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Incompressible fluid flow in smooth rectangular ducts at working streamwise velocities is turbulent because of re-

sistance of the four side-walls. A second feature of such flows is generation of secondary currents, though weak, in

transverse cross sections. These secondary currents cause additional flow resistance, resulting in pressure drop in the

direction of the primary flow. A number of experimental studies have been reported on the turbulence structure and

consequent geometrical structures of the flow. In particular, the two diagonals and the pair of bisectors of the side walls

divide a cross section into eight cells, in each of which vortical patches of motion take place. In this paper, it is shown

that the vortical motion in a cell is kinematically analogous to the torsion problem of a prismatic isotropic elastic beam.

Based on experimental results, the patch vortex in a cell is modeled to have elliptic shape with the major axis thrust

toward a corner of the duct, giving a mathematical model of the flow field. Using the expressions for the transverse

velocity components in the total momentum equation, with 1/pth power law where p ≈ 7 for the streamwise velocity,

an equation is obtained between the side-wall resistance due to the secondary flow and the vorticity in each cell of divi-

sion of the duct. Two particular cases are considered in numerical detail when the duct is square and when the height

of the duct is one-half of the base length. For experimental validation of the side-wall resiatance formulae, additional

experimental research is needed.

KEY WORDS: secondary turbulent flow, rectangular duct, vortex patch, torsion problem of prismatic
isotropic beams, side-wall shear resistance

1. INTRODUCTION

Incompressible turbulent flows in straight rectangular ducts/channels are of importance in many engineering practices,
such as in air-conditioning systems and other types of heat exchangers, rotating machineries, and in nuclear-reactor
channels. Fully developed turbulent flows are often in thesecases due to wall resistance, which is generally three
dimensional in nature. The four corners of the duct being farthest from the central axis of the duct compared to
the distances from the opposite pair of walls, there is greater flux in the corner directions compared to that in the
directions of the side bisectors of the walls of the duct. Kinematically due to such velocity differential, secondary flow
is generated in transverse sections of the duct. This phenomenon was first observed by Nikuradze (1926), who noted
that the axial isovels bulged outward toward the corners of the duct. In his book, Prandtl (1952), gives a classification
that the mean streamwise vorticity in the helical turbulentflow arises not only from the mean flow skewness, but also
from the inhomogeneity of the anisotropic wall turbulence.Quantification of the secondary flow was first reported by
Hoagland (1960) by hot-wire anemometer technique. This technique was further improved in accuracy by Brundrett
and Baines (1964), Gessner (1973), Gessner and Jones (1965), and Launder and Ying (1972). Further improvement
in experimental data was achieved by Melling and Whitelaw (1976) by the use of laser Doppler anemometer. It
is concluded from the experimental studies that the secondary flow is weak, being about 1% of the streamwise
velocity, but causing strong influence on the overall as wellas local properties of flow. Other quantities of interest,
such as measurement of mean velocity profiles, pressure dropin the streamwise direction, and peripheral wall shear
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stress distribution have been given by Leutheusser (1963) and Ahmed and Brundrett (1971). A complete description
of turbulent flow in square ducts was provided by Brundrett and Baines (1964), measuring all six components of
Reynolds stress as well as the three components of the mean velocity. Their finding is that kinetically, the secondary
current is caused by Reynolds shear stress in planes parallel to the duct cross sections, where the indications are that
the shear stresses are caused by gradient of normal stresses. From examination of the result of turbulence production,
they also conclude that the axial vorticity cannot exist in laminar flows. Perkins (1970) gives a theory for the direction
of the secondary currents based on a simple model of anisotropic turbulence at a corner boundary layer. Gessner
(1973), deals with developing turbulent flow along a corner.He shows that a transverse flow is initiated and directed
toward a corner as a result of turbulent shear stress gradient normal to the bisector and that the anisotropy of turbulent
normal stress does not play a major role in the generation of secondary flow. The accurate measurements of Melling
and Whitelaw (1976) quantitatively justify the earlier findings after obtaining plots from experimental measurements
for contours of streamwise velocity and turbulence intensity in developing flows and all the three mean velocity
components and five of the six Reynolds stresses in nearly fully developed flow.

In this paper, a uniformly steady fully developed turbulentflow is considered in a straight rectangular horizontal
duct. Assuming the flow to be ideally symmetric about the two diagonals and the two central bisector axes, it is argued
that the secondary flow is vortical in each of the eight cells into which a cross section can be divided by the four axes
of symmetry. This circulatory cellular subdivision is supported by experimental findings of Melling and Whitelaw
(1976). For the weak secondary circulatory flows, the Reynolds averaged Navier–Stokes (RANS) equations reduce
to the continuity equation for the axial vorticity and an axial streamwise momentum equation involving the gradient
of components of the Reynolds stress. The experimentally observed circulatory motion in a cell is modeled by an
elliptic patch vortex. For this model, the total momentum equation in the streamwise direction yields a formula for
the shear resistance exerted on the walls of the duct, in terms of the axial cellular vorticity. Two particular cases are
numerically considered to derive explicit formulae for theflow resistance: in a square duct and that in a rectangular
duct, one pair of whose parallel sides is one-half of the other pair.

2. GOVERNING EQUATIONS OF THE FLOW

Let the width and height of the duct be 2 and 2h, respectively, so that the length scale is chosen to be nondimensional
at the outset, as schematically shown in Fig. 1. Taking theX axis along the axis of the duct in the direction of the
flow, theY axis parallel to the base, and theZ axis in the vertical direction, the velocity at any pointP (x, y, z) has
components(u, v, w) that can be split into time-averaged components(ū, v̄, w̄) and fluctuations(u′, v′, w′) due to
turbulence generated by the four sides of the duct. Thus,

u = ū+ u′, v = v̄ + v′, w = w̄ + w′ (1)

These components satisfy the continuity equation

∂ū

∂x
+

∂v̄

∂y
+

∂w̄

∂z
= 0 (2)

and the forward streamwise momentum equation

∂ū

∂t
+ ū

∂ū

∂x
+ v̄

∂ū

∂y
+ w̄

∂ū

∂z
= −1

ρ

∂p̄

∂x
+ ν∇2ū− 1

ρ

∂(u′2)

∂x
+

1
ρ

∂τxy
∂y

+
1
ρ

∂τxz
∂z

(3)

The momentum equations in they andz directions are of second-order smallness in a transverse plane and are are
therefore not required. In Eq. (3),̄p = pressure,ν = kinematic coefficient of viscosity,τxy = −u′v′, τxz = −u′w′

are the components of Reynolds shear stress. Since it is assumed that the flow is steady state and uniform in thex
direction,∂(·)/∂t = ∂(·)/∂x = 0. Moreover, since the motion is assumed to be fully turbulent, the viscous term
becomes negligible and so Eqs. (2) and (3) reduce to

∂v̄

∂y
+

∂w̄

∂z
= 0 (4)
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FIG. 1: Forward flow with mean velocityU and surface profile of the streamwise velocityū(x; y; z)

and

v̄
∂ū

∂y
+ w̄

∂ū

∂z
=

1
ρ

∂τxy
∂y

+
1
ρ

∂τxz
∂z

(5)

Equations (4) and (5) are the only two equations that govern the five unknown quantities:̄u, v̄, w̄, τxy, andτxz.
Hence, suitable flow modeling is required using available analogies.

3. FLOW MODEL

The profile of the streamwise velocitȳu at a point(x, y, z) is shown in Fig. 1. It is predominantly controlled by “law
of the wall” applied to the sides of the duct. This law may be conveniently assumed to be given by the power law
with some exponent 1/p. The value ofp is assumed to be equal to 7 as in the case of an infinite plane (Schlichting,
1979, p. 590). Noted that near the four corners of a section, the velocity is of slightly greater magnitude, as stated in
the Introduction. This increased value is however ignored for difficulty in modeling the exact profile of̄u. Neglecting
the very small discrepency on this acoount,ū is modeled here in the form

ū = U0 (1− y2)1/p
[

1−
( z

h

)2]1/p
(6)

whereU0 = constant. IfU is the mean velocity of flow as depicted in Fig. 1, then following Eq. (6)

U =
U0

h

∫ 1

0

∫ h

0
(1− y2)1/p)

[

1−
( z

h

)2]1/p
dy dz = U0

[

∫ π/2

0
cos(2/p+1) θ dθ

]2
= U0 24/p [Γ(1/p+ 1)]4

[Γ(2/p+ 2)]2
(7)

(Gradshteyn and Ryzhik, 1980, p. 369). For= 7, Γ(1/7+ 1) andΓ(2/7+ 1) are evaluated as 0.93542 and 0.89972,
respectively, using an approximation formula forΓ(x + 1), (0 ≤ x ≤ 1) (Abramowitz and Stegun, 1972, p. 257).
Equation (7) forp = 7 then becomes

U = 0.85023U0 (8)

The primary streamwise flow profile of̄u given by Eq. (6) in a cross section of the duct is symmetric with respect
to y andz. The secondary flow is represented byv̄ and w̄, governed by Eq. (4). The streamlines of this flow are
therefore determined by the stream functionψ(y, z) that satisfies Eq. (4) such that

v̄ =
∂ψ

∂z
, w̄ = −∂ψ

∂y
(9)
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The secondary flow is circulatory, because the domain is closed. It is determined by a vorticity vector parallel to
the streamwisex axis. Ifω is the algebraic value of the vorticity measured in theclockwise sense, then using Eq. (4)

−ω =
1
2

(∂w̄

∂y
− ∂v̄

∂z

)

= −1
2
∇2ψ

or,
∇2ψ = 2ω (10)

The rectangular boundary being a streamline,ψ = constant along the boundary. For the weak secondary flow, ifit
is assumed that the vorticityω is nearly uniform over a cross section of the duct, then Eq. (10) and the boundary
condition show thatψ/(−ω) is analogous to the Prandl’s stress function for the solution of the torsion of an isotropic
elastic prismatic beam (Sokolnikoff, 1956, p. 116). The solution for a rectangular beam shows that the solution is
not only symmetric about the axes ofy andz but also about the diagonals of the beam (Sokolnikoff, 1956,p. 133).
This type of symmetry is also roughly observed in the case of rectangular duct flow (Melling and Whitelaw, 1976,
Fig. 13). A schematic of the flow is shown in Fig. 2. In the figure, the flow along the two axes converges toward
the center, while the flow along the bisecting diagonals diverges toward the four corners. The circulatory flow in
each of the octants, starting from the first, are thus assumedto be alternately clockwise and anti-clockwise. A small
portion of the latter flow near the corners is drawn in to the main axial flow parallel to thex axis, resulting in some
augmentation in the value of̄u. Similarly the converging flow toward the center also augments the streamwise flow
but the proportion is insignificant as the magnitude of the streamwise flow is comparatively much larger.

4. MATHEMATICAL MODELING OF THE SECONDARY FLOW

From the scheme of the model described in the preceding section, it is clear that it is necessary to consider only one
octant of the eight triangular divisions of the rectangle. The mathematical models for the remaining triangular regions
are obtainable by simple coordinate transformation. In thefollowing the lower right-angled triangle bounded by the
linesy = 0, z = −h, andz = −hy is considered for qualitative comparison with the experimental observations of
Melling and Whitelaw (1976). Assumingω to be constant in this domain, let

Ψ = ψ− 1
2
(y2 + z2), hy + z < 0, 0 < y < 1, −h < z < 0 (11)

then for Eq. (10),
∇2Ψ = 0 (12)

in the triangular domain. The boundaryC of the region is a streamline along which the stream functionψ = constant
= 0, (say), then from Eq. (11)

Ψ = −ω
2
(y2 + z2), on C (13)

FIG. 2: Schematic of the secondary flow
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In the domain under consideration, the vortex motion is clockwise and therefore the vorticityωmust be positive
according to the definition adopted earlier. For the motion in the adjascent triangle of the fourth quadrant,ω is to be
changed to−ω due to antisymmetry of the motion, similarly in the remaining cells of the duct.

The functionΨ/(−ω) solves the the torsion problem of a right angled triangular prismatic beam. An exact
solution of the problem when the triangle is isosceles (h = 1 case), was given by Galerkin (Sokolnikoff, 1956,
p. 134). The solution for the triangular domain under consideration thus takes the form

Ψ

ω
= yz′ − 1

2
(y + z′) + 4

∞
∑

n=0

sinh kn((1/2)− z′) sin kny + sinh kn((1/2)− y) sin knz
′

k3
n sinh(kn/2)

(14)

wherez′ = z + 1, (0 < z′ < 1) is written for brevity, andkn = (2n + 1)π. Restoring the variablez, the velocity
components of the circulating flow given by Eq. (9), using Eq.(11), become

v̄

ω
=

1
2
+ y + z − 4

∞
∑

n=0

cosh kn((1/2) + z) sin kny − sinh kn((1/2)− y) cos kn(z + 1)
k2
n sinh(kn/2)

(15)

w̄

ω
= −1

2
− y − z + 4

∞
∑

n=0

sinh kn((1/2) + z) cos kny + cosh kn((1/2)− y) sin kn(z + 1)
k2
n sinh(kn/2)

(16)

The velocity field given by Eqs. (15) and (16) is plotted in Fig. 3. The center of circulation is found to be at the
centroid of the triangular section. This type of flow model follows the observation of Brundrett and Baines (1964).

Figure 13 of the experimental observation of the secondary flow by Melling and Whitelaw [11], shows distinct
difference from the one shown in Fig. 3. The experimental data show oval type of swirling motion, pushed towards a
corner of the duct by the primary streamwise flow along the axis ofx. If the oval-shaped vortex patch is modeled by
an ellipse of maximum area, with its center on the bisector from the duct corner, then for constantω in the region,
the problem is analogous to the torsion of an isotropic elastic elliptic cylinder (Sokolnikoff, 1956, p. 121). To develop
the model, letO′Y ′, O′Z ′ be chosen as shown in Fig. 4, so thaty′ = y andz′ = z + 1 as before. Also, if the major
and minor axes are chosen as axesCX1 andCZ1, respectively, then

y1 = (y′ − y′0) cosα− (z′ − z′0) sinα (17a)

z1 = (y′ − y′0) sinα− (z′ − z′0) cosα (17b)

FIG. 3: Velocity field for uniform vorticityω
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where(y′0, z
′

0) are the coordinates of the centerC of the ellipse. Ifr is the distance ofC from the corner(1, 0) and
2α is the angle made by the diagonal of the rectangle with the base, then

y′0 = 1− r cosα, z′0 = r sinα (18)

It follows that

r =
√

(1− y′0)
2 + z′20 (19)

Let the semi-major and minor axes of the ellipse bea andb, then its equation withCX1 andCY1 as axes is

y2
1

a2
+

z2
1

b2
= 1 (20)

For maximum size of the ellipse, the diagonaly1/r+ z1/(r tanα) = 1 and the base of the trianglez′ = z′0, or using
Eqs. (17a) and (17b),−y1 sinα + z1 cosα = z′0 must touch the ellipse. The condition of tangency for both ofthe
straight lines reduces to the condition

b2 = tan2α (r2 − a2) (21)

Assuming that the position ofC : (y′0, z
′

0) is known from experimental data subject to the condition that z′0 =

(1 − y′0) tanα, the area of the ellipseS = π ab = π tanα a
√
r2 − a2 is maximum whena = r/

√
2, which is

permissible ify′0 > a cosα or from Eq. (18),a < secα (1− r cosα) = secα− r. Hence,

a = min
{ r√

2
, secα− r

}

(22)

Equation (21) then determines the value ofb.
The equation of the ellipse (20) in parametric form becomes

y′ = y′0 + a cosα cosφ+
√

r2 − a2 sinα tanα sinφ (23a)

z′ = z′0 + sinα (
√

r2 − a2 sinφ− a cosφ) (23b)

where 0≤ φ ≤ 2π. This form is convenient for computing the ellipse.
Referring toCY1, CZ1 as axes of coordinates, the velocity components arev̄1 = ∂ψ/∂z, w̄1 = −∂ψ/∂y1 as

in Eq. (9), where∂2ψ/∂y2
1 + ∂2ψ/∂z2

1 = 2ω within the ellipse (20) such thatψ = 0 on the boundary. Setting
Ψ = ψ − (ω/2) (y2

1 + z2
1), ∇2Ψ = 0 such thatΨ/(−ω) = (1/2) (y2

1 + z2
1). The solution of this problem is thus

identical to the solution of the torsion of an isotropic elliptic cylinder (Sokolnikoff, 1956, p. 121), which is given by

Ψ

−ω =
1
2
a2 − b2

a2 + b2
(y2

1 − z2
1) +

a2b2

a2 + b2
(24)

FIG. 4: Elliptic vortex model
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wherea, b are given by Eqs. (22) and (21). Thus,

v̄1 =
2ωa2

a2 + b2
z1, w̄ = − 2ωb2

a2 + b2
y1 (25)

Hence, by transformation to theO′Y ′, O′Z ′ system, and using the transformations (17a) and (17b)

v̄ = v̄1 cosα+ w̄1 sinα =
2ω

a2 + b2
(a2 cosα z1 − b2 sinα y1)

=
2ω

a2 + b2

[

(a2 − b2) sinα cosα (y′ − y′0) + (a2 cos2α+ b2 sin2α) (z′ − z′0)
]

(26a)

w̄ = −v̄1 sinα+ w̄1 cosα = − 2ω
a2 + b2

(a2 sinα z1 + b2 cosα y1)

= − 2ω
a2 + b2

[

(a2 sin2α+ b2 cos2α) (y′ − y′0) + (a2 − b2) sinα cosα (z′ − z′0)
]

(26b)

Equations (26a) and (26b) give the secondary flow velocitiesdue to the elliptic patch vortex. The expressions forv̄
andw̄ in the originalOXY Z system of coordinates are obtained by replacingy′ − y′0 andz′ − z′0 in Eqs. (26a) and
(26b) byy− y0 andz− z0, respectively. Due to maximum size of the ellipse, the velocities outside the patch close to
the triangular boundary enclosing the ellipse are satisfiedonly approximately.

5. THE AVERAGED FORWARD MOMENTUM EQUATION

The forward momentum equation (5) has two unknown Reynolds shear stressesτxy andτxz. For drawing conclusion
from this single equation, it is averaged over a cross section, which gives

∫ 1

y=0

∫

−hy

z=−h

(

v̄
∂ū

∂y
+ w̄

∂ū

∂z

)

dz dy =
1
ρ

∫ 0

z=−h

τxy

∣

∣

∣

−z/h

y=0
dz +

1
ρ

∫ 1

y=0
τxz

∣

∣

∣

−hy

z=−h
dy =

τ0

ρ
(27)

where the shear stress across the two fluid surfacesy = 0 andz = −hy vanishes because there is no interfacial
resistance from the adjacent zones (Fig. 2). The duct surfacez = −h induces a shear resistanceτ0 = −τxz|z=−h per
unit area on the forward fluid flow, opposite to the axis ofx. This results in the first term on the right-hand side of
Eq. (27). Using the expressions forū, v̄, andw̄ from Eqs. (6), (26a), and (26b), Eq. (27) yields forτ0 the expression

τ0

ρ
= − 4U0ωh

p(a2 + b2)

∫ 1

y=0

∫

−y

ζ=−1

[{

(a2 − b2) sinα cosα (y − y0) + h(a2 cos2α+ b2 sin2α)(ζ− ζ0)
}

× y(1− y2)1/p−1(1− ζ2)1/p − 1
h

{

(a2 sin2α+ b2 cos2α)(y − y0) + h (a2 − b2) sinα cosα (ζ− ζ0)
}

× (1− y2)1/pζ(1− ζ2)1/p−1
]

dζ dy

(28)

The double integral in Eq. (28), consists of two parts written within two pairs of braces. The two parts are singular for
y = 1 andζ = −1, respectively. The singularities of the two terms are removed by settingy = 1−ηp andζ = ζp1 −1.
By these substitutions and again replacingη by y andζ1 by ζ, the equation can be written in the form

τ0

ρ
= −4U0ωh

a2 + b2

∫ 1

y=0

[{

(A1(1− yp) + C1)

∫

−(1−yp)

ζ=−1
(1− ζ2)1/p dζ+B1

∫

−(1−yp)

ζ=−1
ζ(1− ζ2)1/p dζ

}

× (1− yp)(2− yp)1/p−1 − 1
h

{

(A2y −B2 + C2)

∫ (1−y)1/p

ζ=0
(ζp − 1)(2− ζp)1/p−1 dζ

+B2

∫ (1−y)1/p

ζ=0
ζp(ζp − 1)(2− ζp)1/p−1 dζ

}

(1− y2)1/p
]

dy

(29)
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where
A1 = (a2 − b2) sinα cosα, B1 = h (a2 cos2α+ b2 sin2α), C1 = −y0 A1 − ζ0 B1 (30a)

A2 = a2 sin2α+ b2 cos2α, B1 = hA1, C2 = −y0 A2 − ζ0 B2 (30b)

Evaluation of the repeated integrals by numerical quadrature is considered in the next section.

6. NUMERICAL EXAMPLES

Two representative examples are considered in this section: one forh = 1 (square duct) andh = 1/2 (a rectangular
duct with one-half height compared to the width). Melling and Whitelaw (1976) covers the case of a square duct, and
Fig. 13 of their experiment is suggestive of an elliptic patch vortex withy′0 = 0.40, z′0 = 0.25 or,y0 = 0.40 and
ζ0 = −0.75. Equation (19) then givesr = 0.65 with α = π/8. Equations (22) and (21) then approximately give
a = 0.43 andb = 0.20, and Eqs. (26a) and (26b) yield for the elliptic patch, thevelocity field

v̄ = ω (0.45558y+ 1.45550z + 0.90947) (31a)

w̄ = −ω (0.54442y + 0.45558z + 0.12388) (31b)

with the equation of the ellipse [Eqs. (23a) and (23b)] iny-z coordinates as

y = 0.40+ 0.39727cosφ+ 0.07684sinφ (32a)

z = −0.75+ 0.18551sinφ− 0.16455cosφ, (0 ≤ φ ≤ 2π) (32b)

The vector plot of Eqs. (31a) and (31b) together with that of the ellipse (32a) and (32b) is shown in Fig. 5. The
velocity plot near the center of the duct appears comparatively larger than in the experiment of Melling and Whitelaw
(1976). It is due to the suctional effect of the primary flow inthe central core of the duct.

The computation of the wall resistance from Eq. (29) requires numerical integration with respect toy andζ
variables. This is accomplished by integrating the outery integral by Simpson’s rule by dividing the range(0, 1) in
to 100 equal-sized panels, while evaluating the innerζ integral by using the ADAPTIVESIMPSON subroutine given

FIG. 5: Velocity plot in an octant for a square duct
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in Bose (2009), which uses an adaptive selection of grid points for the Simpson’s rule. The procedure yields, using
Eq. (8),

2τ0 = 0.13690U0ρω = 0.16102U ρω (33)

The left-hand side of Eq. (33) represents the resistance to forward flow by the base of length 2, on a unit length
of the duct. The other three walls of the duct exert identicalresistance. Evidently, the resistance is increased by the
secondary circulation of flow.

In the second example, a rectangular duct withh = 1/2, for whichα = (1/2) arctan(1/2) = 0.23183 is
considered. The center of the elliptic patch is taken to be aty0 = 0.3, yieldingz′0 = (1 − y0) tanα ≈ 0.17 and
thereforeζ0 = −0.66. Accordingly, from Eq. (19),r ≈ 0.72, and from Eqs. (21) and (22),a ≈ 0.31 andb ≈ 0.12.
From Eqs. (26a) and (26b) the velocity field in the vertical patch thus becomes

v̄ = ω (0.33068y+ 1.66136z + 0.44904) (34a)

w̄ = −ω (0.33864y + 0.33068z + 0.00753) (34b)

and the equation of the ellipse from Eqs. (23a) and (23b) iny-z coordinates is

y = 0.30+ 0.30171cosφ+ 0.03525sinφ (35a)

z = −0.33+ 0.14931sinφ− 0.07123cosφ, (0 ≤ φ ≤ 2π) (35b)

The vector plot of the velocity field given by Eqs. (34a) and (34b) and that of the ellipse (35a) and (35b) is given in
Fig. 6.

The computation of the wall resistance given by Eq. (29) is carried out as in the case of a square duct. In this case
it is found that

2τ0 = 0.03192U0ρω = 0.03754U ρω (36)

Equation (36) gives the shear resistance by the base on a unitlength of the duct. Evidently, for the same value of
U, ρ, ω the secondary flow resistance is lower in this case compared to that of a square duct. From symmetry, the
upper wall whose length is also 2 exerts identical resistance, but the two shorter vertical walls each of length 2h exert
a different shear resistanceτ1 per unit length of the wall on a unit length of the duct.τ1 can be simply determined

FIG. 6: Velocity plot in an octant for a rectangular ducth = 1/2
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by consdering the vortical motion−ω in the upper triangle of the fourth quadrant. This yields, asin the case of Eq.
(36),

2h τ1 = 0.03754U ρω

or sinceh = 1/2,
τ1 = 0.03754U ρω (37)

Equation (36) gives the wall resistance to the secondary flowon a vertical side of the duct. An equal amount of
resistance is exerted by the opposite side of the duct.

7. DISCUSSION AND CONCLUSIONS

Uniform steady turbulent incompressible fluid flow in rectangular ducts is accompanied by vortical, secondary flow
in transverse sections of the duct. This secondary flow has been consistently detected in a number of experimental
studies by different authors using hot-wire as well as laserDoppler anemometers (LDA). According to Prandtl (1952),
kinematically the mean streamwise vorticity of the secondary flow is caused by the mean flow skewness, and kineti-
cally by the inhomegeneity in anisotropy of the wall turbulence of the duct. The latter cause has been investigated by
a number of authors.

This paper begins from the Reynolds averaged Navier–Stokes(RANS) equations. For mean uniform flows in
the streamwise direction, the continuity equation kinematically governs the secondary motion in transverse sections,
leading to a stream function which is analogous to the Prandtl’s stress function that solves the torsion problem of an
isotropic prismatic elastic beam. The symmetry of the duct with respect to the pair of bisectors of the side walls and
the two diagonals, divides a cross section into eight equal parts, and it is sufficient to consider only one of the octants
for study (Fig. 2). If it is assumed that the vorticity in an octant is nearly uniform as it is small, then the flow pattern
in a square duct is like that in Fig. 3. This flow pattern is likethat of Brundrett and Baines (1964). However, the more
recent LDA measurements by Melling and Whitelaw (1976) indicates an oval-shaped vortical patch pushed toward
a corner of the duct by the mean streamwise flow. Assuming elliptic form of a corner patch, Figs. 5 and 6 show the
flow patterns for a square duct and a rectangular duct whose height is one-half of its base. The boundary condition in
the first model, though exactly satisfied, the condition is only approximately satisfied in the vortical patch model. In
the RANS momentum equations only the streamwise component is of significance. In this equation the streamwise
mean velocity is approximately assumed to be given by the 1/pth power law of the wall, wherep ≈ 7, such as in
Schlichting (1979). The transverse velocities are modeledby the elliptic patch. Integration of the momentum equation
over a cross section by numerical methods leads to an equation giving the total wall resistance in terms of the vorticity
of the secondary flow and the primary mean flow velocity. Validation by well-controlled experimental data is required,
as those of Melling and Whitelaw (1976) show some skewness. There is scope of applying the modeling method to
study the same problem for incompletely filled ducts or open rectangular channels.
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