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1. I nt roduct ion

In parts 1 and 2 of this series it was shown how Markov
chain Monte Carlo (MCMC) methods can be employed
to obtain sat isfactory approximat ions for integrals that
arenot easy to evaluateanalyt ically. Such integralsarise
rout inely in stat ist ical problems. Some of the stat ist ical
concepts that are relevant for the applicat ion of MCMC
methods and for understanding the examples to be dis-
cussed in Part 4 are explained in this part .

2. I nference for M ult inomial D ist r ibut ion

Recall the stat ist ical inference problem for the binomial
probability in a previous art icle (see [1]). If a stat ist ical
experiment involves n identical and independent t rials,
each of which can result in two typesof outcomes(Yesor
No, 1 or 0, Success or Failure, etc.) then the (random)
number X of trials which result in, say, outcome of type
1 can be modelled as a binomial random variable with
the probability distribut ion:

P(X = x j µ) =

Ã
n
x

!

µx (1 ¡ µ)n¡ x ; x = 0; 1; : : : ; n:

where µ is the probability that any trial will result in
outcome of type 1. The statistical problem in this case
is to make inferences about µ from the data X .

How does one model the situat ion when there are more
than two typesof outcomes? Thisneedsa generalizat ion
of the binomial distribution.

Example 1. In crosses between two kinds of maize,
Lindstrom (cited in Snedecor and Cochran [2]) found
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four dist inct types of plants in the second generat ion.
The simple Mendelian model speci¯ es the probabilit ies
of thesetypesas9/ 16, 3/ 16, 3/ 16 and 1/ 16, respect ively.
In 1301 plants Lindstrom observed the number of these
types to be n1 = 773, n2 = 231, n3 = 238, and n4 =
59. Are these observat ions compat ible with the simple
Mendelian model?

Example 2. A newly cast die (with dots 1{ 6 on the six
di®erent sides) is rolled n t imes, and the number of rolls
leading to the di®erent sides showing up are recorded.
How does one check that the die is balanced and not
loaded?

Example 3. Consider the following art i¯ cial problem.
Take2 coins, each having thesameunknown probability
p of coming up heads in any toss. Toss these two coins
simultaneously n t imes. The possible outcomes for each
trial are `2 Heads', `2 Tails' , and `One Head and One
Tail'. What is theprobability distribut ion of thenumber
of occurrences of the di®erent outcomes?

In all the examples above, one ¯ rst needs to know the
joint distribut ion of the vector N of the numbers of
occurrences of the di®erent outcomes. In Example 1,

N = (N1; N2; N3; N4), with
4X

i= 1

Ni = 1301. The given

numbers n1; n2; n3; n4 are a realizat ion of the random
vector N . In Example 2, N = (N1; N2; : : : ; N6), where
Ni is the number of rolls leading to side i being up.

Here,
6X

i = 1

Ni = n. In Example 3, N = (N1; N2; N3),

where su± x 1 corresponds to `2 Heads', su± x 2 to `2
Tails' and su± x 3 to `One Head and One Tail'. Here

3X

i = 1
Ni = n.

Generalizing the binomial distribut ion to k ¸ 2 types or
categories to deal with quest ions like this leads to the
not ion of a multinomial distr ibution.
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Supposea stat ist ical experiment involvesn ident ical and
independent t rials, each of which can result in k ¸ 2
types of outcomes (type j , j = 1; 2: : : ; k). Let the prob-
ability that any trial will lead to outcome of type j be
pj , and the (random) number of t rials (out of a total of
n) which result in outcome of type j be denoted by Nj ,
j = 1; 2; : : : ; k. Then the joint probability distribut ion
of the vector N = (N1; N2; : : : ; Nk) is given by

P(N1 = n1; N2 = n2; : : : ; Nk = nk) =

n!
kY

i = 1

ni !

kY

i = 1

pni
i f (n1; n2; : : : ; nk jp1; p2; : : : ; pk); (1)

for non-negat ive integers nj such that
P k

j = 1 nj = n.

To see this note that if n dist inct balls are thrown one
by one into k boxes, with probability pi for landing in
box i , then the number of ways in which n1 balls fall in
box 1, n2 in box 2, : : :, nk fall in box k is

Ã
n
n1

! Ã
n ¡ n1

n2

!

: : :

Ã
nk

nk

!

=
n!

kY

i = 1
ni !

and each such way has probability
kY

i = 1

pni
i .

The mult inomial distribut ion reduces to the binomial
distribut ion if k = 2. In Example 1, the number of
cells is k = 4 and it is of interest to t̀est ' whether
(p1; p2; p3; p4) = (9=16; 3=16; 3=16; 1=16). On the other
hand, in Example 2, one wants to see if all the 6 cate-
gories areequally likely, i.e., pj = 1=6, j = 1; 2; : : : ; 6. In
Example 3, the three cell probabilit ies are, respect ively,
p2, (1 ¡ p)2 and 2p(1 ¡ p) which depend on a common
parameter p.

Note that maximum likelihood est imat ion of the un-
known probability vector (p1; p2; : : : ; pk) is straightfor-
ward if theseprobabilit iesvary freely (subject , of course,
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to the constraint that they add up to 1). The likelihood
function for the unknown parameter p = (p1; p2; : : : ; pk)
from (1) above is

`(p) = `(p1; p2; : : : ; pk ) =
n!

Q k
i = 1 ni !

kY

i = 1
pni

i :

Here one regards `(p) as a funct ion of the parameter p
for given data n = (n1; n2; : : : ; nk).

The principle of maximum likelihood (enunciated by the
great stat ist ician R A Fisher, see [3]) says that for ob-
served data n , choose that valueof theparameter p that
explains thedata best , i.e., that maximises the likelihood
`(p). Since log(x) is a monotone increasing funct ion
on (0; 1 ), maximising `(p) is equivalent to maximising
log`(p). Now

log`(p) = log`(p1; p2; : : : ; pk) = constant +
kX

i = 1

ni log(pi ):

Sincepi need to add up to 1, using a Lagrangemult iplier
the problem reduces to maximising

kX

i = 1
ni log(pi ) + ¸

Ã kX

i = 1
pi ¡ 1

!

:

Rout inecalculus involving sett ing thepart ial derivat ives
equal to zero and so on yields the maximum likelihood
est imates to be

p̂j =
nj

n
; j = 1; 2; : : : ; k;

Note that p̂j is simply the observed relat ive frequency
of outcome j .

As discussed in Delampady and Krishnan [1] for the
binomial case, a Bayesian alternat ive to the maximum
likelihood approach is possible in the mult inomial case
also. In the binomial case, there was only one parame-
ter, i.e., µ. As a prior distribut ion for µ, the Beta (®; ° )
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with probability density cµ®¡ 1(1 ¡ µ)° ¡ 1; ®; ° > 0; c
a normaising constant , was suggested. An interest ing
property of this prior distribut ion was also pointed out
there. Since the likelihood funct ion and the prior den-
sity have the same funct ional form in µ, upon apply-
ing the Bayes Theorem to compute the posterior den-
sity, the posterior distribut ion turns out to be another
Beta distribut ion. Indeed, by Bayes Theorem the poste-
rior density of µ given data x, namely ¼(µjx) is propor-
t ional to f (xjµ)g(µ), where f (xjµ) is the density of data
x given µ and g(µ) is the prior density of the parame-
ter µ. In the binomial context , ¼(µjx) is proportional to
µ®+ x¡ 1(1¡ µ)° + n¡ x¡ 1. The parameter space there is the
interval [0; 1]. The parameter space in the mult inomial
case is the simplex in k dimensions:

(

(p1; p2; : : : ; pk ) : pi ¸ 0;
kX

i = 1

pi = 1

)

: (2)

What is the appropriate generalizat ion of the Beta prior
now? It is called the Dirichlet (prior) distribut ion. A
random vector p = (p1; p2; : : : ; pk) has the Dirichlet dis-
tr ibution with parameters ®1; ®2; : : : ; ®k, each of which
is posit ive, if the joint probability density funct ion of p
is

¼(p1; p2; : : : ; pk) =
¡ (

P k
i = 1 ®i )

kY

i = 1
¡ (®i )

kY

i = 1

p®i ¡ 1
i ; (3)

for any (p1; p2; : : : ; pk) lying in the k-dimensional sim-
plex (2). Here ¡ is the complete Gamma funct ion. Note
now that exact ly the same phenomenon as in the bino-
mial case repeats here. In other words, combining (1)
and (3) using the Bayes Theorem yields the posterior
density of p given the data n = (n1; n2; : : : ; nk ) as

¼(p1; p2; : : : ; pk jn1; n2; : : : ; nk )

=
f (n1; n2; : : : ; nk jp1; p2; : : : ; pk)¼(p1; p2; : : : ; pk)

m(n1; n2; : : : ; nk)
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= c
kY

i = 1

pni + ®i ¡ 1
i ; (4)

where c is a normalising constant and m(n1; n2; : : : ; nk)
is the marginal probability of n1; n2; : : : ; nk. Compari-
son with (3) yields

c =

kY

i = 1

¡ (ni + ®i )

¡ (n +
kX

i= 1
®i )

:

To provide Bayesian est imates for the mult inomial cell
probabilit ies pj , we could consider the maximum a pos-
teriori est imate and the posterior mean. The computa-
t ion involved in ¯ nding the former is the same as that
in deriving the maximum likelihood est imate, and it is
evident that this est imate for pj is (nj + ®j ¡ 1)=(n +
P k

i = 1 ®i ¡ k), j = 1; 2; : : : ; k. Finding the posterior mean
is also very easy. It can be shown that this est imate for
pj turns out to be (nj + ®j )=(n +

P k
i = 1 ®i ).

In some situat ions, such as the ones that frequent ly oc-
cur in genet ics, the mult inomial cell probabilit ies do not
vary freely, but instead are funct ions of other unknown
parameters µ. In such situat ions, neither the maximum
likelihood est imat ion nor the Bayesian approach will be
as simple, and MCMC methods will be found useful.
This will be discussed later in Part 4. Next some ques-
t ions related to inferences from MCMC samples will be
addressed.

Su± ciency and Rao{ B lackwell T heorem

Theory of stat ist ics uses probability models to extract
informat ion from sample data. The ¯ rst step in this di-
rect ion is to ident ify data summaries which are relevant
for inference and exclude those parts of data which do
not contain any relevant informat ion. For example, if we
intend to est imate the average yield of mango per tree
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for a certain locat ion using a random sample of t rees
from this locat ion, the order in which the observat ions
are collected is irrelevant, even though while recording
the data this informat ion may be included.

To make this concept precise, suppose one has a ran-
dom sample of observat ions from a populat ion with a
certain probability distribut ion. Further, suppose that
this probability distribut ion has probability density (or
mass funct ion) f (xjµ) where µ is the unknown parame-
ter of interest . Any funct ion of the sample is called a
statistic. A stat ist ic is su± cient for the parameter µ if
the condit ional distribut ion of the sample given the sta-
t ist ic does not involve the parameter µ. In other words,
a su± cient statistic contains all the informat ion in the
sample which is relevant as far as inference on µ is con-
cerned.

Example 4. Suppose X 1; X 2; : : : ; X k are i.i.d. Poisson
random variables with mean µ. Here the sample mean
¹X = 1

k

kP

1
X i is su± cient for µ, i.e., it contains all the

relevant informat ion. To see this, ¯ rst note that if X 1

and X 2 are independent Poisson random variables with
means ¸ 1 and ¸ 2, then for any integer n ¸ 0, P(X 1 +

X 2 = n) =
nX

r = 0
P(X 1 = r; X 2 = n ¡ r ) =

nX

r = 0
P(X 1 =

r )P(X 2 = n ¡ r ) (by independence of X 1 and X 2)

=
nX

r = 0
e¡ ¸ 1

¸ r
1

r !
e¡ ¸ 2

¸ n¡ r
2

(n ¡ r )!
= e¡ (¸ 1+ ¸ 2) (¸ 1 + ¸ 2)n

n!

(by the Binomial theorem). Thus X 1 + X 2 is Poisson

(¸ 1 + ¸ 2) random variable. By induct ion, T =
kX

i = 1

X i is

Poisson (¸ 1 + ¸ 2 + : : :+ ¸ k). Therefore, for any sequence
(x1; x2; : : : ; xk) of nonnegat ive integers and any nonneg-
at ive integer t, the condit ional distribut ion of the data
vector (X 1; X 2; : : : ; X k) given that T = t sat is̄ es:

P(X 1 = x1; X 2 = x2; : : : ; X k¡ 1 = xk¡ 1; X k = xk jT = t)
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if
kX

1
xi = t, 0 otherwise, yielding two results. First , the

condit ional distribut ion of X 1; X 2; : : : ; X k given their
sum is themult inomial distribut ion having theprobabil-
ity mass funct ion given in (5). Secondly, thiscondit ional
probability distribut ion does not involve µ, and hence T
is su± cient for µ.

Example 5. Suppose X 1; X 2; : : : ; X n is a random sam-
ple from the Gaussian distribut ion with mean ¹ and
variance ¾2, both of which are unknown. Then µ =
(¹ ; ¾2) can be thought of as the parameter of inter-
est . Intuit ion suggests that T = ( ¹X ; S2), where S2 =
P n

i = 1(X i ¡ ¹X )2 must be su± cient for µ, as ¹X is the sam-
ple mean and S2

n is the sample variance. This is indeed
true and for a proof consult Casella and Berger(pp.218-
19)[4]. This implies that if the populat ion is Gaussian,
there is no need to retain any other part of the sample
than ¹X and S2.

One consequence of su± ciency is that it is enough to
consider est imators of µ which are funct ions of a su± -
cient stat ist ic. This can be made precise by the Rao{
Blackwell Thorem 1.

Rao{ B lackwel l T heorem. Let ±(X 1; X 2; : : : ; X n) be
an est imator of µ with ¯ nite variance. Suppose that

1 ‘Rao‘ here is the famous C R

Rao who has won many awards

and distinctions for his contri-

butions to statistical theory and

methodology. He was with the

Indian Statistical Institute for

well over 40 years and was a

teacher to many leading statis-

t i c ians  f rom Ind ia .   Dav id

Blackwell is a well-known stat-

istician from the University of

California at Berkeley.

=
P(X 1 = x1; X 2 = x2; : : : ; X k¡ 1 = xk¡ 1; X k = xk ; T = t)

P(T = t)

=
P(X 1 = x1; X 2 = x2; : : : ; X k¡ 1 = xk¡ 1; X k = t ¡ xk)

P(T = t)

=
(

kY

i = 1

e¡ µµxi

xi !
)

e¡ k µ(kµ)t

t!

=
t!

kY

1
xi !

kY

1
(
1
k

)xi (5)
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T is su± cient for µ, and let ±¤(T) dē ned by ±¤(t) =
IE(±(X 1; X 2; : : : ; X n)jT = t), be the condit ional expec-
tat ion of ±(X 1; X 2; : : : ; X n) given T = t. Then

IE(±¤(T) ¡ µ)2 · IE(±(X 1; X 2; : : : ; X n) ¡ µ)2:

The inequality is strict unless ± = ±¤, or equivalent ly, ±
is already a funct ion of T.

Proof. By the property of iterated condit ional expec-
tat ion,

IE(±¤(T)) = IE [IE(±(X 1; X 2; : : : ; X n)jT)] =

IE(±(X 1; X 2; : : : ; X n)):

Therefore, to compare the mean square errors (MSE)
of the two est imators, we need to compare their vari-
ances only. A standard result similar to the iterated
condit ional expectat ion (seeCasella and Berger, pp.167-
68)[4], says that

Var(±(X 1; X 2; : : : ; X n)) = Var [IE (±jT)] + IE [Var(±jT)]

= Var(±¤) + IE [Var(±jT)]
> Var(±¤);

unless Var(±jT) = 0, which is the case only if ± itself is
a funct ion of T.

What Rao{ Blackwell theorem says is that any est imator
can be improved upon by condit ionally averaging over
part it ioning sets of the sample space where the value
of the su± cient stat ist ic T is kept ¯ xed. In these sets
the sample points do vary, but this variat ion has no
relevance as far as µ is concerned. Note also that by the
su± ciency of T, ±¤(T) is also a funct ion of only the data
and does not depend on µ. This method of improving
an est imator ±(x) by taking its condit ional expectat ion
given t, i.e., using ±¤(T) is called Rao{ Blackwellisation
in the stat ist ics literature.
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Consider thefollowing implication of Rao{ Blackwell The-
orem. In the context of Example 5, is there any reason
why one should not choose the ¯ rst observat ion X 1 as
an est imate for ¹ , instead of using all the observat ions
in some way? There certainly is. That IE(X 1j ¹X ) = ¹X
is superior to X 1 follows from Rao{ Blackwell Theorem.
(Note that IE(X 1j ¹X ) = IE(X i j ¹X ), for i = 2; 3; : : : ; n
since X i are all ident ically distributed, and hence
IE(X 1j ¹X ) = 1

n

P n
i = 1 IE (X i j ¹X ) = IE( 1

n

P n
i = 1 X i j ¹X ) = ¹X .)

TheRao{ Blackwell Theorem involvestwo key steps: vari-
ance reduct ion by condit ioning and condit ioning by a
su± cient stat ist ic. The ¯ rst step is based on the analy-
sis of variance formula that says: For any two random
variables S and T, the variance of S equals the sum of
the variance of the condit ional expectat ion of S given T
and the expectat ion of the condit ional variance S given
T writ ten, as noted earlier, as

Var(S) = Var(IE(SjT)) + IE(Var(SjT)):

Thus one can reduce the variance of a random variable
S by taking condit ional expectat ion given some auxil-
iary informat ion T. The second step exploits the fact
that the condit ional expectat ion of any stat ist ics S is a
funct ion only of the data, i.e., it does not depend on any
underlying parameter, given a su± cient stat ist ic.

Let us see how Rao{ Blackwellisat ion is useful in MCMC
est imat ion. Consider the example where we generated
random samples from the bivariate normal using Gibbs
Sampling. Suppose we have a sample of n from the joint
distribut ion of (X ; Y) produced in this manner. Using
this, how could we est imate such quant it ies as the mean
¹ x of X or the marginal density f (x) of X ? Let us con-
sider ¹ x ¯ rst . One would think that ¹x = (1=n)

P n
i = 1 xi

is the best est imator here. However, we have some more
informat ion available here from y1; y2; : : : ; yn also. This
can be seen from the fact that

¹ x = IE(X ) = IE [IE (X jY)] ;
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and the RHS of the above equat ion can be est imated by

(1=n)
nX

i = 1

IE(X jyi ) = ½(1=n)
nX

i = 1

yi ;

since we know the form of the condit ional expectat ion
of X given Y = y. To show that this alternat ive est ima-
tor is superior to ¹x, we use the proof of Rao{ Blackwell
Theorem. As noted there,

Var(X ) = Var[IE(X jY)]+ IE[Var(X jY)] ¸ Var[IE(X jY)];

so that ¹x has a larger variance than the new est imator
(1=n)

P n
i = 1 IE(X jyi ). We can use this improved Rao{

Blackwellised est imator only in situat ionswhereweknow
the exact funct ional form of IE(X jY ), as in this exam-
ple. The same logic gives us an improved est imator for
the marginal density f (x) using f (xjyi ). Since we know
the form of the condit ional density f (xjy), we can use
the est imator

f̂ (x) = (1=n)
nX

i = 1
f (xjyi );

which in our case becomes

f̂ (x) = (1=n)
nX

i = 1

Á(x; ½yi ; 1 ¡ ½2):

The applicat ion of the ¯ rst step in the MCMC context
is explained now:

Let (X j ; Yj ); j = 1; 2; : : : ; N be the data generated by a
single run of the Gibbs sampler algorithm (see Part 2)
with a target distribut ion of a bivariate random vector
(X ; Y ). Let h(X ) be a funct ion of the X component of
(X ; Y ) and let its mean value be ¹ . Suppose the goal is
to est imate ¹ . A ¯ rst est imate is thesample mean of the
h(X j ); j = 1; 2; : : : ; N . From the MCMC theory, it can
be shown that as N ! 1 , this estimate will converge to
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¹ in probability. The computat ion of variance of this es-
t imator is not easy due to the (Markovian) dependence
of the sequence f X j ; j = 1; 2; : : : ; N g. Now suppose we
make n independent runs of Gibbs sampler and generate
(X i j ; Yi j ); j = 1; 2; : : : ; N ; i = 1; 2; : : : ; n. Now suppose
that N is su± cient ly large so that (X i N ; Yi N ) can be re-
garded as a sample from the limit ing target distribut ion
of the Gibbs sampling scheme. Thus (X i N ; Yi N ); i =
1; 2; : : : ; n are i.i.d. and hence form a random sam-
ple from the target distribut ion. Then one can o®er
a second est imate of ¹ { the sample mean of h(X i N ); i =
1; 2; : : : ; n. This est imator ignores a good part of the
MCMC data but has the advantage that the variables
h(X i N ); i = 1; 2; : : : ; n are independent and hence the
variance of their mean is of order 1

n . Now using the
variance reduct ion idea out lined above and using the
auxiliary informat ion Yi N ; i = 1; 2; : : : ; n, one can im-
prove this est imator as follows:

Let k(y) = IE ((h(X )jY = y). Then for each i , k(Yi N )
has a smaller variance than h(X i N ) and hence the fol-
lowing third est imator, the sample mean of k(Yi N ); i =
1; 2; : : : ; n has a smaller variance than the second one.

This is illustrated above for the Gaussian case where
two special choices of the funct ion h(:) are considered:
(1) h(x) = x; and (2) h(x): the pdf of X evaluated at
x. In Part 2 we illustrated the est imat ion of the mar-
ginal pdf of X by Gibbs sampler with 1000 independent
runs each of length 1000. In Part 4, we provide another
{ a more realist ic { example of the use of Gibbs sam-
pling for Bayesian inferencein themult inomial casewith
Dirichlet priors.
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