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1. I nt roduct ion

In Part 11 weconsidered MonteCarlo methodsbased on
independent ident ically distributed random draws from
speci¯ed distributions, which we called the IID case. In
this Part 2, we carry t he methodology further by con-
sidering random draws following t he Markovian regime.
In Part 4, we discuss some applicat ions of the Markov
chain Monte Carlo (MCMC) method in some stat ist ical
problems wherein the IID Monte Carlo is not applica-
ble. In Part 3, we discuss some stat ist ical preliminaries
required for an understanding of the stat ist ical issues
involved.

2. M ont e Car lo M et hods:t he M arkov Chain Case

The main theoret ical basis for the I ID Monte Carlo
method is the law of large numbers (LLN). I t turns
out LLN remains valid even if we drop the assumption
of f X ig being i.i.d. but have some weak dependence.
An example of such a sequence is the case of a Markov
chain. A sequenceof random variables f X ngn¸ 0 is cal led
a Markov chain if for any n given thecurrent value, i .e.,
Xn , the past, i.e., f X j : j · n ¡ 1g and the future, i .e.,
f X j : j ¸ n + 1g are stat ist ical ly independent in the
sense

Prob (A \ BjX n) = Prob (AjX n) Prob (B jX n ); (1)

whereA and B are events dē ned respect ively in terms
of the past and the future, and P (AjXn ) is the condi-
t ional probabili ty of A given X n. Thus t he sequence
f Xn gn¸ 0 has no memory. Given the present, the prob-



64 RESONANCE  July  2003

GENERAL  ARTICLE

Keywords
Markov chain, state space, sta-
tionary transition probability,
stationary distribution, irreduc-
ibility, aperiodicity, stationarity,
M-H algorithm, proposal dis-
tribution, acceptance probabil-
ity, image processing, Gibbs
sampler.

abilist ic nature of future evolut ion does not depend on
the past. Among Markov chains there is a subclass that
haswideapplicabili ty. This is thecaseof Markov chains
with t ime homogeneous or stat ionary transition proba-
bi li ties. This means that the probabil ity distribut ion
of X n+ 1 given X n = x, and the past X j : j · n ¡ 1
depends only on x and does not depend on the values
of X j : j · n ¡ 1 or n. In part icular, if the set S of
values f X ng can take, known as the state space is -̄
nit e or countable, this reduces to specifying a matrix
known as the transit ion probability matrix P ´ ((pi j ))
where for any two values i; j in S, pi j is the probabili ty
that Xn+ 1 = j given X n = i , i.e., of moving from stat e
i to stat e j in one t ime unit . If the state space S is
not countable then one has to specify a transition ker-
nel or transit ion function P(x; ¢), where P(x; A) is the
probabil ity of moving from x into A in one step, i .e.,
P(X n+ 1 2 AjX n = x). Given the transit ion probabili ty
and the probabil ity distribut ion of the init ial value X 0

one can construct the joint probability dist ribut ion of
f X j : 0 · j · ng for any ¯nite n. For example, in the
countable state space case

P(X0 = i 0; X 1 = i 1; : : : ; X n = in)
= P (X 0 = i 0)pi 0i 1 pi 1 i 2 : : : pi n ¡ 1i n (2)

as can be shown by using the Markov property and in-
duct ion. Indeed

P (X 0 = i0; X 1 = i1; : : : ; X n¡ 1 = in¡ 1; X n = i n)
= P (X n = i n jX 0 = i0; : : : ; Xn¡ 1 = i n¡ 1)

£ P(X 0 = i0; X 1 = i1; : : : X n¡ 1 = in¡ 1)
= pi n ¡ 1i n P(X 0 = i 0; : : : ; X n¡ 1 = in¡ 1):

A probabil ity distribut ion ¼ is cal led stationary or in-
var iant for a transit ion probabil ity P or the associated
Markov chain f X n g if the probability distribut ion of
X 0 is ¼ then the same is true for al l n ¸ 1. Thus in
the countablest atespacecasea probability distribut ion
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¼= f ¼i : i 2 Sg isst at ionary for a transit ion probability
matrix P if for each j in S,

P(X1 = j ) =
X

i

P(X1 = j jX 0 = i)P (X0 = i)

=
X

i

¼i pi j = P(X 0 = j ) = ¼j ; (3)

i.e., for each j , ¼j =
X

i

¼i pi j . In vector not at ion it says

¼ = (¼1;¼2; : : :) is a left eigenvector of the matrix P
with eigenvalue 1 and

¼= ¼P: (4)

Similar ly, i f S is a cont inuum a probability distribut ion
¼with density p(x) isstationary for thetransit ion kernel
P(¢; ¢) i f

¼(A) =
Z

A

p(x)dx =
Z

S

P(x; A)p(x)dx

for all A ½ S.

In order to stateLLN for Markov chainsonemorenot ion
is needed. A Markov chain f X n g with a countablestate
space S and transit ion probability matrix P ´ ((pi j )) is
said to be irreducible if for any two states i and j the
probabili ty of the Markov chain visit ing j start ing from
i is posit ive. That is, for some n ¸ 1; p(n)

ij ´ P(X n =
j jX 0 = i) isstrict ly greater than zero. There isa similar
not ion of irreducibi lity for thegeneral st atespacecase. I t
is known as Harr is or Doeblin irreducibil ity. For detai ls
on thissomewhat advanced topic seeRobert and Casella
[1].

LLN for M arkov Chains: Let f Xn gn¸ 0 be a Markov
chain with a count able state space S and a transit ion
probabili ty matrix P. Suppose it is irreducibleand there
is a stat ionary probabili ty distribut ion ¼´ (¼i : i 2 S).
Then, for any bounded funct ion h : S ! R and for any
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init ial distribut ion of X 0

1
n

n¡ 1X

i = 0

h(X i ) !
X

j

h(j )¼j (5)

in probability as n ! 1 .

A similar LLN holdswhen thestat espaceS isnot count-
able. T he l imit value in (5) will be the integral of h with
respect to thestat ionary distribut ion ¼. A su± cient con-
dit ion for the validity of this LLN is that the Markov
chain f X ng be Harris irreducible and have a stat ionary
distribut ion ¼. There are other su± cient condit ions as
well.

Not ice that the limit istheexpected valueof h(X 0) when
X0 has the distribut ion ¼. T hat is, the t̀ ime average'
converges t o the space average (in steady state) as n !
1 . The same law of large numbersholds for thegeneral
state space case assuming Harris irreducibi li ty.

How does t his LLN get used in applicat ions?

Here is the essence of the Markov Chain Monte Carlo
(MCMC) method.

Given a probabili ty distr ibut ion ¼on a set S, and a func-
t ion h on S suppose it is desired t ocompute the ìntegral
of f with respect t o ¼', which reduces to

P

j
f (j )¼j in

the countablecase. One looks for an ir reducible Markov
chain f X ng with S as its state space and ¼ as its sta-
tionary distr ibution. Then, start ing from some init ial
value X 0; run the Markov chain f X j g for a period of
t ime, say 0; 1; 2; : : : n ¡ 1 and o®er as an est imate

¹ n =
1
n

n¡ 1X

0

f (X j ): (6)

By theLLN (5), t hisest imat e¹ n will becloseto
X

j

h(j )¼j

for large n.
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This method is known as Markov Chain Monte Car lo
(MCMC). In part icular, if one is interested in ¼(A) ´
P

j 2A
¼j for some subset A ½ S then by LLN (5) this

reduces to

¼̂n(A) ´
1
n

n¡ 1X

0

I A (X j ) ! ¼(A)

in probabil ity as n ! 1 ; where IA (X j ) = 1 if X j 2 A
and 0 otherwise. In other words ¼̂n (A) is the sample
proport ion of visits to A during f 0; 1; 2; : : : n ¡ 1g by the
Markov chain.

An irreducible Markov chain f Xn g with a count able
stat e space S is called aperiodic if for some i 2 S the
greatest common divisor, g.c.d.f n : p(n)

i i > 0g = 1.
Then, in addit ion to the LLN (5), the following result
on the convergence of P(X n = j ) holds, namely, that:

X

j

jP (Xn = j ) ¡ ¼j j ! 0 (7)

as n ! 1 , for any init ial distribut ion of X0. Thismeans
that for largen theprobabili ty dist ribut ion of X n isclose
to ¼.

Thereisa result similar to (7) for thegeneral statespace
case that asserts that under suitable condit ions, the
probabil ity dist ribut ion of X n is close to ¼as n ! 1 .

This suggests that instead of doing one run of length n,
one could do N independent runs each of length m so
that n »= N m and then from the i t h run use only the
mt h observat ion, say, X m;i and o®er the est imate

~¹ N ;m ´
1
N

NX

i = 1

f (X m;i ): (8)

There are other variat ions as well .
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3. Special M arkov Chains Used in M C M C

3.1 M et r opol is{ H ast ings A lgor i t hm

Let S bea ¯niteor countableset. Let ¼bea probabil ity
distribut ion on S. (¼ is called the target distribut ion.)
Let Q ´ ((qij )) be a transit ion probabil ity matr ix such
that for each i, i t is computat ionally easy to generate
a sample from the distribut ion f qi j : j 2 Sg. Then
generate a Markov chain f X n g as follows.

Step 1: I f X n = i , r̄st sample from the distribut ion
f qi j : j 2 Sg and denote that observat ion Yn.

Step 2: Choose X n+ 1 from the two values X n and Yn

according to the probabili ty distribut ion

P(X n+ 1 = Yn jX n ; Yn) = ½(X n; Yn )
P(X n+ 1 = X n jX n; Yn ) = 1 ¡ ½(X n; Yn); (9)

where the `acceptance probabili ty' ½(¢; ¢) is given by

½ij = ½(i ; j ) = ½(x i ; xj ) = min
(

¼j

¼i

qj i

qi j
; 1

)

(10)

for all (i ; j ) such that ¼i qij > 0. I t is not di± cult to ver-
ify that f X ng is a Markov chain with transit ion proba-
bili ty mat rix P = ((pij )) given by

pi j =

8
<

:

qi j ½i j j 6= i
1 ¡

P

k6= i
pi k ; j = i : (11)

Q is called the `proposal t ransit ion probabili ty' and ½
the `acceptance probabili ty' . A most useful feature of
this transit ion mechanism P is that P and ¼satisfy the
so called detailed balance condit ion:

¼i pij = ¼j pj i for all i ; j : (12)

This implies that for any j
X

i

¼i pi j = ¼j

X

i

pj i = ¼j : (13)
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That is, ¼is a stat ionary probability dist ribut ion for P.

Now assume that S is irreducible w.r.t . Q and ¼i > 0
for all i in S. Then it can beshown t hat P is irreducible
and since it has a stat ionary distribut ion ¼ and LLN
(5) is avai lable. This algori thm is thus a very °exible
and useful one. The choice of Q is subject only to the
condit ion that S is irreducible w.r.t . Q. Clearly, it is no
loss of generali ty to assume that ¼i > 0 for all i in S.
A su± cient condit ion for the aperiodicity of P is that
pi i > 0 for some i or equivalent ly

X

j 6= i
qi j ½i j < 1:

A su± cient condit ion for this is that there exists a pair
(i ; j ) such t hat ¼iqi j > 0 and ¼j qj i < ¼i qi j .

Recal l that i f P isaper iodic then both the LLN (5) and
(7) hold. I f S is not ¯nite or countable but is a con-
t inuum and t he target distribut ion ¼(¢) has a density
p(¢) then one proceeds as fol lows: Let Q be a transi-
t ion funct ion such that for each x, Q(x; ¢) has a density
q(x; y). Then proceed as in t he discrete case but set the
`acceptance probabil ity' ½(x; y) to be

½(x; y) = min
(

p(y)q(y; x)
p(x)q(x; y)

; 1
)

for all (x; y) such that p(x)q(x; y) > 0. Anot her useful
feature of the above algorithm is that it is enough to
know f ¼i g upto a mult ipl icat ive constant as in the de-
¯nit ion of t̀he acceptance probability' ½(¢; ¢), only the
rat io ¼i

¼j
need to be calculated. This is useful in (i)

Bayesian stat ist ical appl icat ions of MCMC for calcu-
lat ing the moments of the posterior distribut ion of the
parameters given the data; and (i i) in image process-
ing and st at ist ical mechanics where the set S consist s
of con¯gurat ions over a mult idimensional grid of pixels
where in each pixel there isa ¯xed number of levelsand
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the probabil ity distribut ion is speci¯ed via a Gibbs po-
tent ial funct ion whose normalising constant (`part it ion
funct ion') is not easy to compute as shown below in a
simple example.

Example 1 (Stat ist ical Mechanics/ Image Processing)
Consider a 3 £ 3 square of nine pixels and suppose in
each pixel the colour level is either a 0 or 1. A typical
con¯gurat ion w is a vector w = (wi j : 1 · i ; j · 3) with
9 coordinates and each wij is 0 or 1.

Thus, the set S of all con¯gurat ions has 29 = 512 ele-
ments. Suppose there is a `potent ial funct ion' V : S !
(0; 1 ) and for each w

¼(w) = c e¡ ¯V ( w) ;

where¯ > 0 isaknown constant and c is thenormalising

constant (Z(¯))¡ 1 with Z (¯) equalling
Ã

P

w2S
e¡ ¯V ( w)

!

,

known as the`part i t ion funct ion'. For each con¯gurat ion
w de¯ne its neighbourhood N (w) as the set consist ing
of all con¯gurat ions w0 such that w and w0 di®er exact ly
at one pixel. Thus in our example each w will have 9
neighbours. Now suppose in the Metropolis{ Hast ings
algorithm for this context `proposal transit ion Q' is the
r̀andom walk' t ransit ion, i.e.,

qw;w0 =
1
9

if w0 2 N (w)

and 0 ot herwise.

Here the `accept ance probabili ty' ½(w; w0) reduces to

½(w; w0) = minf e¡ ¯(V ( w0)¡ V ( w)) ; 1g for w0 2 N (w):

Thus, for theact ual t ransit ion P, at each step, given the
present con¯gurat ion w, choose one of the neighbours
w0 of w at random with uniform distribut ion and move
there if V (w0) > V(w), otherwise stay at w. That is,
thecon¯gurat ion at the next step is w0 if V(w0) > V(w)
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or w itself. I f V (¢) is not a constant funct ion then one
can show that P is aperiodic. Since r̀andom walk Q' is
irreducible, P is also so. So P is irreducible, aperiodic
and has ¼as it s stat ionary distr ibut ion.

Start ing from some init ial con¯gurat ion, say, wi j = 0 for
all i ; j , one can run thisMarkov chain f X ng by theeasy-
to-run Markov chain and est imate

P

w2 S
h(w)¼(w) for any

funct ion h(¢) on S by 1
n

nP

1
h(X j ).

Gibbs Sampler

In many applicat ions such as stat ist ical mechanics, im-
age processing, Bayesian stat ist ics the target distribu-
t ion ¼ is a high-dimensional mult ivariate distr ibut ion.
For example, in t he simple example of the last sec-
t ion each con¯gurat ion has nine coordinates. In image
processing typically onehas N £ N squarewith N = 256
and each pixel hask ¸ 2 possiblevalues. Thuseach con-
¯gurat ion has(256)2 components and S has k(256) 2

con-
¯gurat ions. To simulate a random con¯gurat ion from a
target dist ribut ion ¼over such a large S is not an easy
task. The Gibbs sampler generates an irreducible aperi-
odic Markov chain with ¼as its stat ionary distr ibut ion.
To run this Markov chain it su± ces t o generat e obser-
vat ions from univar iate distr ibutions. We now describe
theGibbs sampler in thecontext of a bivariate probabil-
ity distribut ion. Let ¼be a probabili ty distribut ion of a
bivariate random vector (X ;Y ). For each x, let P(x; ¢)
be the condit ional probability distribut ion of Y given
X = x. Thus, i f ¼is a discrete probabil ity distr ibut ion,
P(x i ; yj ) is thecondit ional probabili ty that Y = yj given
X = xi . Similarly, let Q(y; ¢) be the condit ional prob-
abi li ty distribut ion of X given Y = y. Not ice that for
each x, P(x; ¢) is a univariate distribut ion and for each
y, Q(y; ¢) isalso a univariatedistribution. Now generate
a bivariate Markov chain Zn = (X n ; Yn) as fol lows:

Start with some X0 = x0. Then generate an observa-
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t ion Y0 from the distribut ion P (x0; ¢). Next generate an
observat ion X1 from Q(Y0; ¢). Next generate an obser-
vat ion Y1 from P(X 1; ¢) and so on. At stage n if Zn =
(X n; Yn ) isknown then generateX n+ 1 from Q(Yn ; ¢) and
Yn+ 1 from P(X n+ 1; ¢). If ¼isa discrete distribut ion con-
centrated on f (x i ; yj ) : 1 · i · K ; 1 · j · Lg and if
¼ij = ¼(x i ; yj ) then P (x i ; yj ) = ¼i j

¼i ¢
and

Q(yj ; x i ) =
¼ij

¼¢j
;

where ¼i ¢ =
P

j
¼i j ; ¼¢j =

P

i
¼i j . Thus the transit ion

probability R for the f Zng chain is

r (i ;j ) ;(k ;̀ ) = Q(yj ; xk)P(xk; y`)

=
¼k j

¼¢j

¼k `

¼k¢
:

It can be veri¯ed that this chain is irreducible, ape-
riodic and has ¼ as its stat ionary distribut ion. Thus
LLN (5) and (7) hold in t his case. Thus for large n,
Zn can be viewed as a sample from a distribut ion that
is close to ¼ and one can approximate

P

i ;j
h(i; j )¼ij by

1
n

nP

1= 1
h(X i ; Yi ). The mult ivariate extension of the above

is very straightforward. I f ¼ is a probabili ty distribu-
t ion of a k-dimensional random vector (X 1; X2; : : : ; X k )
let ¼i (¢jx¹ ¡ i ´ (x1; x2; x i ¡ 1; x i+ 1 : : : xk )) denote the uni-
variate condit ional distribut ion of X i given that X

¹ ¡ i ´
(X 1; X 2; X i ¡ 1; X i + 1; : : : ; X k ) = x

¹ ¡ i . Now start ing with
some init ial value for X

¹ 0 = (x01; x02; : : : ; x0k ) generat e
X
¹ 1 = (X 11;X 12; : : : ; X1k ) sequent ially by generat ing X 11

according to the univariate distr ibut ion ¼1(¢jx¹ 0¡ 1 ) and
then generat ing X 12 according to theunivariate distrib-
ut ion ¼2(¢jX 11; x03; x04; : : : ; x0k) and so on.

This method also works for cont inuous distribut ions.
We illustrate this by considering the case of a bivariat e

normal distribut ion. Let
Ã

X
Y

!

be a bivariate (nor-
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mal) Gaussian random vector with 0 means and unit
variances and correlat ion coe± cient ½. We write this as

µ
X
Y

¶
» N 2(

µ
0
0

¶
;
·

1 ½
½ 1

¸
):

It is a property of thebivariatenormal distribut ion that
the condit ional distribut ion X given Y = y isunivariate
normal with mean ½y and variance (1 ¡ ½2), i.e.,

(X jY = y) » N (½y; 1 ¡ ½2)

and similarly

(YjX = x) » N (½x; 1 ¡ ½2):

Using this property, Gibbs sampling proceeds as follows
to generate (X n ;Yn); n = 0; 1; 2; : : ::

1. Start from a arbitrary value x0 for X 0.

Repeat the fol lowing steps for i = 0; 1; : : : ; n.

2. Given x i for X , draw a random samplefrom N (½x i ;
1 ¡ ½2) and denote it Yi .

3. Given yi for Y, draw a random samplefrom N (½yi ;
1 ¡ ½2) and denote it X i+ 1.

Thus we have (x i ; yi ); i = 0; 1; 2; : : : ; n. The theory of
Gibbs Sampling tells us that i f n is large then (xn; yn)
can be considered to bea random sample whose proba-
bi lity dist ribut ion is close t o

N2(
µ

0
0

¶
;
·

1 ½
½ 1

¸
) :

Weused thisGibbssampling to generatea random sam-
ple of 1000 from

N2(
µ

0
0

¶
;
·

1 0:5
0:5 1

¸
);



74 RESONANCE  July  2003

GENERAL  ARTICLE

Figure 1.

(i.e., ½= 0:5) using n = 1000. Wepresent thehistogram
of these 1000 values of x, represent ing the marginal dis-
tribut ion of X , overlaid with thestandard normal curve,
which is the theoret ical marginal distribut ion of X in
Figure 1. We not ice that the histogram is a very good
approximation to the standard normal curve.

Why doesGibbs sampling work? Recall that a su± cient
condit ion for the LLN (5) and the l imit result (7) is
that an appropr iate irreducibi lity condit ion holds and a
stat ionary distribut ion exists. Weshall veri fy the lat ter
for the chain f Xn g in our example. From steps 2 and 3
of the procedure out lined above, i t is not di± cult to see
that one can write

Yi = ½X i +
q

1¡ ½2 ´ i

and
X i + 1 = ½Yi +

q
1¡ ½2 »i ;

where ´ i and »i are independent N (0; 1) (standard nor-
mal) random variablesand independent of X i . Thus the
sequence f X ig sat is̄ esthestochast icdi®erenceequat ion
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X i + 1 = ½2X i + Ui + 1;

where
Ui + 1 = ½

q
1¡ ½2 ´ i +

q
1 ¡ ½2 »i :

Since ´ i ; »i are independent N (0; 1) random var iables,
Ui + 1 being a linear combinat ion of ´ i and »i is also a
normally distributed random variable with mean 0 and
variance ½2(1 ¡ ½2) + (1 ¡ ½2) = 1 ¡ ½4. Also f Uigi ¸ 1

being i.i.d., makes f X igi ¸ 0 a Markov chain. I t turns out
that the irreducibil ity condit ion holds here. Turning to
stat ionarity, note that if X 0 is an N (0; 1) random var i-
able, then X 1 = ½2X 0 + U1 is also a N (0; 1) random
variable, since thevar iance of X 1 is ½4 + 1¡ ½4 = 1 and
the mean of X 1 is 0. This makes the standard N (0; 1)
distribut ion a stat ionary distribut ion for f X ng. Thus
both the LLN and the convergence of the distribut ion
of X n , i.e., the analogues of (5) and (7) are valid here.
Henceonecan expect thehistogram of thesample f x i gn

1
to be close to the standard N (0; 1) density and also re-
gard the observat ion xn as a sample from a distribut ion
close to N (0; 1) .

A good reference for MCMC methods is the recent book
of Robert and Casella [1]. For Markov chainson discrete
spaces, seeHoel, Port and Stone [2]. For Markov chains
on general state spaces, see Meyn and Tweedie [3]. For
someinterest ing examplesof Markov chains, seeAthreya
[4].

The computat ions cit ed in this art icle were carried out
using Systat Stat ist ical Software.
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