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1. Introduction

In parts 1 and 2 of this series it was shown how Markov
chain Monte Carlo (MCMC) methods can be employed
to obtain satisfactory approximations for integrals that
arenot easy to evaluateanalytically. Such integralsarise
routinely in statistical problems. Some of the statistical
concepts that are relevant for the application of MCMC
methods and for understanding the examples to be dis-
cussed in Part 4 are explained in this part.

2. Inference for Multinomial Distribution

Recall the statistical inference problem for the binomial
probability in a previous article (see [1]). If a statistical
experiment involves n identical and independent trials,
each of which can result in two types of outcomes (Yesor
No, 1 or 0, Success or Failure, etc.) then the (random)
number X of trials which result in, say, outcome of type
1 can be modelled as a binomial random variable with
the probability distribution:
A

n X . ni x.
(i W

Xx=01:::;n:
X

PX =xjW =
where | is the probability that any trial will result in
outcome of type 1. The statistical problem in this case
is to make inferences about p from the data X .

How does one modd the situation when there are more
than two types of outcomes? Thisneedsa generalization
of the binomial distribution.

Example 1. In crosses between two kinds of maize,
Lindstrom (cited in Snedecor and Cochran [2]) found

-
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four distinct types of plants in the second generation.
The simple Mendelian model speci es the probabilities
of thesetypesas 9/ 16, 3/ 16, 3/ 16 and 1/ 16, respectively.
In 1301 plants Lindstrom observed the number of these
typestobenis = 773, ny = 231, nz = 238, and ns =
59. Are these observations compatible with the smple
Mendelian model?

Example 2. A newly cast die (with dots 1{ 6 on the six
di®erent sides) isrolled n times, and the number of rolls
leading to the di®erent sides showing up are recorded.
How does one check that the die is balanced and not
loaded?

Example 3. Consider the following arti cial problem.
Take 2 coins, each having the same unknown probability
p of coming up heads in any toss. Toss these two coins
simultaneoudly n times. The possible outcomes for each
trial are "2 Heads, "2 Tails, and 'One Head and One
Tail'. What isthe probability distribution of the number
of occurrences of the di®erent outcomes?

In all the examples above, one rst needs to know the
joint distribution of the vector N of the numbers of

occurrences of the di®erent outcomes. In Example 1,
x4

N = (N1;N2;N3;Na), with N; = 1301. The given
i=1

numbers nj; Ny;nNs; Ny are a realization of the random

N; is the number of rolls leading to side i being up.
X6

Here, Ni = n. In Example 3, N = (Ni;N2; Nj),
i=1

where sux x 1 corresponds to 2 Heads, suxx 2 to 2

%ails‘ and sux x 3 to 'One Head and One Tail'. Here

N; = n.

i=1

Generalizing the binomial distributiontok , 2typesor

categories to deal with questions like this leads to the

notion of a multinomial distribution.
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Suppose astatistical experiment involvesn identical and
independent trials, each of which can result ink , 2
types of outcomes (typej,j = 1;2:::;k). Let the prob-
ability that any trial will lead to outcome of type | be
p;i, and the (random) number of trials (out of a total of
n) which result in outcome of typej be denoted by N;j,
] = 1,2;:::;k. Then the joint probability distribution

nt ¥ .

*® ‘ pi'f (NNt negpnpes i pe); (D)
ni!|=1

i=1

L P
for non-negative integers n; such that }‘zlnj =n.
To see this note that if n distinct balls are thrown one
by one into k boxes, with probability pi for landing in
box i, then the number of ways in which n; ballsfall in
box 1, ny inbox 2, :::, nk fall.in box k is

A TA ! Al
n njny N n!

na n» Nk A

ni!
i=1

_i_

and each such way has probability — p".
i=1

The multinomial distribution reduces to the binomial
distribution if kK = 2. In Example 1, the number of
cdlsisk = 4 and it is of interest to ‘test' whether
(p1; p2; ps; Pa) = (9=16; 3=16; 3=16; 1=16). On the other
hand, in Example 2, one wants to see if all the 6 cate-
goriesareequally likely, i.e., pp = 1=6,] = 1;2;:::;6. In
Example 3, the three cel probabilities are, respectivdly,
P?, (1i p)? and 2p(1i p) which depend on a common
parameter p.

Note that maximum likelihood estimation of the un-

ward if these probabilitiesvary freely (subject, of course,
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to the constraint that they add up to 1). The likelihood
function for the unknown parameter p = (pa1; P2;:::; Px)
from (1) aboveis

The principle of maximum likelihood (enunciated by the
great statistician R A Fisher, see [3]) says that for ob-
served datan, choosethat value of the parameter p that
explainsthedatabest, i.e., that maximisesthe likelihood
“(p). Since log(x) is a monotone increasing function
on (0;1 ), maximising "(p) is equivalent to maximising
log™(p). Now

X«
log (p) = log (p1;p2;:::;pk) = constant+  n;log(pi):
i=1
Sincep; need to add up to 1, using a Lagrange multiplier
the problem reduces to maximising
A% !
nilog(pi) + , pii 1
i=1 i=1
Routine calculusinvolving setting the partial derivatives
equal to zero and so on yields the maximum likelihood
estimates to be
B = Sj= 12k
n
Note that f is smply the observed relative frequency
of outcome .

As discussed in Delampady and Krishnan [1] for the
binomial case, a Bayesan alternative to the maximum
likelihood approach is possible in the multinomial case
also. In the binomial case, there was only one parame-
ter, i.e, L Asaprior distribution for |, the Beta (®;°)
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with probability density cu® *(1i w''t; ®& ° > 0; ¢
a normaising constant, was suggested. An interesting
property of this prior distribution was also pointed out
there. Since the likelihood function and the prior den-
sity have the same functional form in p, upon apply-
ing the Bayes T heorem to compute the posterior den-
sity, the posterior distribution turns out to be another
Beta distribution. Indeed, by Bayes Theorem the poste-
rior density of p given data x, namely “{ujx) is propor-
tional to f (xju)g(W), where f (xju) isthe density of data
x given p and g(M) is the prior density of the parame-
ter . In the binomial context, ¥{ujx) is proportional to
P XL Wt xil The parameter space thereisthe
interval [0; 1]. The parameter space in the multinomial
case isthe smplex in k dimensions:

( & )
(Pripz;ziiip) ip, O p =1 (2
i=1

What isthe appropriate generalization of the Beta prior
now? It is called the Dirichlet (prior) distribution. A
random vector p = (p1; P2;:::;px) hastheDirichlet dis-
tribution with parameters ®;;®;;:::; ®, each of which
is positive, if the joint probability densty function of p
IS

@)Y @,
YVAPL; P2 155 ) = ( LV i (g
@
i=1
for any (p1;p2;:::; 1 px) lying in the k-dimensional sim-

plex (2). Here. |sthe complete Gamma function. Note
now that exactly the same phenomenon as in the bino-
mial case repeats here. In other words, combining (1)
and (3) using the Bayes Theorem yields the posterior
density of p given thedatan = (ni;n2;:::;nk) as

f(nl,nz;""nkjpl 2; 1 P )YAPL P2;ll pK)
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v

= c pry (4)
i=1
where c is a normalising constant and m(nz; nz;:::;Ng)
is the marginal probability of ni;n2;:::;nk. Compari-
son with (3) yields
\K
i (ni+@®)
c= = ;
i(n+ ®)

To provide Bayesian estimates for the multinomial cell
probabilities p;, we could consider the maximum a pos-
teriori estimate and the posterior mean. The computa-
tion involved in nding the former is the same as that
in deriving the maximum likelihood estimate, and it is

ident that this estimate for pj is(n; + ® | 1)<(n +

K ®i k),j = 1,2;:::;k. Finding the posterior mean
is also very easy. It can be shown Lhat this estimate for
p turnsout tobe (n; + ®)=(n+ £, ®).

In some situations, such as the ones that frequently oc-
cur in genetics, the multinomial cell probabilities do not
vary fredy, but instead are functions of other unknown
parameters |L In such situations, neither the maximum
likelihood estimation nor the Bayesian approach will be
as smple, and MCMC methods will be found useful.
This will be discussed later in Part 4. Next some ques-
tionsrelated to inferences from MCMC samples will be
addressed.

Suz ciency and Rao{Blackwell Theorem

Theory of statistics uses probability models to extract
information from sample data. The rst step in this di-
rection isto identify data summaries which are relevant
for inference and exclude those parts of data which do
not contain any relevant information. For example, if we
intend to estimate the average yield of mango per tree
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for a certain location using a random sample of trees
from this location, the order in which the observations
are collected is irrelevant, even though while recording
the data this information may be included.

To make this concept precise, suppose one has a ran-
dom sample of observations from a population with a
certain probability distribution. Further, suppose that
this probability distribution has probability density (or
mass function) f (xjy) where pis the unknown parame-
ter of interest. Any function of the sample is called a
statistic. A statistic is sux cient for the parameter p if
the conditional distribution of the sample given the sta-
tistic does not involve the parameter . In other words,
a sut cient statistic contains all the information in the
sample which is relevant as far as inference on p is con-
cerned.

random variables with mean . Here the sample mean
K . . : : :

X = 1 X issutdent for  i.e, it contains all the
1

relevant information. To seethis, rst note that if X,

and X are independent Poisson random variables with

means , ;1 and , ,, then for any integer n, 0, P(X1 +
X

X
X2 = n) = PX1=nrXz=njr)= P(X1 =
r=0 r=0
rYP(Xz2=nj r) (by independence of X1 and X>)
- X gl algi 2 - o (v lat.2)"
=0 r! (nj ! n!

(by the Binomial theorem). Thus X1 + X2 is Poisson

X«
(,1+,2) random variable. By induction, T = X; is

i=1
Poisson (, 1+ , 2+ :::+ . k). Therefore, for any sequence

14
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_ P(X1=X1;X2= X250 Xk 1= Xk 15Xk = X, T = 1)
P(T=1)
_ P(X1=X1;X2= X205 Xk 1= Xig 1 Xk = i Xk)
P(T=1)
¥ @ uum
— (i=1 Xi!
- ei ku(ku)t
t!
¥ o1
= Ny (E)XI (5)
Xi! !

1

X
if  x; =t, 0otherwise, yielding two results. First, the
sum isthe multinomial distribution having the probabil-
ity mass function given in (5). Secondly, this conditional
probability distribution does not involve p, and hence T
Is sux cient for W

ple from the Gaussian distribution with mean * and
variance ¥, both of which are unknown. Then p =
(*;%%) can be thought of as the parameter of inter-
gt. Intuition suggests that T = (X;S?), where S* =

" L(Xii X)? must be sux cient for p, as X isthe sam-
ple mean and Sni is the sample variance. Thisisindeed
true and for a proof consult Casella and Berger(pp.218-
19)[4]. Thisimpliesthat if the population is Gaussian,
there is no need to retain any other part of the sample
than X and S2.

One consequence of sux ciency is that it is enough to
consider estimators of p which are functions of a suz -
cient statistic. This can be made precise by the Raof{
Blackwell Thorem .

an estimator of p with nite variance. Suppose that

'"Rao’ here is the famous C R
Rao who has won many awards
and distinctions for his contri-
butions to statistical theory and
methodology. He was with the
Indian Statistical Institute for
well over 40 years and was a
teacher to many leading statis-
ticians from India. David
Blackwell is a well-known stat-
istician from the University of
California at Berkeley.
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T is sux cient for p, and let £°(T) de ned by +(t) =

The inequality is strict unless += %", or equivalently, +
is aready a function of T.

Proof. By the property of iterated conditional expec-
tation,

Therefore, to compare the mean square errors (MSE)
of the two estimators, we need to compare their vari-
ances only. A standard result smilar to the iterated
conditional expectation (see Casella and Berger, pp.167-
68)[4], says that

<
®
fn
X
.
i
%
I

Var[E(4T)] + E [Var(4T)]
Var(") + E [Var(4T)]
Var(+);

\Y

unless Var(4T) = 0, which isthe case only if +itsdf is
a function of T.

What Rao{ Blackwell theorem saysisthat any estimator
can be improved upon by conditionally averaging over
partitioning sets of the sample space where the value
of the sux cient statistic T is kept  xed. In these sets
the sample points do vary, but this variation has no
relevance as far as uis concerned. Note also that by the
su+ ciency of T, £°(T) isalso a function of only the data
and does not depend on . This method of improving
an estimator +(x) by taking its conditional expectation
given t, i.e, using £°(T) is called Raof Blackwellisation
in the statistics literature.

16
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Consder thefollowing implication of Rao{ Blackwell T he-
orem. In the context of Example 5, is there any reason
why one should not choose the rst observation X; as
an estimate for 1, instead of using all the observations
in some way? There certainly is. That E(X1jX) = X
is superior to X1 follows from Rao{ Blackwell Theorem.
(Note that E(X4jX) = E(X;jX), for i = 23;:::;n
since X; are al},identically distributeg, and hence
E(X4X) =5 LiE(XijX) = E(z LiXijX)=X)

The Raof Blackwell Theorem involvestwo key steps. vari
ance reduction by conditioning and conditioning by a
su+ cient statistic. The rst step is based on the analy-
sis of variance formula that says. For any two random
variables S and T, the variance of S equals the sum of
the variance of the conditional expectation of S given T
and the expectation of the conditional variance S given
T written, as noted earlier, as

Var(S) = Var(E(SjT)) + E(Var(SjT)):

Thus one can reduce the variance of a random variable
S by taking conditional expectation given some auxil-
iary information T. The second step exploits the fact
that the conditional expectation of any statistics S isa
function only of the data, i.e., it does not depend on any
underlying parameter, given a sut cient statistic.

Let us see how Rao{ Blackwellisation is useful in MCMC
estimation. Consider the example where we generated
random samples from the bivariate normal using Gibbs
Sampling. Suppose we have a sample of n from the joint
distribution of (X;Y) produced in this manner. Using
this, how could we estimate such quantities asthe mean
1, of X or themarginal density f (x) of X ? Let ys con-
sider 1, “rst. One would think that X = (1=n) L, X;
isthe best estimator here. However, we have some more

can be seen from the fact that
v = E(X) = E[EX]Y)];
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and the RHS of the above equation can be estimated by

X0 _ X
(1=n)  EXjyi) = A1=n) i
i=1 i=1
since we know the form of the conditional expectation
of X given Y = y. To show that thisalternative estima-

tor is superior to X, we use the proof of Rao{ Blackwell
Theorem. As noted there,

Var(X) = Var[E(X]Y)]+ E[Var(X]Y)], Var[E(X]Y)];

so that % has a larger variance than the new estimator
(1=n) L;E(Xjyi). We can use this improved Raof{
Blackwellised estimator only in situations where we know
the exact functional form of E(X]Y), asin this exam-
ple. The same logic gives us an improved estimator for
the marginal density f (x) using f (xjyi). Since we know
the form of the conditional density f (xjy), we can use
the estimator

X
0 = (1)~ (xin);

1

which in our case becomes

fix) = (1:n)_)@ A i L1 A):

1

The application of the rst step in the MCMC context
is explained now:

Let (X;Y;);] = 1,2:::;N bethedata generated by a
single run of the Gibbs sampler algorithm (see Part 2)
with a target distribution of a bivariate random vector
(X;Y). Let h(X) beafunction of the X component of
(X;Y) and let its mean value be . Suppose the goal is
toestimate!. A rst estimateisthe sample mean of the
h(X;);] = 1,2;:::;N. From the MCMC theory, it can
beshownthat asN ! 1 ,thisestimatewill convergeto

18
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1 in probability. The computation of variance of this es-
timator is not easy due to the (Markovian) dependence
of the sequence fXj;j = 1,2;:::;Ng. Now suppose we
make n independent runs of Gibbs sampler and generate

that N is sut ciently large so that (Xin; Yin) can bere-
garded as a sample from the limiting target distribution
of the Gibbs sampling scheme. Thus (Xin;Yin);i =

ple from the target distribution. Then one can
a second estimate of * {the sample mean of h(Xin);i =

h(Xin);i =

variance of their mean is of order . Now using the
variance reduction idea outlined above and using the
auxiliary information Yin;i =
prove this estimator as follows:

Let k(y) = E((h(X)jY = y). Then for each i, k(Yin)
has a smaller variance than h(Xin) and hence the fol-
lowing third estimator, the sample mean of k(Yin);i =

This is illustrated above for the Gaussian case where
two special choices of the function h(:) are considered:
(1) h(x) = x; and (2) h(x): the pdf of X evaluated at
X. In Part 2 we illustrated the estimation of the mar-
ginal pdf of X by Gibbs sampler with 1000 independent
runs each of length 1000. In Part 4, we provide another
{ a more realistic { example of the use of Gibbs sam-
pling for Bayesian inferencein the multinomial casewith
Dirichlet priors.
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