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1. Introduction

In Part 1! we considered Monte Carlo methods basad on
independent identically distributed random draws from
speci ed distributions, which we called the |ID case. In
this Part 2, we carry the methodology further by con-
sdering random draws following t he Markovian regime
In Part 4, we discuss some applications of the Markov
chain Monte Carlo (MCMC) method in some statistical
problems wherein the [ID Monte Carlo is not applica-
ble. In Part 3, we discuss some statistical preliminaries
required for an understanding of the statistical issues
involved.

2. Monte Carlo M ethods:the M arkov Chain Case

The main theoretical bass for the IID Monte Carlo
method is the law of large numbers (LLN). It turns
out LLN remains valid even if we drop the assumption
of fX,g being i.i.d. but have some weak dependence
An example of such a sequence isthe case of a Markov
chain. A sequence of random variablesf X g, o is caled
a Markov chain if for any n given the current value, i.e.,
X,, thepad, i.e, fX; :j - nj 1gand the future, i.e,
X 1] n + 1g are statistically independent in the
sense

5

Prob (A\ BjX,) = Prob (AjXy) Prob (BjX,); (1)

where A and B are events de ned respectively in terms
of the past and the future, and P (AjX,,) is the condi-
tiona probability of A given X,. Thus the sequence
fXn0n o has no memory. Given the present, the prob-
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abilistic nature of future evolution does nat depend on
the past. Among Markov chains thereis a subclass that
haswideapplicability. Thisisthe case of Markov chains
with time homogeneous or stationary transition proba-
bilities. This means that the probability distribution
of Xn+1 given X, = X, and thepast X; : ] - nj 1
depends only on x and does not depend on the values
of X; :j - nj lorn. Inparticular, if the set S of
vaues f X,g can take, known as the state space is -
nite or countable, this reduces to specifying a matrix
known as the transition probability matrix P = ((p;j))
where for any two valuesi;j in S, pjj isthe probability
that X,,, =] given X,, = i, i.e,, of moving from state
| to state j in one time unit. If the state space S is
not countable then one has to specify a transition ker-
nel or transition function P(x;®, where P(x;A) isthe
probability of moving from x into A in one step, i.e,
P(X,:1 2 AjX,, = X). Given the transition probability
and the probability distribution of the initial value X,
one can construct the joint probability distribution of
fX;j:0- j- ngforany niten. For example, in the
countable state space case

P(Xo = g Xy =g X =1y)
= P(Xo= 10)Piois Piziz - Pin; 1in (2

as can be shown by using the Markov property and in-
duction. Indeed
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= pinilinP(XO: iO;:::;Xnil: inil):

A probability distribution %is called stationary or in-
variant for a transition probability P or the associated
Markov chain fX,g if the probability distribution of
Xo is Vathen the same is true for all n, 1. Thusin
the countable st ate space case a probability distribution
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Ya= 1% :1 2 Sgisstationary for atransition probability
matrix P if for each j in S,

P(Xlzj):X. P(Xlzijo: I)P(Xo: I)
'oX
= %p=PXe=))=% (9

i
X
i.e, foreachj, % = %p;. In vector natation it says

|
Ya= (Ya;%;::)) is a left eigenvector of the matrix P
with eigenvalue 1 and

YVi= YP: ()

Similarly, if S isa continuum a probability distribution
Yawith density p(x) isstationary for thetransition kernel
P(¢q if
z z
Y{A) = p(x)dx = P(x;A)p(x)dx

A S

for all A %48S.

In order to state LLN for Markov chains onemore nation
isneeded. A Markov chain f X,,gwith a countable state
space S and transition probability matrix P~ ((p;)) is
said to be irreducible if for any two statesi and j the
probability of the Markov chain visitingj starting from
i is positive. That is, for somen, 1p” ~ P(X, =
jJXo = 1) isstrictly greater than zero. Thereisa smilar
notion of irreducihility for thegenera state space case. It
is known as Harris or Doeblin irreducibility. For details
on this somewhat advanced topic seeRabert and Casella

[1].

LLN for Markov Chains: Let fX,g, o bea Markov
chain with a countable state space S and a transtion
probability matrix P. Supposeit isirreducible and there
is a sationary probability distribution %2~ (Y4 :1 2 S).
Then, for any bounded function h: S! R and for any
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initial distribution of X

1 %! X
0 h(X;) ! h(j )% (5)

i=0 j
in probability asn! 1.

A similar LLN holdswhen thestat espace S isnot count-
able. Thelimit valuein (5) will be the integral of h with
respect to thestationary distribution ¥ A suzx cient con-
dition for the validity of this LLN is that the Markov
chain f X ,g be Harris irreducible and have a stationary
distribution ¥4 There are other su+ cient conditions as
well.

Noticethat thelimit isthe expected value of h(X ) when
Xo has the distribution %2 That is, the time average
converges to the space average (in steady state) asn !
1 . The samelaw of large numbershaddsfor the general
state space case assuming Harris irreducibility.

How doesthis LLN get used in applications?

Here is the essence of the Markov Chain Monte Carlo
(MCMC) method.

Given a probability distribution ¥s0n a set S, and a func-
tionh on S supposeit is desired tocomputetlge‘integral
of f with respect to ¥4, which reducesto f (j)% in

the countable case. One looks for an irrenluci]ble Markov
chain f X,g with S as its state space and % as its sa-
tionary digtribution. Then, starting from some initia
value X,; run the Markov chain fX;g for a period of
time, say 0;1;2;:::nj 1and o®er asan estimate

1%
= TG (6)

0
X
BytheLLN (5), thisestimate! , will bedoseto  h(j)%
i
for large n.
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This method is known as Markov Chain Monte Carlo
@/ICMC). In particular, if one isinterested in ¥4A) ~
Y4 for some subset A %2 S then by LLN (5 this

i2A
reduces to
% 1

Ta(X;) ! YA)
0

"(A)

S I

in probability asn! 1 ; wherela(X;) = 1ifX; 2 A
and O otherwise. In other words % (A) is the sample
proportion of viststo A duringf0;1;2:::nj 1g by the
Markov chain.

An irreducible Markov chain fX,g with a countable
state space S is called aperiodic if for somei 2 S the
greatet common divisor, g.cd.fn : p™ > 0g = 1
Then, in addition to the LLN (5), the following result
on the convergence of P(X,, = j) holds, namely, that:

X . .
IPXa=1j)i %!t 0 ()
i
asn! 1, forany initial distribution of X,. Thismeans
that for large n the probability distribution of X, isclose
to Y.

Thereisaresult similar to(7) for thegeneral state space
case that asserts that under suitable conditions, the
probability distribution of X, iscloseto%asn! 1.

This suggests that instead of doing one run of length n,
one could do N independent runs each of length m so
that n 2 Nm and then from the it" run use only the
m'" observation, say, X i and o®er the estimate

e 27 X): €
N :m N m;i/-

i=1

There are ather variations as well.
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3. Special M arkov Chains Used in MCMC
3.1 Metropolis{Hastings Algorithm

Let S bea niteor countablese. Let ¥be a probability
distribution on S. (Yais called the target distribution.)
Let Q° ((qg;)) be atransition probability matrix such
that for each i, it is computationally easy to generate
a sample from the distribution fg; : j 2 Sg. Then
generate a Markov chain f X ,g as follows.

Step 1. If X,, = i, rst sample from the distribution
fgj :j 2 Sg and denote that observation Y.

Step 2: Choose Xp+1 from the two values X,, and Y,
according to the probability distribution

I:)(Xn+l = Ynjxn;Yn) = 1/éxn;Yn)

P(Xn+1= XnjXni Yn) = 1i %X, Ya); (9
where the “acceptance probability' 1£¢ @ is given by
(1/ 4 )
— 1) — . - mi #4Yi,
Ya = i) = YXi; X)) = min 71 10
§ = i) = Yxi) v, (10)

for all (i;j) suchthat %q; > 0. It isnot di+ cult to ver-
ify that f X,g is a Markov chain with transition proba-
bility matrix P = ((pj)) given by
8
_ < le/*?ip
Pi=. 1 pi

k6 i

: : (11)

Q is called the ‘proposa transition probability’ and %2
the “acceptance praobability’. A most useful feature of
thistranstion mechanism P isthat P and Yasatisfy the
so called detailed balance condition:

vapy = Ypy;  for all i;j: (12)
This implies that for any |
X X
1/{191 = J/jl p“ = ]/f, (13)
i i
vy
=S
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That is, Yais a stationary probability distribution for P.

Now assume that S isirreducible w.r.t. Q and % > 0
foralliinS. Then it can beshown that P isirreducible
and since it has a stationary distribution ¥2and LLN
(5) is available. This algorithm is thus a very °exible
and useful one. T he choice of Q is subject only to the
condition that S isirreducible w.r.t. Q. Clearly, it isno
loss of generality to assume that % > O for all i in S.
A sut cient condition for the aperiodicity of P is that
pii > O for somei or equivalently

X
g7 < L
i6i
A suzx cient condition for thisisthat there exists a pair
(i;)) such that %q; > 0 and %q; < %q;.

Recall that if P isaperiodic then both the LLN (5) and
(7) hold. If S isnat nite or countable but isa con-
tinuum and the target distribution ¥{® has a density
p(9 then one proceeds as follows. Let Q be a trans-
tion function such that for each x, Q(x; 9 has a density
g(x;y). Then proceed asin the discrete case but set the
“acceptance probability' “£x;y) to be

Comayin
POX)(x; )

for all (x;y) such that p(x)q(x;y) > 0. Another useful
feature of the above algorithm is that it is enough to
know f%g upto a multiplicative constant as in the de-
nition of ‘the acceptance probability' ¥£¢ @, only the
ratio fj;- need to be calculated. This is useful in (i)
Bayesian statistical applications of MCMC for calcu-
lating the moments of the posterior distribution of the
parameters given the data; and (ii) in image proocess
ing and statistical mechanics where the set S consists
of con gurations over a multidimensional grid of pixels
where in each pixel thereisa xed number of levelsand

“x;y) = min
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the probability distribution is speci ed via a Gibbs po-
tential function whose normalising constant (‘partition
function’) is not easy to compute as shown below in a
smple example.

Example 1 (Statistical Mechanics Image Processing)
Consider a 3£ 3 sguare of nine pixds and suppose in
each pixel the colour leve is either a0 or 1. A typical
con guration wis avector w= (wi; : 1- i;j - 3) with
9 coordinates and each w;; isOor 1.

Thus, the set S of all con gurations has 2° = 512 ele-
ments. Suppose thereisa potentia function' V : S'!
(0;1 ) and for each w

w) = cé VW,
where > Oisaknown constant and c is thie normalising
N1 — : P -
constant (Z("))' * with Z(") equalling el V(W
w2S

known asthe "partition function'. For each con guration
w de ne its neighbourhood N (w) as the set consisting
of all con gurations w® such that w and w° di®er exactly
at one pixel. Thus in our example each w will have 9
neighbours. Now suppose in the Metropolis{ Hastings
algorithm for this context ‘propaosal transition Q' isthe
random walk' transition, i.e,

Q:w® = é if w02 N (w)

and O ot herwise.

Here the “accept ance probability' “4w;wf reducesto
w: WO = minfe VWi V) 1g for wo2 N (w):

Thus, for theactual transition P, at each step, given the
present con guration w, choose one of the neighbours
wPof w at random with uniform distribution and move
there if V(W% > V(w), otherwise stay at w. That is,
thecon guration at the next step iswlif V(w9 > V(w)
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or witself. If V(@ is not a constant function then one
can show that P is aperiodic. Snce random walk Q' is
irreducible, P isalso so. So P isirreducible aperiodic
and has Ysasits stationary distribution.

Starting from someinitial con guration, say, wij = O for
all i;j, one can run thisMarkov chajn f X,,g by the easy-
to-run Markov chain and estimate h(w)¥{w) for any

w2S

. P
function h(¢ on S by * X h(X;).

Gibbs Sampler

In many applications such as statistical mechanics, im-
age processing, Bayesan datistics the targe distribu-
tion Y4is a high-dimensional multivariate distribution.
For example, in the smple example of the last sec-
tion each con guration has nine coordinates. In image
processing typically onehas N £ N squarewith N = 256
and each pixel hask , 2 possiblevalues. T hus each con-

“guration has(256)2 components and S has k%)’ con-
~gurations. Tosimulate a random con guration from a
target distribution ¥over such alarge S isnot an easy
task. The Gibbs sampler generates an irreducible aperi-
odic Markov chain with %as its stationary distribution.
To run this Markov chain it sut ces to generat e obser-
vations from univariate distributions. We now describe
the Gibbs sampler in the context of a bivariate probabil-
ity distribution. Let ¥4be a probability distribution of a
bivariate random vector (X;Y). For each x, let P(x;
be the conditional probability distribution of Y given
X = Xx. Thus, if Y4is a discrete probability distribution,
P(x;;y;) isthe conditional probability that Y = y; given
X = x;. Similarly, let Q(y; 9 bethe conditiona prob-
ability distribution of X given Y = y. Natice that for
each X, P(x; 9 is a univariate distribution and for each
y, Q(y; ¢ isalso a univariate distribution. Now generate
a bivariate Markov chain Z,, = (X,,;Y,) as fdlows:

Start with some X, = Xo. Then generate an observa-

YUY
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tion Yo from the distribution P (xo; §. Next generate an
observation X; from Q(Yy; §. Next generate an obser-
vation Y; from P(X ;9 and so on. At stagen if Z, =
(Xn; Yn) isknown then generate X .+ 1 from Q(Y,; ¢ and
Yn+1 from P(X,+1; Q. If Yaisadisarete distribution con-
centrated on f(x;;y) :1- i - K;1- j - Lgandif
Yg = YAxi;y;) then P(x;;y;) = 4= and

vy = Za.
Q(yj !Xi) - ]/ﬁ )

P P "
where Y4 = Y, Y4 = Y. Thus the transition
] i
probability R for the fZ,g chain is
Mgk = QU Xk P(Xi )

Yy Yo
Y4 Yae

It can be veri ed that this chain is irreducible, ape-
riodic and has %as its stationary distribution. T hus
LLN (5) and (7) hold in this case Thus for large n,
Z, can be viewed as a sample from a dis{ribution that
is close to Yaand one can approximate  h(i;j )% by
-+ P !
n

1=
Is very straightforward. If %is a probability distribu-

h(Xi;Yi). The multivariate extenson of the above
1

let Y%(x, i = (X1;X2;Xi; 1;Xi+1:::Xk)) denote the uni-
variate conditional distribution of X; given that X, ;

according to the univariate distribution %a(gx, ,) and
then generating X ,, according to the univariate distrib-

This method also works for continuous distributions.
We illustrate this by consigering the case of a bivariate

normal distribution. Let é be a bivariate (nor-
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mal) Gaussian random vector with 0 means and unit

variances and correlation coet cient ¥2 We write this as
My T N (“o'”_' 1 %)
Y 20 w1

It isapropety of the bivariate normal distribution that
the conditional distribution X given Y = y isunivariate
normal with mean ¥y and variance (1j %), i.e.,

(XjY =y)» N (%;1i %)
and similarly
(YiX = x)» N(¥;1i %A):

Using this property, Gibbs sampling proceeds as follows
to generate (X,;Yn);n=01;2;:::

1. Sart from a arbitrary value x, for X,.
Repeat the fdlowing stepsfor i = 0;1;:::;n.

2. Givenx; for X, draw a random samplefrom N (¥;;
1i %) and denoteit ;.

3. Giveny, for Y, draw arandom samplefrom N (% ;
1j %) and denoteit Xj, ;.

Thus we have (X;;¥;);1 = 0;1;2;:::;n. The theory of
Gibbs Sampling tells us that if n islarge then (x,;Vyn)
can be considered to be a random sample whose proba-
bility distribution is close to

\ Mol "1
AR

We used this Gibbs sampling to generate a random sam-
ple of 1000 from

Hof

No( g7 g5 1 )
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(i.e., %= 0:5 using n = 1000. We present the histogram
of these 1000 values of x, representing the marginal dis-
tribution of X, overlaid with the ssandard normal curve,
which is the theoretical marginal distribution of X in
Figure 1. We notice that the histogram is a very good
approximation to the standard normal curve.
Why does Gibbs sampling work? Recall that a su+ cient
condition for the LLN (5) and the limit result (7) is
that an appropriate irreducibility condition holds and a
stationary distribution exists. We shall verify the latter
for the chain f X,,g in our example. From steps 2 and 3
of the procedure outlined above, it isnot dit cult to see
that one can write
q
Yi=¥Xi+ 1 87,
and q
Xis1= Wi+ 1i %o
where ”; and » areindependent N (0; 1) (standard nor-
mal) random variablesand independent of X;. Thusthe
sequencef X g satis esthe stochastic di®erence equation
TR
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Xir1 = 1/%Xi + U1
where

q q
Us1=% 1] i+ 1i ¥ »:
Since “i;» are independent N (0;1) random variables,
U.1 being a linear combination of “; and » is also a
normally distributed random variable with mean 0 and
variance Y2(1; A+ (1i “4) = 1 A AlofUg ;
beingi.i.d., makes f X;g; o a Markov chain. It turns out
that theirreducibility condition holds here. Turning to
stationarity, note that if X4 isan N (0;1) random vari-
able, then X, = %X, + U; is also a N(0;1) random
variable, since thevariance of X is%+ 1i ¥4 = 1and
themean of X, is 0. This makes the standard N (0; 1)
distribution a stationary distribution for fX,,g. Thus
both the LLN and the convergence of the distribution
of Xn, i.e, the analogues of (5 and (7) are valid here.
Hence one can expect the histogram of the samplef x; g}
to be close to the standard N (0; 1) density and also re-
gard the dbservation x, as a sample from a distribution
closeto N (0; 1).

A good referencefor MCM C methodsistherecent book
of Robert and Casella [1]. For Markov chainson discrete
spaces, see Hoel, Port and Stone[2]. For Markov chains
on general state spaces, see Meyn and Tweedie [3]. For
someinteresting examplesof Markov chains, see Athreya

[4].

The computations cited in this article were carried out
using Systat Statistical Software.
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