values that maximized lift production in the first set of
experiments. Next, we systematically varied the timing and
duration of wing rotation to examine their effects on force
production. Sample force traces selected from 99 pairs of flip
start and flip duration are shown in Fig. 6A–H, with the
corresponding values of flip timing, τf, given in the upper left
corner of each panel. A comparison of Fig. 6A,C,D illustrates
that a long-duration flip, ∆τ=0.5, can produce quite different
forces depending on when the flip occurs. If the flip occurs
symmetrically about the stroke reversal (τf=0, Fig. 6A), CL

– is
quite large (CL

–=1.54) and the time course is well approximated
by the quasi-steady predictions. An advanced flip (τf=−0.25,
Fig. 6C) results in very low mean lift (CL

–=0.36), but produces
a fairly prominent wake capture peak. In contrast, a rotation
after stroke reversal (τf=+0.25, Fig. 6D) results in mean
negative lift (CL

–=−0.28) because of the adverse effects of
rotational circulation following stroke reversal.

Fig. 6 F–H shows the effects of a fast flip (∆τ=0.1) at
different flip times. As flip duration decreases, the aerodynamic
performance of the wing generally rises. Symmetrical and
advanced flips yield nearly identical mean lift (CL

–=1.9,
symmetrical; CL

–=1.87, advanced), whereas a delayed flip
generates somewhat lower lift (CL

–=1.52). These differences
are due primarily to the amount of lift produced at the start of
each stroke. Early and symmetrical flips (Fig. 6F,G) result in
a substantial wake capture peak at the start of translation.
However, if the flip occurs very early in the stroke (τf=−0.45,
Fig. 6E), the wing translates through most of the stroke at
negative angles of attack, leading to a large value of negative
lift (CL

–=−1.41; Fig. 6E). When rotation is delayed, the wake
capture peak is missing, revealing two negative peaks at the
start of translation, an early small peak due to added mass
inertia and a later more prominent peak due to rotational
circulation (Fig. 6H).

The maps of mean force coefficients as a function of flip
duration and flip start are shown in Fig. 7A,C,E, with
comparable quasi-steady, translational predictions shown in
Fig. 7B,D,F. Flip timing, the non-dimensional time when the
mid-point of the flip occurs, is indicated by the inclined parallel
lines on each graph. Both CL

– and CD
– are strongly influenced

by flip timing and duration. For example, at a flip duration of
0.1, CL

– varies with flip timing from as low as −1.5 to as high
as +2. The comparable values of the quasi-steady translational
estimate, CL,t

—
, also vary, but over a smaller range (from −1 to

1.6).

For all values of flip timing, CD
– increases monotonically

with flip duration (Fig. 7C). Measured values range from 2.6
and 4.1, representing a somewhat smaller variation than was
seen with CL

–. However, unlike the case with lift, the
discrepancy between measured CD

– and the quasi-steady
estimate, CD,t

—
, is substantial. In addition to generally

underestimating the magnitude of drag, the quasi-steady
predictions fail to observe the local rise in drag along the −0.25
flip timing iso-line. Since the range of variation for drag is less
than that for lift, the measured lift-to-drag ratio map resembles
the lift coefficient map (Fig. 7A,C,E). Further, because the
quasi-steady translational predictions underestimate lift and
drag by approximately the same proportion, the predicted lift-
to-drag ratio map is quite similar to the measured map
(Fig. 7E,F). The map for the net force coefficient (Fig. 7G)
resembles the drag map (Fig. 7C), which is expected since the
values for the mean drag coefficient are, on average, twice
those for the lift coefficient at comparable points on the
kinematic surface.

The effects of stroke plane deviation

Using kinematic values for stroke amplitude, angle of attack,
flip duration and flip start that maximized lift production
(Φ=180 °, α=45 °, ∆τ=0.1 and τf=−0.05), we tested how forces
vary with deviation from the mean stroke plane in a set of 22
experiments. The peak-to-peak magnitude of stroke deviation
was varied from−50 to +50 ° in 10 ° steps for both the half-
sine (‘oval’) and full-sine (‘figure-of-eight’) patterns. It is
worth noting that, in the oval pattern, an upward deviation at
the start of the downstroke requires a downward deviation at
the start of the upstroke and vice versa. This is not the case for
the figure-of-eight pattern, in which the two half-strokes are
mirror images of one another.

Fig. 8 shows a selection of force traces resulting from
different patterns of stroke deviation. In general, the figure-of-
eight pattern had a more profound influence on the magnitude
and time course of force production than did the oval pattern.
In both cases, however, the direction of stroke deviation at the
start of each translational phase greatly influenced the
magnitude of the force transient at the start of the stroke. For
example, in the figure-of-eight pattern shown in Fig. 8C, each
stroke begins with an upward motion, and the lift and drag
transients at the start of each stroke are quite small. In contrast,
the comparable kinematic pattern that starts with a downward
motion (Fig. 8D) generates sizeable force peaks. A similar
trend is seen in the oval patterns (Fig. 8A,B). The upstroke in
Fig. 8A and the downstroke in Fig. 8B, which both start with
a downward motion, are marked by sizeable force peaks at the
start of translation, whereas the strokes that begin with upward
motion are not. This dependence of the early force transient on
the direction of deviation is explained in part by an increase in
the aerodynamic angle of attack caused by the downward
motion of the wing. However, the measured force peaks are
much greater than the quasi-steady estimates, which take into
account this effect, suggesting that there is a substantial wake
effect at the start of each stroke. The influence of the wake is
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Fig. 6. Sample instantaneous forces
for various combinations of flip
start τ0 and flip duration ∆τ. In
all kinematic patterns, stroke
amplitude was 180 ° and angle of
attack was 45 °. The format for
each panel is that described for Fig.
3. As in Fig. 3, the radial forces for
all these kinematics are zero and
have not been plotted. (A) Forces
generated with a slow flip (∆τ=0.5),
symmetrical with respect to stroke
reversal (τ0=−0.25, flip timing
τf=0). Under these conditions, the
quasi-steady model (broken lines)
accurately predicts measured lift,
but not drag. (B) Forces generated
with moderate flip duration
(∆τ=0.25), advanced with respect
to stroke reversal (τ0=−0.25,
τf=−0.125). With these kinematics,
the augmentation of lift by
rotational circulation and wake
capture is evident. (C) Forces
generated with a long, advanced
flip (∆τ=0.5; τ0=−0.5, τf=−0.25).
This pattern of kinematics
produced elevated drag due to wake
capture at the start of each stroke.
(D) Same kinematics as in C, but
with a delayed flip (∆τ=0.5; τ0=0,
τf=+0.25). The delay in flip timing
causes a small decrease in mean
drag, but an enormous decrease in
lift. (E–H) The influence of
rotational timing on a short-
duration flip. (E) Forces generated
by a short flip advanced by almost a
full half-cycle with respect to
stroke reversal (∆τ=0.1; τ0=−0.5,
τf=−0.45). Note that the angle of
attack is negative during most of
translation because the wing flips
much too soon. As a consequence,
the pattern generates negative lift.
(F) Forces generated by a slightly
advanced short flip (∆τ=0.1;
τ0=−0.1, τf=−0.05). This near-
optimal pattern augments lift
by both rotational mechanisms.
(G) Forces generated by a short
symmetrical flip (∆τ=0.1; τ0=−0.05,
τf=0). (H) Forces generated by a
slightly delayed short flip (∆τ=0.1;
τ0=0, τf=0.05). The small delay of
0.05 decreases the mean lift
coefficient by 20 % compared with
the symmetrical case shown in G.
CD
–, mean drag coefficient; CL

–,
mean lift coefficient.
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stronger if the wing moves downwards, towards the
descending vorticity of the previous stroke, than if it moves
upwards, away from the wake. In all cases, the significance of
radial forces increases with increasing deviation. As expected,

like the lift and drag forces, the time course of radial forces is
also dependent on the shape of the wing trajectory.

Because of the mirror symmetry in upstroke and downstroke
kinematics for ‘oval’ kinematics (Fig. 8A,B), the radial forces
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Fig. 7. Parameter maps of force coefficients as a function of flip start and flip duration. Each map was generated from a 9×11 array of kinematic
patterns. For all experiments, the stroke amplitude Φ and angle of attack αwere held constant (Φ=180 °, α=45 °), while flip duration and flip
start were systematically varied. The data and interpolated values are plotted as in Fig. 4 and Fig. 5. Isolines of flip timing (given by equation
2) are indicated by the diagonal lines in each panel and correspond to the red labels on the right axis. The top panels (A,C,E) show the
measured force coefficients, and the bottom panels (B,D,F) show values for the quasi-steady-state estimated coefficients. Axis labels given in A
apply to all panels. (A,B) Measured and quasi-steady values for stroke-averaged mean lift coefficient. The pseudocolor scale for both panels is
shown below the parameter map in B. (C,D) Measured and quasi-steady values for stroke-averaged mean drag coefficient. Note the large
discrepancy between the estimated and measured values. (E,F) Measured and quasi-steady values for stroke-averaged mean lift-to-drag ratio.
(G). Measured values for stroke-averaged mean net force coefficient. Note the strong similarity to the drag coefficient map.
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Fig. 8. Sample instantaneous forces for
various combinations of stroke deviation
and tip trajectory. All other kinematic
variables were constant (amplitude
Φ=180 °, angle of attack α=45 °, flip
duration ∆τ=0.5, flip timing τf=−0.05).
The format for each panel is that
described for Fig. 3 and Fig. 6, except
for an additional panel showing the
instantaneous radial forces (green).
(A) Forces generated with a large oval
deviation in which the downstroke starts
with upward motion and the upstroke
starts with downward motion Ddev=+25 °,
Udev=−25 °, where Ddev is equal to the
maximum angle of downstroke deviation
and Udev indicates maximum angle of
upstroke deviation. Both lift and drag
transients are higher at the start of the
upstroke when the wing travels
downwards than at the start of the
downstroke. The absolute average radial
forces are also correspondingly large.
(B) Reversed condition compared with A,
the downstroke starts with downward
motion and the upstroke starts with
upward motion (Ddev=−25 °, Udev=+25 °).
Lift and drag transients are now much
larger at the start of the downstroke.
(C) Forces generated with a figure-of-
eight deviation in which both strokes start
with upward motion (Udev=Ddev=+25 °).
Both lift and drag are low at the start of
each stroke, but reach elevated values at
midstroke. (D) Reversed condition
compared with C, both strokes start with
downward motion (Udev=Ddev=−25 °).
Both strokes now start with large
transients in both lift and drag. (E) Forces
generated by comparable kinematic
pattern to those in A–D but with no
stroke deviation.
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during the upstroke are equal and opposite to the radial forces
during the downstroke. In the ‘figure-of-eight’ kinematics,
however, the upstroke and downstroke are identical and, hence,
the radial forces during the upstroke are identical to the radial
forces during the downstroke.

Fig. 9 summarizes the effects of stroke deviation on the
time-averaged measured forces and quasi-steady predictions.
While the influence of stroke deviation on the time course of
the aerodynamic forces is large, its impact on the mean force
coefficients is surprisingly small. This indicates that the
differences in the dynamics of force production noted in Fig. 8
tend to average out over the stroke. For both the ‘oval’ and
‘figure-of-eight’ deviation trajectories (Fig. 9A), the mean lift
and drag coefficients decreased with increasing absolute
deviation (Fig. 9C,D). The changes in average performance for

the ‘oval’ deviation pattern should be symmetrical around zero
deviation, since oval patterns with positive and negative
deviations are mirror images of one another. Thus, the
downstroke in Fig. 8A should resemble the upstroke in
Fig. 8B, and the upstroke in Fig. 8A should resemble the
downstroke in Fig. 8B. The asymmetry in these measurements
results from the mechanical play in the gear mechanism of the
robot. However, the asymmetry in the performance of the
‘figure-of-eight’ patterns around zero deviation represents, in
part, a real aerodynamic effect (Fig. 9B,C,D). In this case, a
positive deviation will result in a downward motion at the start
of both the upstroke and downstroke, whereas a negative
deviation indicates upward motion at the beginning of both
strokes. Downward deviation should enhance wake capture, as
described above. Values of CL

– and CD
– fall off faster with
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Fig. 9. Effects of stroke deviation
on mean force coefficients.
(A) Cartoon illustrating the
kinematic patterns used to study
stroke deviation. Throughout the
figure, blue data points refer to
oval kinematic patterns, and red
data points refer to figure-of-eight
patterns. Measured and quasi-
steady predicted values are given
by filled and open circles,
respectively. (B) The magnitude
of the mean net aerodynamic force
coefficient is only mildly
influenced by stroke deviation.
(C) Measured mean lift coefficient
decreases with stroke deviation.
For the figure-of-eight patterns,
the drop in performance with
increasing deviation is greater for
strokes that begin with upward
motion. (D) Drag coefficient
decreases with stroke deviation.
Note the large discrepancy
between measured values of mean
drag and quasi-steady predictions.
(E) Ratio of lift-to-drag and radial-
to-drag forces as a function of
stroke deviation. Radial-to-drag
forces for oval kinematic patterns
are represented by filled black
circles and for figure-of-eight
patterns by open black circles.
Because deviation affects lift and
drag almost equally, the influence
on their ratio is quite small. The
radial forces are dependent on the
sine of stroke deviation angle.
Because of the linearity of sine
functions for small angles, the
values of radial-to-drag force
increase linearly with increasing
absolute deviation.
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increasing positive deviation close to zero deviation. However,
at large deviations, the coefficients for negative deviations are
lower than the coefficients for positive deviations (Fig. 9C,D).
There is little effect on the CL

–/CD
– ratio because the influence

of stroke deviation is nearly identical for both lift and drag. In
contrast, because of the linear nature of sine functions at low
angles, CL

–/CD
– ratios appear linear with the small range of

stroke deviation in our experiments (Fig. 9E).
As with the earlier experiments, the measured values of both

CL
–and CD

–are higher than quasi-steady translational estimates
due to unsteady effects (Fig. 9C,D). Lift and drag are almost
equally underestimated, which explains why the predicted lift-
to-drag ratio (Fig. 9E) is only slightly higher than the measured
ratio. For oval trajectories, the quasi-steady predictions for the
mean force coefficients behave as scaled-down versions of the
measured traces. For example, both quasi-steady and measured
mean force coefficients are maximal at zero stroke deviation
and decrease for increasing absolute deviation (Fig. 9C,D).
However, for figure-of-eight trajectories, the quasi-steady
translational model is much less accurate in predicting the
changes in the mean force coefficients with stroke deviation.
For example, the quasi-steady model predicts that mean lift
should exhibit a local maximum at a stroke deviation of +20 °,
whereas the measured maximum occurs at 0 ° deviation.
Similarly, the estimated drag increases monotonically with
increasing positive deviation, whereas the measured drag is
maximal at 0 ° deviation.

Ratio of mean lift to mean profile power

Within the range of Reynolds numbers relevant for fruit
flies, the total mechanical power required to flap the wings is
dominated by profile power, Ppro

–, the cost to overcome drag
on the flapping wings (Lehmann and Dickinson, 1997).
Fig. 10A–C shows how Ppro

–, estimated using equation 6, varies
with changes in the kinematics parameters. Fig. 10D–F shows
the corresponding ratios of mean lift to mean profile power for
the same kinematics. The Ppro

–estimates vary extensively, even
within subregions of the parameter maps in which the values
of CL

– are high enough to support flight. This result suggests
that it may be difficult to estimate mechanical power in free or
tethered flight solely on the basis of measures of stroke
amplitude. In particular, Ppro

–varies extensively with the timing
of wing rotation and the angle of attack, parameters that are
revealed only by extensive three-dimensional reconstructions
of wing kinematics.

Discussion
We have used a dynamically scaled model wing to measure

both instantaneous and stroke-averaged lift and drag forces for
a wide variety of behaviorally relevant kinematic patterns on
a flapping wing. The results underscore the importance of three
unsteady mechanisms in flapping flight: delayed stall,
rotational circulation and wake capture. The processes are
important not simply because they help to explain the lift
required to keep an animal aloft but also because their

sensitivity to subtle changes in stroke kinematics may help to
explain the extreme maneuverability of many insects. By
systematically measuring flight forces within a comprehensive
kinematic space, we have begun to untangle the complex
interactions among these force-generating mechanisms.

Comparison between the mechanical model and real flies

The maximum mean unsteady lift coefficients in this study
are in excellent agreement with measurements on tethered
Drosophila spp., which generated elevated flight force in
response to optomotor stimuli. Peak CL

–values in tethered flight
were 1.9 (Lehmann and Dickinson, 1998), which is precisely
the same maximum value measured on the model wing.
Tethered flies generating just enough force to support body
weight produce a CL

–value of 1.6. The tethered flight estimates
relied on the assumption that both up- and downstrokes
generated lift, which appears to be correct given the time
course of forces generated when Drosophilaspp. kinematics
are played through the model (Dickinson et al., 1999).
Tethered Drosophilaspp. flap with morphologically maximum
stroke amplitude when producing peak lift (Lehmann and
Dickinson, 1998), which is consistent with the present results.
Unfortunately, apart from stroke amplitude, we do not have
adequate knowledge of other kinematic parameters during the
peak performance of real flies to compare them with the values
that maximized lift on the model.

As seen in Fig. 5B, the maximum quasi-steady translational
estimate of the mean lift coefficient,CL,t

—
, was 1.6. Given that

this value is sufficient to explain the forces required for a fruit
fly to hover (Lehmann and Dickinson, 1998), it is tempting to
claim that the quasi-steady estimates are sufficient to explain
insect flight (Jensen, 1956). However, a simple comparison of
time-averaged lift coefficients is not a robust test of the quasi-
steady model. While the mean values might be similar, the time
histories of measured forces and quasi-steady translational
estimates differ greatly (Fig. 3, Fig. 6, Fig. 8). Further, the
precise time history of lift and drag is critical for calculating
force moments and, thus, essential to considerations of stability
and maneuverability. In addition, since many insects can fly
while supporting forces nearly twice their body weight
(Marden, 1987), any model must explain not only the forces
required to hover, but also those required for maximal lift.

The inadequacies of the translational quasi-steady model
are even more apparent when considering drag. In all
experiments, we observed that the measured drag coefficients
were greater in magnitude than those estimated from
measured translational force coefficients. Also, the range of
drag coefficients measured here (CD=0–6.5) is substantially
higher than previously reported measurements from both real
and model Drosophila viriliswings (CD=0.2–1; Vogel, 1967).
The previous experimental values were based on steady-state
measurements and thus excluded the contribution of rotational
circulation and wake capture as well as added mass. However,
even the range of steady-state coefficients in the previous
study (0<CL<1, 0<CD< 1;Vogel, 1967) is substantially lower
than the quasi-steady estimates in this study (0<CL,t<1.91;
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0.37<CD,t<3.47). At present, the reason for this discrepancy
is not clear.

The relative importance of unsteady mechanisms

The relative contributions of delayed stall, rotational

circulation and wake capture to total force production vary
with the precise kinematics of the stroke. In general, the
importance of delayed stall increases with stroke amplitude
because the wing can integrate the influence of the leading
edge vortex over a greater distance. In contrast, rotational
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effects become more important with lower stroke amplitude.
For kinematic patterns mimicking those of hoverflies with a
60 ° stroke amplitude, rotational effects account for more than
half the total force (Dickinson et al., 1999). Because of these
differences, quasi-steady translational estimates should more
closely resemble the measured values for kinematic patterns
with large stroke amplitudes and deviate from measured values
for those with lower stroke amplitudes. These predictions are
borne out by the force traces shown in Fig. 3 and the maps of
CL
–in Fig. 5A,B. The quasi-steady translational model predicts
maximum lift at an angle of attack of 45 °. While this is close
to the maximum value for the measured forces at high stroke
amplitude, the measured lift maximum is shifted to higher
angles of attack (60 °) at low stroke amplitude.

There are two possible explanations for this shift. First,
rotational circulation might make a greater contribution to
mean lift at low stroke amplitude. However, this is unlikely to
be true for symmetrical flips, for which rotational circulation
enhances lift only before stroke reversal, but attenuates it after
stroke reversal (Dickinson et al., 1999). Also, at stroke
reversal, the wing rotates less for a 60 ° angle of attack than
it does for a 45 ° angle of attack. Thus, the proportional
contribution due to rotational lift is further minimized. Second,
the shift in the lift maximum may reflect an increasing
importance of wake capture at low stroke amplitude. The large
contribution of wake capture can be easily seen in the forces
generated by hoverfly-like patterns (Dickinson et al., 1999) as
well as in the drag traces in Fig. 3. The increasing importance
of wake capture also explains the changes in drag coefficients
at low stroke amplitude. While the translational quasi-steady
model predicts that drag should be independent of amplitude
(Fig. 5D), the measured mean drag coefficient clearly
increases at smaller stroke amplitudes.

Separating the effects of wing rotation from wake capture

Since rotational circulation, wake capture and added mass
usually occur together during stroke reversal, it is often
difficult to separate these effects. After estimating the effect of

added mass on force traces before and after subtraction
(Fig. 2), we concluded that, at these Reynolds numbers, the
magnitude of added mass is small compared with rotational
circulation or wake capture. To isolate these two mechanisms,
it is helpful to focus on kinematic patterns in which either the
entire flip occurs prior to stroke reversal (Fig. 6B,E,F) or the
wing does not flip at all (Fig. 3A,B). In the case of an advanced
flip, the force peak that exceeds the translational estimate prior
to stroke reversal may be attributed to rotational circulation,
while the force peak after stroke reversal is due to wake
capture. In the case of no flip, the large drag peak at the start
of each stroke is due to wake capture, in which vorticity shed
from the previous stroke elevates force by inducing an increase
in flow velocity towards the wing (Dickinson, 1994; Dickinson
et al., 1999). Because of the squared dependence of forces on
relative velocity, even small changes in flow can cause a large
elevation in force.

The influence of wake capture should be reduced when the
wing translates at a 0 ° angle of attack during the previous
stroke. Under these circumstances, the wing sheds less
vorticity at the end of each stroke, since it did not create a
leading edge vortex during translation. There is some vorticity
present, however, due to rotational circulation at the end of the
stroke. Nevertheless, in these cases (Fig. 3G,H), wake capture
is reduced, which partially isolates the influence of rotational
circulation. The results indicate that a wing rotating early
enhances lift, but that if the rotation continues after stroke
reversal the force dips below the quasi-steady-state prediction
because, after changing direction, rotational circulation will act
to counter the circulation produced by translation.

By systematically varying the kinematic parameters, we
determined that lift was optimized at a 45 ° angle of attack,
180 ° stroke amplitude, 10 % flip duration and approximately
−5 % flip advance. Even subtle deviations from the optimal
combination drastically decreased lift. A 5 % delay in flip
timing relative to the optimal conditions (Fig. 6H) is less
effective in generating rotational lift and decreases the average
coefficient by as much as 25 %. Small decreases in flip duration
cause comparable changes. These results suggest that the
control of flip timing and duration provides an easy and
powerful way of modulating the forces on two wings, as is
required to alter force moments during steering. Tethered flies
advance wing rotation on the outside of a turn in response to
a turning visual stimulus (Dickinson et al., 1993). Since early
rotation enhances whereas delayed rotation attenuates lift,
early wing rotation on the outside of a turn should produce a
greater force on that side, thus creating an appropriate turning
moment in the opposite direction. While flip advance is usually
coupled with an increase in stroke amplitude, flies do possess
the ability to decouple the modulation of rotation and
amplitude (Dickinson et al., 1993). A more thorough analysis
of steering must consider the influence of wing kinematics on
force moments, which will be the topic of a separate paper (S.
P. Sane and M. H. Dickinson, in preparation)

In nearly all the experiments presented here, the kinematics
of the upstroke and downstroke were identical. Under these

Fig. 10. The effects of wing kinematics on profile power Ppro
– and the

lift-to-power ratio L
–/Ppro
–. Procedures for plotting data are as

described in Fig. 4, Fig. 7 and Fig. 9. The pseudocolor scale for A
and B is shown below B, and the scale for D and E is shown below
E. (A) Profile power as a function of stroke amplitude and angle of
attack. (B) Profile power as a function of flip start and flip duration.
Flip timing is shown on the right axis. Profile power varies by a
factor of 2 within the parameter space, indicating that flip kinematics
are important determinants of flight cost. (C) Profile power as a
function of stroke deviation for oval (blue) and figure-of-eight (red)
patterns. Stroke deviation has only a minor effect on profile power.
(D) The ratio of mean lift to mean profile power, L

–/Ppro
–, as a

function of stroke amplitude and angle of attack. Like the mean lift
coefficient (Fig. 5A), there is a single angle of attack that maximizes
L
–/Ppro
– for each value of stroke amplitude. (E) The ratio of mean lift

to mean profile power as a function of flip start, flip duration and flip
timing. (F) The ratio of mean lift to mean profile power as a function
of stroke deviation for oval (blue) and figure-of-eight (red) deviation.
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conditions, the contributions of the upstroke and downstroke
to forces are equal, and the net force vector is oriented normal
to the mean stroke plane. However, symmetrical wing strokes
are probably more the exception in actual insects than the rule.
Thus, further experiments must focus on asymmetric strokes
that can cause the net force vector to be tilted relative to the
stroke plane. Adjusting the symmetry of the two strokes is
undoubtedly critical for the regulation of force moments in
flight control.

The influence of stroke deviation

The wings of insects do not always beat back and forth
within a flat stroke plane, but may exhibit large and complex
deviations. Within studies of flies, the true form and function
of these deviations have been subject to much debate (for a
review, see Dickinson and Tu, 1997). While the existence of
oval and figure-of-eight trajectories was often attributed to
differences in experimental procedure (tethered versusfree
flight, thoracic versusabdominal tether, still air versusmoving
air), studies of neuromuscular control indicate that flies have
the ability actively to modulate stroke deviation by altering
the activity of steering muscles (Tu and Dickinson, 1994;
Lehmann and Götz, 1996). The aerodynamic utility of these
changes, however, is still not known.

We can divide the effects of stroke deviation on
aerodynamic mechanisms into three categories: the
introduction of radial force components, alteration of
aerodynamic angle of attack and the efficacy of wake capture.
The presence of one or more of these effects can substantially
alter the dynamics of force generation even when the time-
averaged net force produced by the wing remains largely
unaltered (filled circles, Fig. 9B). For three-dimensional
flapping, the main influence of stroke deviation on flight forces
is the presence of radial force components acting orthogonal
to lift and drag (Fig. 8A–E). This force component, although
ignored in much of the insect flight literature, is of considerable
importance during large stroke deviations. Although the
magnitude of the average net force vector remains nearly
constant with changes in deviation, both lift and drag
coefficients decrease with increasing positive and negative
stroke deviations, while the radial component increases. In this
way, deviation offers a versatile means of manipulating forces
through simple geometric alterations in stroke trajectory.

Stroke deviation also influences force production by altering
the angle of attack with respect to the wing path as well as its
instantaneous velocity. Upward motion of the wing at the start
of the stroke results in a decrease in the angle of attack, while
downward motion causes an increase in the angle of attack.
The converse is true at the end of the stroke. In addition, the
velocity of the wing is higher, because the wing must cover a
greater distance when it follows a curved trajectory for a given
stroke frequency. This effect is clear in the quasi-steady
prediction for the oval wingbeat patterns (Fig. 8A,B). The
predicted forces are higher at the start of strokes beginning
with downward motion and at the end of strokes that finish
with downward motion. However, a comparison of measured

and predicted force traces indicates that the wing generates
large force transients at the start of strokes beginning with
downward motion that cannot be explained by the changes in
aerodynamic angle of attack and wing velocity, which are
incorporated in the quasi-steady model (Fig. 8B,D). The most
likely explanation for these large peaks is that wake capture is
enhanced by downward motion and attenuated by upward
motion at the start of the stroke. By moving downwards in the
direction of the descending wake, the wing may intercept a
stronger flow field than if it moved upwards. However, a
rigorous test of this hypothesis will require a detailed
visualization of the velocity distribution during stroke reversal.

The interaction between stroke deviation and wake capture
is more extreme in the case of figure-of-eight patterns, in which
the two half-strokes are mirror images of one another and can
thus both begin with downward motion. The quasi-steady
model predicts that mean lift should be maximal with a +20 °
deviation, which means that the wing begins each stroke by
moving upwards. The enhanced performance of upward
strokes is due to the fact that the angle of attack is high in the
middle of the stroke when the wing velocity is greatest. The
measured forces do not, however, exhibit this enhanced
performance with small positive deviations. On the contrary,
the net performance drops off more quickly with positive
deviation (upward motion at start of strokes) than with negative
deviation (downward motion at start of stroke). This result is
again consistent with a more effective wake capture due to
downward motion at the start of translation.

In spite of the large differences in instantaneous forces, the
magnitudes of time-averaged forces in all cases are similar for
the oval and figure-of-eight trajectories (Fig. 9). For oval
trajectories, the measured forces behave as predicted, with
maximum lift and drag coefficients occurring at zero deviation
and decreasing for higher absolute deviation. In contrast, the
figure-of-eight trajectories behave quite differently from the
corresponding quasi-steady estimates, varying in both
magnitude and behavior. For quasi-steady estimates, the lift
maximum occurs at a 20 ° positive deviation, whereas the drag
maximum increases monotonically with increasing positive
deviations (open red circles in Fig. 9C,D respectively). In
contrast, the measured values in both cases are maximal at zero
deviation (filled blue and red circles in Fig. 9C,D) and then
decrease for higher absolute deviations.

Drag and efficiency

The values of mean profile drag C
—

D,pro
—

obtained in the
current study are much higher than values in the literature
based either on steady-state measurements of wing profiles
(Vogel, 1967) or calculations based on Reynolds number
(Ellington, 1984d; Lehmann and Dickinson, 1997; Wakeling
and Ellington, 1997). In particular, the equation:

C
—

D,pro
—

= 7/√Re
—

, (7)

which represents the rough average of the Reynolds-number-
dependence of a flat plate parallel and perpendicular to flow
(Ellington, 1984c), may grossly underestimate the profile drag

S. P. SANE AND M. H. DICKINSON
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on a flapping wing. In the current study, this equation predicts
a C
—

D,pro
—

value of approximately 0.7 for large stroke amplitudes,
which is less than 25% of the measured values for kinematic
patterns capable of sustaining flight (CD,t

— ≈3). One obvious
reason for this large discrepancy is that the process of wing
rotation generates large instantaneous values of drag which, even
though lasting only a small portion of the stroke, substantially
increase the mean values. However, even the drag contributed
by delayed stall during translation (≈2) is higher than that
predicted by equation 7. These large values for the mean drag
coefficient have several important implications for flight
energetics and muscle physiology. First, profile power, which
scales linearly with the mean drag coefficient, may be several
times greater than predicted in estimates using equation 7. Thus,
under many conditions, profile power, and not induced power,
may represent the dominant component in aerodynamic power.
Further, estimates of total mechanical power based solely on
induced power are likely grossly to underestimate flight costs.
The elevated values of drag also call into question previous
attempts to estimate elastic storage, which depend upon inertial
power costs being high relative to aerodynamic costs (Dickinson
and Lighton, 1995). If the ratio of aerodynamic cost to inertial
cost is high, the energetic benefits of elastic storage are greatly
reduced. Second, because previous estimates of mechanical
power may be several times too low, calculations of muscle
efficiency, based on the ratio of mechanical power to total
metabolic power, may be substantially lower than actual values.
Such estimates for the muscle efficiency of asynchronous flight
muscle range from 8 to 12%. When corrected for the
underestimate of drag, we find that previous estimates of muscle
efficiency presented for fruit flies (Lehmann and Dickinson,
1997) should be adjusted to 20–25%. If correct, these adjusted
values help to solve a perplexing problem in insect flight
physiology. Because Ca2+ cycling represents a sizeable fraction
of the energetic cost in cyclic contractions, stretch-activated
muscle should accrue an energetic savings and concomitant
increase in mechanical efficiency. This prediction was not
supported, however, by the previous estimates of efficiency.
After correction with more accurate values of drag, the estimates
of mechanical efficiency in asynchronous muscle are now
consistent with the reduced cost of Ca2+ cycling.

In addition to indicating that the mean level of drag may be
higher than previously expected, the results also show that the
value of drag is quite sensitive to subtle changes in wing
kinematics (Fig. 5C, Fig. 7C, Fig. 9D). Mapping an estimate of
profile power indicates that this sensitivity of the drag
coefficient to wing kinematics translates into a sensitivity of
flight cost as well (Fig. 10A,B,C). This result again has
consequences for estimates of flight costs and mechanical
efficiency from free-flight kinematics based solely on measures
of stroke frequency and amplitude (Ellington, 1984d). In
particular, for a given stroke amplitude, profile power varies
depending upon the timing and duration of wing rotation
(Fig. 10B). Thus, without knowledge of the precise stroke
kinematics, estimates of free-flight energetics must be viewed
with caution.

Concluding remarks

The data presented in this paper represent a comprehensive
analysis of the effects that wing kinematics have on the
generation of aerodynamic forces in flapping flight. The results
reveal a complex system in which subtle alterations in stroke
kinematics can have quite large effects on force production. In
future studies, it will be an important challenge to determine
how real insects use this sensitively to adjust the balance of
forces and force moments as they steer and maneuver through
their environment.

List of symbols
AR aspect ratio
c– mean chord length
ĉ(r̂) non-dimensional chord length
C
—

D,pro
—

mean profile drag coefficient
CD
– mean drag coefficient
CD,t translational drag coefficient
CF
– mean force coefficient
CL
– mean lift coefficient
CL,t translational lift coefficient
CN
– mean total aerodynamic force coefficient
CR
– mean radial coefficient
dφ̂/dt̂
—

mean non-dimensional angular velocity of the wing
D drag
Ddev maximum angle of downstroke deviation
D(t) instantaneous drag
F– force coefficient averaged over a stroke
Fa,N added mass inertia normal to the wing surface
FN
– mean total aerodynamic force
L lift
n wingbeat frequency
Ppro
– mean profile power
R wing length
Re Reynolds number
r̂ non-dimensional radial position along wing length
r̂22(S) non-dimensional second moment of wing area
S surface area of a wing pair
t time
T stroke period
Udev maximum angle of upstroke deviation
vwing(t) instantaneous wing velocity
α angle of attack
α(t) instantaneous angle of attack
∆τ flip duration
Φ total stroke amplitude
φ(t) instantaneous stroke position
ν kinematic viscosity
θ(t) instantaneous stroke deviation
Θ maximum stroke deviation
ρ density of fluid
τf flip timing
τ0 flip start
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