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Incompressible fluid flow in smooth rectangular ducts at working streamwise velocities is turbulent because of re-
sistance of the four side-walls. A second feature of such flows is generation of secondary currents, though weak, in
transverse cross sections. These secondary currents cause additional flow resistance, resulting in pressure drop in the
direction of the primary flow. A number of experimental studies have been reported on the turbulence structure and
consequent geometrical structures of the flow. In particular, the two diagonals and the pair of bisectors of the side walls
divide a cross section into eight cells, in each of which vortical patches of motion take place. In this paper, it is shown
that the vortical motion in a cell is kinematically analogous to the torsion problem of a prismatic isotropic elastic beam.
Based on experimental results, the patch vortex in a cell is modeled to have elliptic shape with the major axis thrust
toward a corner of the duct, giving a mathematical model of the flow field. Using the expressions for the transverse
velocity components in the total momentum equation, with 1/pth power law where p = 7 for the streamwise velocity,
an equation is obtained between the side-wall resistance due to the secondary flow and the vorticity in each cell of divi-
sion of the duct. Two particular cases are considered in numerical detail when the duct is square and when the height
of the duct is one-half of the base length. For experimental validation of the side-wall resiatance formulae, additional
experimental research is needed.

KEY WORDS: secondary turbulent flow, rectangular duct, vortex patch, torsion problem of prismatic
isotropic beams, side-wall shear resistance

1. INTRODUCTION

Incompressible turbulent flows in straight rectangulartsliehannels are of importance in many engineering prasgtice
such as in air-conditioning systems and other types of hedttasgers, rotating machineries, and in nuclear-reactor
channels. Fully developed turbulent flows are often in ttezsees due to wall resistance, which is generally three
dimensional in nature. The four corners of the duct beinthést from the central axis of the duct compared to
the distances from the opposite pair of walls, there is greffux in the corner directions compared to that in the
directions of the side bisectors of the walls of the duct.gfiratically due to such velocity differential, secondarwflo

is generated in transverse sections of the duct. This phenomwas first observed by Nikuradze (1926), who noted
that the axial isovels bulged outward toward the cornere@®fiuct. In his book, Prandtl (1952), gives a classification
that the mean streamwise vorticity in the helical turbufeaw arises not only from the mean flow skewness, but also
from the inhomogeneity of the anisotropic wall turbulen@eantification of the secondary flow was first reported by
Hoagland (1960) by hot-wire anemometer technique. Thisrtiee was further improved in accuracy by Brundrett
and Baines (1964), Gessner (1973), Gessner and Jones (&4883)aunder and Ying (1972). Further improvement
in experimental data was achieved by Melling and Whitela@7@) by the use of laser Doppler anemometer. It
is concluded from the experimental studies that the secgritlav is weak, being about 1% of the streamwise
velocity, but causing strong influence on the overall as agllocal properties of flow. Other quantities of interest,
such as measurement of mean velocity profiles, pressuremltbp streamwise direction, and peripheral wall shear
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stress distribution have been given by Leutheusser (1968Bpamed and Brundrett (1971). A complete description
of turbulent flow in square ducts was provided by Brundrett Baines (1964), measuring all six components of
Reynolds stress as well as the three components of the misnityeTlheir finding is that kinetically, the secondary
current is caused by Reynolds shear stress in planes paoate duct cross sections, where the indications are that
the shear stresses are caused by gradient of normal stiesmmsexamination of the result of turbulence production,
they also conclude that the axial vorticity cannot exisaiminar flows. Perkins (1970) gives a theory for the direction
of the secondary currents based on a simple model of anfgotrarbulence at a corner boundary layer. Gessner
(1973), deals with developing turbulent flow along a corhiershows that a transverse flow is initiated and directed
toward a corner as a result of turbulent shear stress grtattiemal to the bisector and that the anisotropy of turbulent
normal stress does not play a major role in the generatioraufrelary flow. The accurate measurements of Melling
and Whitelaw (1976) quantitatively justify the earlier fings after obtaining plots from experimental measurements
for contours of streamwise velocity and turbulence intgnsi developing flows and all the three mean velocity
components and five of the six Reynolds stresses in nealjydeleloped flow.

In this paper, a uniformly steady fully developed turbulémiv is considered in a straight rectangular horizontal
duct. Assuming the flow to be ideally symmetric about the tvamdnals and the two central bisector axes, it is argued
that the secondary flow is vortical in each of the eight cells ivhich a cross section can be divided by the four axes
of symmetry. This circulatory cellular subdivision is suped by experimental findings of Melling and Whitelaw
(1976). For the weak secondary circulatory flows, the Reysmalveraged Navier—Stokes (RANS) equations reduce
to the continuity equation for the axial vorticity and anabdtreamwise momentum equation involving the gradient
of components of the Reynolds stress. The experimentaligrold circulatory motion in a cell is modeled by an
elliptic patch vortex. For this model, the total momentunuaipn in the streamwise direction yields a formula for
the shear resistance exerted on the walls of the duct, irstefrthe axial cellular vorticity. Two particular cases are
numerically considered to derive explicit formulae for fleav resistance: in a square duct and that in a rectangular
duct, one pair of whose parallel sides is one-half of thergtiag.

2. GOVERNING EQUATIONS OF THE FLOW

Let the width and height of the duct be 2 and Pespectively, so that the length scale is chosen to be nmrdiional

at the outset, as schematically shown in Fig. 1. TakingXhaxis along the axis of the duct in the direction of the
flow, theY axis parallel to the base, and teaxis in the vertical direction, the velocity at any pofz, y, z) has
componentgu, v, w) that can be split into time-averaged componénts, @) and fluctuationgu’, v, w’) due to
turbulence generated by the four sides of the duct. Thus,

u=a+u, v=0+1, w=w+u (1)

These components satisfy the continuity equation
ou n ov n ow
Ooxr 0y 0z

and the forward streamwise momentum equation

-0 )

ou _odu _du _0u 1 0p » 1ow?) 10t, 101,.
The momentum equations in thygand = directions are of second-order smallness in a transveese @nd are are
therefore not required. In Eq. (3),= pressurey = kinematic coefficient of viscosity;,., = —u/v/, 1., = —u'w’
are the components of Reynolds shear stress. Since it imadsihat the flow is steady state and uniform in the
direction,d(-)/0t = 9(-)/0x = 0. Moreover, since the motion is assumed to be fully turbutére viscous term

becomes negligible and so Egs. (2) and (3) reduce to
o 0w
dy 0z

3)

=0 (4)
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FIG. 1. Forward flow with mean velocity/ and surface profile of the streamwise velodaity:; y; z)

and
_Ou _Ou :_L OTgy } 0Ty,

”a_y“”&_p oy p Oz

Equations (4) and (5) are the only two equations that goveegrfive unknown quantitiesi, v, w, Ty, andt,..
Hence, suitable flow modeling is required using availabkagies.

()

3. FLOW MODEL

The profile of the streamwise velocityat a point(x, y, z) is shown in Fig. 1. It is predominantly controlled by “law
of the wall” applied to the sides of the duct. This law may bevamiently assumed to be given by the power law
with some exponent/b. The value ofp is assumed to be equal to 7 as in the case of an infinite plaméiqi®&mng,
1979, p. 590). Noted that near the four corners of a secti@nyelocity is of slightly greater magnitude, as stated in
the Introduction. This increased value is however ignocediifficulty in modeling the exact profile af. Neglecting
the very small discrepency on this acoounis modeled here in the form

= Up (1— )17 {1 _ (%)2} v (6)

wherelUy = constant. I is the mean velocity of flow as depicted in Fig. 1, then follogvEq. (6)

TN 0 T e e

(Gradshteyn and Ryzhik, 1980, p. 369). Foi7, I'(1/7 4+ 1) andI'(2/7 + 1) are evaluated as 0.93542 and 0.89972,
respectively, using an approximation formula ft: + 1), (0 < = < 1) (Abramowitz and Stegun, 1972, p. 257).
Equation (7) forp = 7 then becomes

U = 0.850230, (8)

The primary streamwise flow profile afgiven by Eq. (6) in a cross section of the duct is symmetribwéspect
to y and z. The secondary flow is represented dwndw, governed by Eq. (4). The streamlines of this flow are
therefore determined by the stream functipfy, z) that satisfies Eq. (4) such that

o G

2% mzfa—y 9)

’[_]:
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The secondary flow is circulatory, because the domain i®dlds is determined by a vorticity vector parallel to
the streamwise axis. If w is the algebraic value of the vorticity measured in ¢tleckwise sensehen using Eq. (4)

Clgow ovy 1,
—o=35(3, " 5.)="3"
or,
VA =2w (10)

The rectangular boundary being a streamlihes constant along the boundary. For the weak secondary flaw, if
is assumed that the vorticity is nearly uniform over a cross section of the duct, then EQ) &hd the boundary
condition show thath /(—w) is analogous to the Prandl’s stress function for the saluithe torsion of an isotropic
elastic prismatic beam (Sokolnikoff, 1956, p. 116). ThauSoh for a rectangular beam shows that the solution is
not only symmetric about the axesofindz but also about the diagonals of the beam (Sokolnikoff, 1956,33).
This type of symmetry is also roughly observed in the casecfangular duct flow (Melling and Whitelaw, 1976,
Fig. 13). A schematic of the flow is shown in Fig. 2. In the figuttee flow along the two axes converges toward
the center, while the flow along the bisecting diagonalsrdes toward the four corners. The circulatory flow in
each of the octants, starting from the first, are thus assumled alternately clockwise and anti-clockwise. A small
portion of the latter flow near the corners is drawn in to theémaial flow parallel to ther axis, resulting in some
augmentation in the value af Similarly the converging flow toward the center also augtméme streamwise flow
but the proportion is insignificant as the magnitude of theashwise flow is comparatively much larger.

4. MATHEMATICAL MODELING OF THE SECONDARY FLOW

From the scheme of the model described in the precedingsedtis clear that it is necessary to consider only one
octant of the eight triangular divisions of the rectanglee Mmathematical models for the remaining triangular regjion
are obtainable by simple coordinate transformation. Infdtlewing the lower right-angled triangle bounded by the
linesy = 0,z = —h, andz = —hy is considered for qualitative comparison with the experitaeobservations of
Melling and Whitelaw (1976). Assuming to be constant in this domain, let
1
\yzxp—é(y%%), hy+2<0, 0<y<1l —h<z<O0 (11)
then for Eq. (10),
V20 =0 (12)

in the triangular domain. The boundatyof the region is a streamline along which the stream funafionconstant

=0, (say), then from Eq. (11)
U= —% (y?>+2%), on C (13)

—
7 ® (1,0 Y

(O? _h)

FIG. 2: Schematic of the secondary flow
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In the domain under consideration, the vortex motion islalise and therefore the vorticity must be positive
according to the definition adopted earlier. For the motiothe adjascent triangle of the fourth quadrants to be
changed to-w due to antisymmetry of the motion, similarly in the remaguells of the duct.

The function? /(—w) solves the the torsion problem of a right angled triangut@snpatic beam. An exact
solution of the problem when the triangle is isosceles={ 1 case), was given by Galerkin (Sokolnikoff, 1956,
p. 134). The solution for the triangular domain under comsition thus takes the form

(14)

v o1 , 2. sinh k, ((1/2) — 2') sin k,y + sinh k, ((1/2) — y) sink, 2’
w 2(y+2)+4; k2 sinh(k,/2)

wherez’ = z+ 1, (0 < 2’ < 1) is written for brevity, and:,, = (2n + 1) 7. Restoring the variable, the velocity

components of the circulating flow given by Eg. (9), using @d.), become

v 1 2. cosh k,((1/2) + z) sin k,y — sinh &, ((1/2) — ) coskn(z + 1)
w2Vt 4; k2 sinh(k,/2) (15)
% _ 7% o 4§: sinh k,,((1/2) 4 2) cos kny + cosh k,, ((1/2) — y) sink, (2 + 1) (16)

— k2 sinh(k, /2)
The velocity field given by Eqgs. (15) and (16) is plotted in.F3g The center of circulation is found to be at the
centroid of the triangular section. This type of flow modéldas the observation of Brundrett and Baines (1964).

Figure 13 of the experimental observation of the secondavy ffly Melling and Whitelaw [11], shows distinct
difference from the one shown in Fig. 3. The experimentad dabw oval type of swirling motion, pushed towards a
corner of the duct by the primary streamwise flow along the akic. If the oval-shaped vortex patch is modeled by
an ellipse of maximum area, with its center on the bisectmmfthe duct corner, then for constantin the region,
the problem is analogous to the torsion of an isotropic ieladitptic cylinder (Sokolnikoff, 1956, p. 121). To devglo
the model, leD’Y’, O’ Z’ be chosen as shown in Fig. 4, so that y andz’ = z + 1 as before. Also, if the major
and minor axes are chosen as ake%; andC'Z,, respectively, then

y1 = (v —yp) cosa — (2 — 2§) sin « (17a)

21 = (y —yo) sina — (2" — 2{) cosx (17b)

FIG. 3: Velocity field for uniform vorticityw
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where(yy, z5) are the coordinates of the centérof the ellipse. Ifr is the distance of’ from the corner(1, 0) and
2« is the angle made by the diagonal of the rectangle with the,liaen

yo=1—rcosa, zp=rsina (18)
It follows that
r=1/(1—y)? + 2 (19)
Let the semi-major and minor axes of the ellipseztandb, then its equation witl’ X; andCY; as axes is
2 2
Y1, A1
p + 2= 1 (20)

For maximum size of the ellipse, the diagopalr + z1/(r tan o) = 1 and the base of the trianglé= z, or using
Egs. (17a) and (17b);y1sin o + 21 cos o« = z{, must touch the ellipse. The condition of tangency for botithef
straight lines reduces to the condition

b? = tan® « (12 — a?) (21)

Assuming that the position a': (y;, z,) is known from experimental data subject to the condition tja=
(1 — yb) tan «, the area of the ellips€ = mab = 7 tan cav/r? — a? is maximum wher = r/+/2, which is
permissible ifyy > a cos & or from Eq. (18)a < sec & (1 — r cos &) = sec o« — 7. Hence,

a:min{%,secocfr} (22)

Equation (21) then determines the valué of
The equation of the ellipse (20) in parametric form becomes

y' = yh+a cosa cosd + /12 — a? sin & tan « sin ¢ (23a)
2 =z(+sina(vVr2—a?sind —a cosd) (23b)

where 0< ¢ < 2r. This form is convenient for computing the ellipse.
Referring toC'Y;, CZ; as axes of coordinates, the velocity componentsiare o /0z, w, = —op/dy; as

in Eq. (9), whered?p/dy? + 0% /922 = 2w within the ellipse (20) such thap = 0 on the boundary. Setting
U =19 — (w/2)(y? + 22), V2 = 0 such thatl /(—w) = (1/2) (y? + 2%). The solution of this problem is thus
identical to the solution of the torsion of an isotropiciit cylinder (Sokolnikoff, 1956, p. 121), which is given by

v 1a>-b>,, a?b?

U O UL 24
—w 2(12-1—1)2(yl Zl)+a2+b2 (24)

Z/

FIG. 4: Elliptic vortex model
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whereq, b are given by Egs. (22) and (21). Thus,

_ 2wa? _ 2wh?
UlszL w:*az—_’_bzyl (25)

Hence, by transformation to ti@'Y”’, O’Z’ system, and using the transformations (17a) and (17b)

_ _. 2w 2 2 .
U = U1 COS & + W1 Sin & = PR, (a®cosozy — b sin o yr)
o as+ (26a)
= {(a2 — b?) sin o cos o (y — yp) + (a® cos? o + b? sin? ) (2 — 26)}
_ . _ 2w 2 . 2
W = —1 Sin & 4 W1 cos ox = e (a®sin oc 21 + b cos o y1)
o a®+ (26b)

=~ {(a2 sin® o + b% cos® &) (v — yp) + (a® — b%) sin o cos ot (2 — z('))}
Equations (26a) and (26b) give the secondary flow veloaitiesto the elliptic patch vortex. The expressionsifor
andw in the originalO XY Z system of coordinates are obtained by replagihg y{ andz’ — z{ in Egs. (26a) and
(26b) byy — yo andz — zg, respectively. Due to maximum size of the ellipse, the Vikxoutside the patch close to
the triangular boundary enclosing the ellipse are satisfidgd approximately.

5. THE AVERAGED FORWARD MOMENTUM EQUATION

The forward momentum equation (5) has two unknown Reyndidarsstresses,, andt, .. For drawing conclusion
from this single equation, it is averaged over a cross seciich gives

1 “hy . ou i 1 /O —z/h 1 /1 —hy
/ / (T)—u + w—u) dzdy = = / Toy dz + —/ Taz dy = o (27)
y=0Jz=—h ay 0z PJo=—hn y=0 P y=0 z=—h P

where the shear stress across the two fluid surfaces0 andz = —hy vanishes because there is no interfacial
resistance from the adjacent zones (Fig. 2). The duct ufac—h induces a shear resistance= —7,,|,—_; per
unit area on the forward fluid flow, opposite to the axisrofThis results in the first term on the right-hand side of
Eqg. (27). Using the expressions foru, andw from Egs. (6), (26a), and (26b), Eq. (27) yields tgrthe expression

To . 4UoUJh 1 Y 2 2\ . 2 2 2 1.2
o __Zm/y—o/——l H(a —b%) sinx cos & (y — yo) + h(a® cos” o + b sin oc)(C—Co)}
_oN1/p—1/9 _ s2\1/p _ 1 2 2 2 2 B 2 12\ o B (28)
X y(L— L= AP — 2 { (0 sin? e+ B2 cos? &)y — yo) + h (a — 1?) sinax cos e (¢ o)}
X (L= P re - )t dcdy

The double integral in Eq. (28), consists of two parts wnitiéthin two pairs of braces. The two parts are singular for
y = land¢ = —1, respectively. The singularities of the two terms are nesddy setting; = 1—n? and( = ¢ — 1.
By these substitutions and again replacinigy y and(; by ¢, the equation can be written in the form

AUswh [ —(1-y") —(1-y")
St /U_O {2 -y) + ) /C__l (1- AP di+ By /C__l (1 - e
1 1-9)¥?
x(1=y") 2=y = 2 {(Ay = B+ Co) / (@ = 1@2- )P tde (29)
=0

-y
+B [ 0@ -nE-oMrtad -2y
=0
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where
Al = (a2 — bz) sinx cosx, By =nh (a2 cos® o + b? sin? «), C1=—-yoA1— (o By (30a)

Ay = a? sin® o + b? cos? &, Bi1=hA;, Co=—-yglr— (B> (30b)

Evaluation of the repeated integrals by numerical quadeasuconsidered in the next section.

6. NUMERICAL EXAMPLES

Two representative examples are considered in this seci@nforh = 1 (square duct) and = 1/2 (a rectangular
duct with one-half height compared to the width). Mellinglafithitelaw (1976) covers the case of a square duct, and
Fig. 13 of their experiment is suggestive of an elliptic patortex withy, = 0.40, z;, = 0.25 or,yo = 0.40 and

Co = —0.75. Equation (19) then gives = 0.65 with « = 7 /8. Equations (22) and (21) then approximately give
a = 0.43 andb = 0.20, and Eqs. (26a) and (26b) yield for the elliptic patch ublecity field

= w (0.45558y + 1.45550z + 0.90947) (31a)

W = —w (0.54442y + 0.45558z + 0.12388 (31b)
with the equation of the ellipse [Egs. (23a) and (23b)}in coordinates as

y = 0.40+ 0.39727cos ¢ + 0.07684sin ¢ (32a)

2 = —0.75+ 0.18551sin ¢ — 0.16455cos p, (0 < ¢ < 2n) (32b)

The vector plot of Egs. (31a) and (31b) together with thathef ¢llipse (32a) and (32b) is shown in Fig. 5. The
velocity plot near the center of the duct appears compaigtiarger than in the experiment of Melling and Whitelaw
(1976). It is due to the suctional effect of the primary flowthie central core of the duct.

The computation of the wall resistance from Eq. (29) requitamerical integration with respect goand
variables. This is accomplished by integrating the oytertegral by Simpson'’s rule by dividing the ran@@ 1) in
to 100 equal-sized panels, while evaluating the irhietegral by using the ADAPTIVESIMPSON subroutine given

FIG. 5: Velocity plot in an octant for a square duct
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in Bose (2009), which uses an adaptive selection of gridtpdor the Simpson’s rule. The procedure yields, using
Eq. (8),
2719 = 0.13690Uppw = 0.16102U pw (33)

The left-hand side of Eq. (33) represents the resistancerteafd flow by the base of length 2, on a unit length
of the duct. The other three walls of the duct exert identieaistance. Evidently, the resistance is increased by the
secondary circulation of flow.

In the second example, a rectangular duct with= 1/2, for whichx = (1/2) arctan(1/2) = 0.23183 is
considered. The center of the elliptic patch is taken to bg at 0.3, yieldingzy = (1 — yo) tanx ~ 0.17 and
therefore(y = —0.66. Accordingly, from Eq. (19); ~ 0.72, and from Egs. (21) and (22),~ 0.31 andb ~ 0.12.
From Eqs. (26a) and (26b) the velocity field in the verticathahus becomes

7 = w (0.33068y + 1.661362 + 0.44904) (34a)

@ = —w (0.33864y + 0.33068: + 0.00753 (34b)

and the equation of the ellipse from Egs. (23a) and (23h}ircoordinates is
y = 0.30+ 0.30171cos ¢ + 0.03525sin ¢ (35a)

2 = —0.33+ 0.14931sin ¢ — 0.07123cos p, (0< ¢ < 2n) (35b)

The vector plot of the velocity field given by Egs. (34a) andi{Band that of the ellipse (35a) and (35b) is given in
Fig. 6.
The computation of the wall resistance given by Eq. (29) ised out as in the case of a square duct. In this case
it is found that
2719 = 0.03192U, pw = 0.03754U pw (36)

Equation (36) gives the shear resistance by the base on #&ngth of the duct. Evidently, for the same value of
U, p, w the secondary flow resistance is lower in this case compar#tht of a square duct. From symmetry, the
upper wall whose length is also 2 exerts identical resigtalngt the two shorter vertical walls each of lengtheXert

a different shear resistanae per unit length of the wall on a unit length of the duct.can be simply determined

FIG. 6: Velocity plot in an octant for a rectangular duct= 1/2
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by consdering the vortical motion w in the upper triangle of the fourth quadrant. This yieldsinathe case of Eq.
(36),
2h 1y = 0.03754U pw

or sinceh = 1/2,
11 = 0.03754U pw 37)

Equation (36) gives the wall resistance to the secondarydioa vertical side of the duct. An equal amount of
resistance is exerted by the opposite side of the duct.

7. DISCUSSION AND CONCLUSIONS

Uniform steady turbulent incompressible fluid flow in regalar ducts is accompanied by vortical, secondary flow
in transverse sections of the duct. This secondary flow has bensistently detected in a number of experimental
studies by different authors using hot-wire as well as |Bggypler anemometers (LDA). According to Prandtl (1952),
kinematically the mean streamwise vorticity of the secopdlaw is caused by the mean flow skewness, and kineti-
cally by the inhomegeneity in anisotropy of the wall turlmde of the duct. The latter cause has been investigated by
a number of authors.

This paper begins from the Reynolds averaged Navier—Sti@#k&sIS) equations. For mean uniform flows in
the streamwise direction, the continuity equation kinécadlly governs the secondary motion in transverse sections
leading to a stream function which is analogous to the Praruiitess function that solves the torsion problem of an
isotropic prismatic elastic beam. The symmetry of the duth wespect to the pair of bisectors of the side walls and
the two diagonals, divides a cross section into eight eqaraspand it is sufficient to consider only one of the octants
for study (Fig. 2). If it is assumed that the vorticity in artat is nearly uniform as it is small, then the flow pattern
in a square duct is like that in Fig. 3. This flow pattern is likat of Brundrett and Baines (1964). However, the more
recent LDA measurements by Melling and Whitelaw (1976)datlks an oval-shaped vortical patch pushed toward
a corner of the duct by the mean streamwise flow. Assumingtielliorm of a corner patch, Figs. 5 and 6 show the
flow patterns for a square duct and a rectangular duct whaghths one-half of its base. The boundary condition in
the first model, though exactly satisfied, the condition ity @pproximately satisfied in the vortical patch model. In
the RANS momentum equations only the streamwise compogaitdignificance. In this equation the streamwise
mean velocity is approximately assumed to be given by thehlpower law of the wall, wherp ~ 7, such as in
Schlichting (1979). The transverse velocities are modeyettie elliptic patch. Integration of the momentum equation
over a cross section by numerical methods leads to an equgtimg the total wall resistance in terms of the vorticity
of the secondary flow and the primary mean flow velocity. \éiioh by well-controlled experimental data is required,
as those of Melling and Whitelaw (1976) show some skewndssteTis scope of applying the modeling method to
study the same problem for incompletely filled ducts or omatangular channels.
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