© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 514-516 doi:10.1242/jeb.151324

he Company of
‘Blologlsts

CLASSICS

Eppur si vola (and yet it
flies)

Sanjay Sane discusses the impact of Charles
Ellington’s classic series of papers, ‘The
aerodynamics of hovering insect flight’ parts
I-VI, published in Philosophical Transactions
of the Royal Society of London in 1984.

In his book ‘Le Vol des Insectes’, which was
published in 1934, the French entomologist
Antoine Magnan mentioned in passing that
when he and his assistant, the
mathematician André Sainte-Lagug,
applied the conventional laws of fixed-wing
aerodynamics to flapping wings, they were
unable to explain how insects could fly
(Magnan, 1934). Thus was born the
infamous ‘bumblebee paradox’, much to the
annoyance of many future generations of
insect flight researchers (McMasters, 1989).
Yet, at the core of this myth was a genuine
problem: the principles of fixed wing flight
did indeed come up short in predicting how
insects could offset their body weight during
flight. This question formed the basis of
Charles P. Ellington’s seminal six paper
opus in 1984, entitled ‘The aerodynamics of
hovering insect flight’, parts I-VI, which
occupied a whole issue of the Philosophical
Transactions of the Royal Society of London
(Ellington, 1984a,b,c.d,e.f).

Ellington was a young American graduate
student in Torkel Weis-Fogh’s laboratory
at the University of Cambridge, UK.
Weis-Fogh had recently conducted an
expansive survey of wing movements in
diverse flying insects using state-of-the-

art high-speed cinematography (Weis-
Fogh, 1973). Having already made
several pioneering discoveries in
organismal biology, Weis-Fogh turned
his attention to the physical and neural
basis of insect flight (e.g. Sane, 2011).
His laboratory was a premier centre for
studies on all aspects of insect flight,
ranging from physics to physiology. This
exhaustive survey led Weis-Fogh to
suggest a theoretical framework called
‘the steady-state paradigm’ (later retooled
as the quasi-steady paradigm) in which
the moving wing could be viewed as a
series of instantaneous ‘snapshots’. In
each snapshot, the wing position and
attitude were assumed to be static relative
to a steady ambient flow. The whole
kinematic sequence of the moving wing
could then be viewed as a time series of
static states, each experiencing a steady
force that depends only on its
instantaneous state. From this sequence, a
time series of forces could be
reconstructed; however, it did not
incorporate the history-dependent effects,
such as those due to a vortex that changes
its strength with time. From his
investigations, Weis-Fogh concluded that
the steady-state (or quasi-steady)
paradigm could reasonably predict the
aerodynamic forces on a flapping wing. In
other words, the bumblebee paradox was
an anomaly in a few insects, but
unnecessary for most others.

In cases where the quasi-steady theory
failed, there must be specific unsteady
mechanisms that aid in enhancing lift.
One such mechanism was the clap-and-
fling, a novel aerodynamic mechanism
that Weis-Fogh proposed for enhanced lift
generation in certain small flying insects
(Weis-Fogh, 1973). This mechanism
caught the attention of the foremost fluid
mechanists of the time, Sir James
Lighthill (Lighthill, 1973), but it was by
no means generally explanatory of the
bumblebee paradox because very few
insects displayed clap-and-fling. This
meant that there were other unsteady
mechanisms that needed to be discovered.
Given the depth of knowledge in
aerodynamics of fixed-wing flight, it was
hard for aerodynamicists to fathom what
could possibly be still left undiscovered.

The discovery of clap-and-fling was
greeted with excitement because it was a
completely new mechanism. Perhaps
insects offered more solutions that had
eluded aeronautics engineers.

Following Weis-Fogh’s tragic death in
1975, the task of synthesizing the many
loose ends of this survey into a coherent
set of ideas and observations fell on the
shoulders of the young Ellington. Much
of what is published in ‘the Ellington,
1984 papers’ (as they are often referred)
emerges from his broad-ranging survey of
flying insects in which he not only re-
examined the quasi-steady theory but also
proposed a complete overhaul of the
theoretical set-up, and laid down the basic
mathematical language and concepts that
were necessary for such studies. Not
surprisingly, the Ellington papers became
absolutely indispensable for all future
studies on the physics of insect flight.

How was this opus constructed? In the first
of his six-part monograph (Ellington,
1984a), Ellington invoked the logical
construct of ‘proof-by-contradiction’ to
put the quasi-steady theory to a rigorous
test. He argued that if the mean lift required
to hover was greater than the maximum lift
predicted by the quasi-steady model, then
the model was insufficient. However, if the
maximum force calculated from the model
exceeded or equalled the mean forces for
hovering, then the quasi-steady model
remained unfalsified. When the available
data from the broad survey were put to this
litmus test, it came up short, thus reprising
the bumblebee paradox. This meant that
the existing theory needed to be revised to
explain how insects generate sufficient
forces for flight.

Ellington focused the next two parts on
describing in great detail the morphology
(Ellington, 1984b) and kinematics
(Ellington, 1984c) of wings during flight,
as well as the methodological details for
filming flying insects and reconstructing
their kinematics. He established standard
procedures for comparing the wing shapes
of all insects ranging in size from a few
millimetres to tens of centimetres, by
accounting for their dimensions. This
process, called ‘non-dimensionalization’,
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is just one of many procedures laid down
in these papers that have been embraced
by the entire field as an ‘industry
standard’. Although mostly descriptive,
these papers were certainly not lacking in
surprises. For instance, when Ellington
plotted the dimensionless higher-order
distributions (or moments) of wing area
against wing mass or virtual mass due to
accelerative effects, there emerged
extraordinarily tight correlations which he
was unable to explain using any available
concepts. He called these relationships the
‘laws of shape’, hinting at some
underlying evolutionary scaling rules
(Ellington, 1984b). Even three decades
later, these relationships remain
remarkably unexplored and scientifically
fresh.

What makes the above two descriptive
papers special is the deep scholarship and
their strongly comparative flavour. While
being able to synthesize the broader
information into concepts such as the laws
of shape, these papers also provided ready
reference tables for specific values on
specific insects that made them an
essential resource for later studies. I have
lost track of the number of times that I
have had to say, ‘Look up Ellington
II/III’, whenever students asked me
questions about the wing morphology or
shape of a specific insect wing, or the
kinematics of their movement.

Having dealt with the descriptive aspects
pertaining to flight, Ellington then
focused his attention on the core topic of
aerodynamics of flight in part IV
(Ellington, 1984d). He first elucidated the
basic elements of quasi-steady theory and
the various known unsteady (i.e. history-
dependent) effects. He drew extensively
from all available sources of information
on insect flight aerodynamics and applied
them to the data in diverse insects. In
doing so, he had to refer to literature well
beyond the conventional boundaries of a
biological study, to include concepts from
helicopter and aerofoil theory. Based on
these investigations, he concluded that the
existing quasi-steady theory, when
applied to insect flight, was insufficient
and perhaps incomplete. To complete it
required the inclusion of the aerodynamic
effects of wing rotation at the end of each
stroke and Ellington again made specific
recommendations. It also required
inclusion of specific history-dependent
effects such as the Wagner effect, in
which the forces generated by an aerofoil

are influenced by its proximity to a vortex
that has just been shed, or the clap-and-
fling in which the proximity of two
aerofoils to each other affects their
aerodynamic forces.

Next, in part V, Ellington proposed a
completely new theoretical structure,
called the ‘vortex theory’ in which he
used averaged flow parameters around a
flapping wing to deduce lift (Ellington,
1984e¢). This theory was inspired by the
helicopter or propeller (or Rankine—
Froude) theory, in which a steadily
rotating propeller could be idealized into
an ‘actuator disc’ — a pulsating disc that
generated periodic momentum pulses, not
unlike those generated by the flap of every
wing. A similar theory was developed in
parallel by Jeremy Rayner for birds
(Rayner, 1979a,b), and Ellington made
explicit comparisons between Rayner’s
theory and his own. For the most part, the
two theories agreed with each other,
which was not surprising, because their
basic assumptions were similar. However,
there were minor differences which
Ellington pointed out, mostly due to
different assumptions for birds versus
insects. Both theories focused on
averaged wakes rather than instantaneous
forces, which greatly constrained their
scope. Nevertheless, they served as a
source of inspiration for several studies on
both avian and entomological flight in
subsequent decades. They were
particularly useful for field-based studies
in which detailed wing kinematics were
not easy to acquire.

In the final paper in this series, Ellington
applied these ideas to derive quantities,
such as power, efficiency and elastic
storage, to bridge the gap between physics
and physiology (Ellington, 1984f). He
presented an accounting scheme for
mechanical power as the sum of
aerodynamic and inertial power. This
scheme was strongly grounded in
measurements and experiments, with
aerodynamic power being divided into
induced, profile and parasite power. Much
of aerodynamic theory comes to bear in
deriving these quantities from
reconstructions of wing movements and
morphological measurements. This made
paper VI a particularly useful reference
for researchers studying the role of flight
muscles and energetics.

Collectively, these papers completely
transformed the field of insect flight. They

provided a common language that could
be understood by biologists as well as
aeronautical engineers. Ellington struck a
very fine balance between mathematical
rigour on the one hand and comparative
approach on the other; these papers are as
useful to taxonomists wondering about
how wing shape changes from one order
of insects to another, as they are to
aerodynamicists who wish to model the
forces on a flapping wing of any shape.
This 1984 issue of Philosophical
Transactions of the Royal Society of
London rapidly became a must-read for all
students of the topic. My PhD advisor
owned a bound, much-battered and
coffee-stained copy filled with many
scribbles in the margins. My own copy
has suffered a similar fate, and is one of
my most prized possessions. It is a
staggering fact that this was Ellington’s
graduate work, for which he received a
PhD in 1982.

In the decades following the publication
of the Ellington papers, the insect flight
problem became a paradox no more
(Sane, 2003). In the mid-1990s, detailed
studies on smoke flows around insect
wings by Ellington and his colleagues led
to the discovery of the leading edge
vortices, and a large piece of the insect
flight puzzle fell into place (Ellington

et al., 1996). Through the efforts of many
international research teams, this question
now stands experimentally resolved and
the forces on insect wings can be
analytically calculated using the quasi-
steady model (Sane and Dickinson, 2002)
or computationally solved using full
Navier—Stokes solvers (Liu and Kawachi,
1998; Liu et al., 1998; Sun and Tang,
2002). The flows around flapping wings
can be simulated by computational
methods or visualized using state-of-the-
art particle image velocimetry techniques
in both models (Lehmann et al., 2005)
and real insects (Bomphrey, 2006). Much
of the focus now is on using these
principles to develop small flapping
robots that are inspired by insects, or to
understand other aspects of flight as it
relates to ecology or neurobiology. The
Ellington 1984 papers are undoubtedly
the centrepiece of all these achievements
and continue to guide our thinking on
these topics.

Sanjay P. Sane

National Centre for Biological Sciences,
Tata Institute of Fundamental Research
sane@ncbs.res.in
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