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The problem of a mathematician who walks from her
home to her office and changes her mind repeatedly
during this walk is discussed. Stochastic generalizations
of this problem can be used to model many real-life
situations.

The Deterministic Version

A mathematician starts walking from her home to her office.
Halfway through she changes her mind and starts returning
home. Again halfway  through that she changes her mind and
starts walking towards her office.  Once again halfway through
that she starts returning home and so on.  The problem  is to
determine what happens to this vacillating mathematician.

Identifying the mathematician’s home as the point zero and her

office as the point one we can formulate a sequence  { }X n 0
∞ (Xn

denoting the position at the  n th change point) of numbers in the
interval [0,1] that satisfies the following simple rule:

The Vacillating Mathematician
1.  Where Does She End Up?
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Letting  U X V Xn n n n= =−2 1 2,  we see that

This is known as a  first order difference equation.  To solve this
iterate the equation to get

It is easy to guess from the above and also establish by induction
that

Since 0 ≤ U1 ≤ 1, 
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So our mathematician’s position at odd numbered change points

is nondecreasing (note that U2 = 5/8 is  >  U1 =1/2  and Un+1–

Un=  
1

4
(Un– Un –1) =

1
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 (U2 – U1) > 0)  and  converges to

2/3.  Similarly Vn is also nondecreasing and approaches 1/3.

If  0 < X0 < 1 then the above arguments are still valid and the
limits are the same.  However, if X0 > 1/3  then Un and Vn would
both be decreasing to 2/3 and 1/3 respectively.  (Prove  this).

Finally, note that if  X0 = 1/3  then  Un = 2/3  and  Vn =1/3  for
all n.  So 2/3 and 1/3 are   fixed points for the  {Un}  and {Vn}
sequences or for the   dynamical systems  generated by the functions
f  and g respectively i.e.,

for x in [0,1].  For a function  f  from a set S  into itself the
sequence { f0 (x) = x,  fn (x) = f ( f n – 1  (x)),  n ≥ 1} is called a
dynamical system.  Currently popular topics  chaos and  fractals deal
with dynamical systems (see Barnsley, and Ramasamy and Iyer
in Suggested Reading).

The problem of the vacillating mathematician was posed by Zeev
Barel (Suggested Reading).  Krishnapriyan (Suggested Reading)
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Eventually, our mathematician

will just be hopping in the

vicinity of 1/3 and 2/3.

Figure 2
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solves this completely and discusses  an approach to this prob-
lem using difference equations,  generating functions and matrix
methods.

Now suppose our mathematician likes to inject some randomness
in her moves.  What happens to the sequence { }X n 0

∞
which now

becomes a random sequence?  The present article is  devoted to
answering this question.  It will turn out that the set of limit
points of  the sequence can be (a) the  entire interval [0,1]  (b) a set
like the  Cantor set  (defined later in the article)  of length
(measure) zero and  (c) quite arbitrary and thus very different
from the deterministic situation discussed earlier.

We conclude this section with the following two observations.

1.  Suppose our mathematician when moving towards  one
always goes a fraction α of the remaining distance and when
moving towards zero always goes a fraction b of the distance. It
can be shown that in this case  Un and Vn satisfy

Un+1=(1 – α) (1 – β) U n+α

 Vn =Un  (1 – β)
and hence

where  r = (1 – α) (1 – β).

2. The random sequence {Xn} generated by the mathematician
in the stochastic case is a model that is  applicable in some real life

situations.  For example, let { }Y j 1

∞
, be a random sequence

denoting the level in a reservoir  on period  j  by  Yj .  Let τ1, τ2, τ3

be the times at which the sequence  {Yj }  has  a local minimum

or maximum.  Let Xn = Y
nτ .  Suppose the reservoir has a

minimum zero and a maximum normalised to be one, say.  Then
the sequence {Xn} has a behaviour similar to our mathematician.

(5)

(6)
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the vacillating mathematician
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It is clear that we could substitute the reservoir level by stock
prices, rainfall amounts, inventory level or any other  randomly
varying sequence in a bounded interval.

We will consider several stochastic (i.e. random) versions in the
next part of this article.  Stochastic means random. To analyze
these problems we will require some concepts from probability
theory which are outlined in the next section.

As a simple stochastic generalization suppose that our
mathematician starts at  0, goes half way through and then flips
a fair coin.  If the coin comes out  heads  she continues towards
one and if the coin comes out  tails  she turns back towards 0.
Again half way through whatever direction she is headed she
flips a fair coin and either continues in that direction or goes in
the opposite direction.

To analyse this model, as before, let  Xn  denote the position  at
the nth change point.  Then, given  Xn,

independent of  X0 , X1 ,  … X n –1.
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Thus the distribution of  X n+1  given Xn  depends only on Xn  and
does not depend on X0 , X1 … Xn –1 or  n.  In this case the sequence

{ }X n 0

∞
is called a Markov Chain with  stationary transition

probabilities  (see Billingsley and Feller in Suggested Reading). A
discussion of Markov chains follows in the next section. We will
analyze this model and other stochastic generalizations in the
next part of this series.

Markov Chains

A sequence of random variables  { }X n 0

∞
 is called a Markov chain

if given Xn the past (X0 , X1 , ... , Xn –1)  and the future (Xn+1, Xn+2,
...) are stochastically independent. This property was introduced
by A A Markov at the turn of the century as a simple notion of
dependence in time evolution and as a departure from full
independence (see Feller in Suggested Reading). Markov chains
have proved to be very useful in a number of applications,
especially in telephone traffic, computer traffic on the informa-
tion highway, waiting lines, stock prices, etc. When  the  transition
probability  P(Xn+1 = j | Xn =i  )  (where P(A|B) stands for the
probability of the event A given that B has happened) depends
only on i  and j  and not on n  the Markov chain {Xn} is said to
have time homogeneous or stationary transition probabilities.
Here we discuss only this case. The non time-homogeneous
Markov chains also have important applications. We shall now

assume that the sets of values taken by the chain { }X n 0

∞
 known

as the state space is a finite or  countable set identified as {1,2,3,...}.

Let p P X j X i P X j X iij
n

n n
( ) ( ) ( )≡ = = = = =+1 1 0  .Then,

by the Markov property,

         = = = =∑ P X j X k X i
k

( , )2 1 0

A sequence  o f  random

variables is called a Markov

chain if the past and future of

the  cha in  a re  mutua l l y

independent, given the present.

p P X j X iij
( ) ( )2

2 0≡ = =



SERIES ⎜ ARTICLE

22 RESONANCE ⎜ January  1997

and more generally p P X j X iij
n

n
( ) ( )≡ = =0  satisfy

p p pij
n n

ik
n

k
kj
n( ) ( ) ( )1 2 1 2+ =∑ .

This is known as the  Chapman - Kolmogorov relation. The above

discussion shows that in matrix notation  is simply

P2 and P pn
ij

n( ) ( )(( ))=  is the nth power  P n  of  P pij= (( )) .

The main objects of interest are: (a) the probability distribution
μ n of  Xn, i.e.

μ0 ={μ0 (i)}  being the distribution of  X0 , (b) the behavior of  μn

for large n  and (c) the behavior of time averages of the sort

1

1
n

f X j

n

( )∑ for bounded functions  f  such as the indicator  func-

tion IA (x) which is one if  x  is in A and zero otherwise (in this  case
the time average is simply the proportion of visits to A by the
chain during the first n steps).

A Markov chain {Xn}  with stationary transition probabilities
P=((pij)) is irreducible if for each pair  i, j  there is an integer n  such

that p P X j X iij
n

n
( ) ( )≡ = =0  is strictly positive. A state  i is said

to be recurrent  if  P(Xn = i  for some n  ≥ 1 |X0  = i) is one. That
is, starting from i  the chain returns to i  with probability one. If
Ti  ≡ min {n: n ≥ 1, Xn = i} is the first return time  to state i, then i
being recurrent is the same as  P(Ti < ∞|X0 = i) = 1. A state i is

μ n nj P X j( ) ( )≡ =

     ,

= = = = = =∑P X j X k X i P X k X i

k

( , ) ( )2 1 0 1 0

= = = = =∑P X j X k P X k X i

k

( ) ( )2 1 1 0

=∑ p pkj ik
k
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transient if it is not recurrent. A recurrent state  i is called  positive
or null recurrent according as the mean value of  Ti , i.e., E(Ti |
X0=i) is finite or infinite.  It can be shown that in the irreducible
case, if one state is recurrent (null or positive) all states are
recurrent (null or positive). The same is true for  transience. A
state i has period di  ≡ g.c.d. {n:P(Xn=j|X0 =i) > 0}. Then, in the
irreducible case di=d for all i.

If di = 1 then i  is called aperiodic. The main limit theorem for
Markov chains is the following.

Theorem 1. Let { }X n 0

∞
 be a Markov chain with stationary

transition probability matrix P=((pij)). Let the chain be
irreducible, positive recurrent and aperiodic. Then there exists a
probability distribution {π j} such that

(a) for each i, j  lim pij
n

j
( ) = π  (convergence to equilibrium)

(b)  π πj i ij
i

p=∑ (invariance or equilibrium)

(c) 
π j jE T X j= = −( ( ))0

1

  (probability of being at   j = recipro-

cal of the mean recurrence time)

(d) lim ( ) ( )
n

j
j

n

n
f X f j

1

0
r =∑∑ π

for every bounded function f (.) (law of large numbers i.e. time
average = ensemble average); in particular for   f = IA.

If the aperiodicity condition is dropped then (b), (c), (d) are still
true but (a) is replaced by the  Cesaro  convergence i.e. for all i, j

When  the state space is not countable there is an appropriate
extension of the above theorem.
The author would like to thank Alladi Sitaram for encouraging
him to write this article for   Resonance  and Mohan Delampady
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Ornithology may sometimes even entail hazards of a different kind. I recall
one particularly hair-raising incident along the Himalayan trail from Almora

to the Lipu Lekh Pass on my way to Lake Manasarovar  and Mt Kailas in
1945, a few years before the Dragon swallowed Tibet. It was at a particularly
narrow part of the trail with a thousand feet of vertical scarp on one side
and the roaring Kali river some 300 feet vertically down on the other. I had

walked ahead of the porters while they were striking camp and was all by
myself. Just at that moment a tiny bird – how  well I remember that
Yellownaped Yuhina! – got up to the top of a bush, some yards away on the

flanking hillside. Just as I got it in the field of my glasses, it hopped a bit
further up, so to get a better view I took a step back, with glasses still glued
to my eyes, and entirely unmindful of where I was standing with my back

to the abyss. As I did so, I felt a small pebble slip from under my heel and
heard a faint continuing clatter as it went rolling down the hill. Still unmindful
of anything untoward I casually looked back over my shoulder to see what

it was all about. What I saw literally made my hair stand on end. In a flash
I realized that I was on the very edgeof beyond  – two inches more and I
would have followed that rollicking pebble. The great leap forward I made

at that instant would have done credit to Mao's reforming zeal. I am
wondering to this day what my porters would have made of my mysterious
disappearance when they reached the end of the day's march and found

me missing, since finding any trace of a vanished ornithologist in that rocky
gorge of the tumultuous river would indeed have been purely accidental.

Sálim Ali  in The Fall of A Sparrow


