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The Vacillating Mathematician
1. Where Does She End Up?
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The problem of a mathematician who walks from her
home to her office and changes her mind repeatedly
duringthis walkis discussed. Stochastic generalizations
of this problem can be used to model many real-life
situations.

The Deterministic Version

A mathematician starts walking from her home to her office.
Halfway through she changes her mind and starts returning
home. Again halfway through that she changes her mind and
starts walking towards her office. Once again halfway through
that she starts returning home and so on. The problem is to
determine what happens to this vacillating mathematician.

Identifying the mathematician’s home as the point zero and her
office as the point one we can formulate asequence {X ,} § (X,

denoting the position atthe n'" change point) of numbers in the
interval [0,1] that satisfies the following simple rule:

1 1 11
Xy=0,X,=7,X,=—,X; =—+_.2=§,
2 1 4 24 8
1
X, =133
2 8 16
Figure 1
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(1-X5,)
Clearly, X2n+l = X2n +Tzn for n20

X,,=+X,, for nx1 : (1)

n

Letting U, =X,,.,,V, =X,, we see that

1 1
U, =V (—j+—
n+l n 2 2

1 1
= — —_ >
(4)Un+2f0rn_1 @)

Thisis known as a first order difference equation. To solve this
iterate the equation to get

(3 verld) 3053
=|l=| U, +|—] =+|—|=+=.
4 4/ 2 \4)2 2
Itis easy to guess from the above and also establish by induction
that
n n—1 J
1 1)1
Uy=|—| U ==
i (4j 1+Z(2j(4) 3)
Jj=0

Since0< U, <1, G) U,— 0 as n— . Alsothe geometric series

partial sum sequence
1
2(1) ()5 Q _2
~\2/\4 1-1 3
(Recall that Z ar — 2 for | r| <1 ). Thus U, — 2/3 and since
0

V. =X,,=1/2 U, it converges to 1/3.
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Eventually, our mathematician
will just be hopping in the
vicinity of 1/3 and 2/3.

Figure 2

So our mathematician’s position at odd numbered change points
is nonldecreasing (note that U,=5/8is > U,=1/2 and U, —
U= 1 (U~-U, )= " (U,— U,) >0) and converges to

2/3. Similarly V_is also nondecreasing and approaches 1/3.

If 0 < X,< 1 then the above arguments are still valid and the
limits are the same. However, if X;>1/3 then U, and V, would
both be decreasing to 2/3 and 1/3 respectively. (Prove this).

Finally, note that if X =1/3 then U =2/3 and V, =1/3 for
alln. So 2/3 and 1/3 are fixed points for the {U.} and {V }
sequencesorforthe dynamical systems generated by the functions
f and grespectivelyi.e.,

1 1 1 1
f(x)—zx‘l'a,g(x)—zx‘i‘z )
for x in [0,1]. For a function f from a set S into itself the
sequence { fy(X) =x, £ (X)=f(f, _, (x), n>1}is called a
dynamical system. Currently populartopics chaosand fractalsdeal
with dynamical systems (see Barnsley, and Ramasamy and lyer
in Suggested Reading).

The problem of the vacillating mathematician was posed by Zeev
Barel (Suggested Reading). Krishnapriyan (Suggested Reading)

f8§->8
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solves this completely and discusses an approach to this prob-
lem using difference equations, generating functions and matrix
methods.

Now suppose our mathematician likes to inject some randomness
in hermoves. What happens to the sequence {X . }: which now
becomes arandom sequence? The presentarticle is devotedto
answering this question. It will turn out that the set of limit
points of the sequence can be (a) the entire interval [0,1] (b) aset
like the Cantor set (defined later in the article) of length
(measure) zero and (c) quite arbitrary and thus very different
from the deterministic situation discussed earlier.

We conclude this section with the following two observations.

1. Suppose our mathematician when moving towards one
always goes a fraction a of the remaining distance and when
moving towards zero always goes a fraction b of the distance. It
can be shown thatin this case U, and V, satisfy
U,=1-o)(1-p) U +a

n

v,=U, (1-)
and hence
(1-B)a
Unﬁl_ranan% —, (6)

where r=(1-a) (1-p).

2. The random sequence {X } generated by the mathematician
in the stochastic case is amodel thatis applicable in some real life

situations. For example, let {Yj}:o, be a random sequence
denoting the level in a reservoir on period j by Y/ Lett,, 7, 1,
be the times at which the sequence {Y;} has alocal minimum
or maximum. Let X = Y. . Suppose the reservoir has a

minimum zero and a maximum normalised to be one, say. Then
the sequence { X } has a behaviour similar to our mathematician.

Stochastic generalizations of
the vacillating mathematician
provide models for some real

life situations.
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Figure 3 It is clear that we could substitute the reservoir level by stock

prices, rainfall amounts, inventory level or any other randomly
varying sequence in a bounded interval.

We will consider several stochastic (i.e. random) versions in the
next part of this article. Stochastic means random. To analyze
these problems we will require some concepts from probability
theory which are outlined in the next section.

As a simple stochastic generalization suppose that our
mathematician starts at 0, goes half way through and then flips
afaircoin. If the coin comes out heads she continues towards
one and if the coin comes out tails she turns back towards 0.
Again half way through whatever direction she is headed she
flips a fair coin and either continues in that direction or goes in
the opposite direction.

To analyse this model, as before, let X denote the position at
the n change point. Then, given X,

I-Xx,) . .
X, + — with probability 1/2
Xn+1 = X
7" with probability 1/2 )

independent of X, X,, ... X _,.

n
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Thus the distribution of X, given X dependsonlyon X and
doesnotdependon X, X, ... X, _,or n. Inthis case the sequence

{x,},is called a Markov Chain with stationary transition

probabilities (see Billingsley and Fellerin Suggested Reading). A
discussion of Markov chains follows in the next section. We will
analyze this model and other stochastic generalizations in the
next part of this series.

Markov Chains

A sequence of random variables {X , } " is called aMarkov chain
if given X the past (X, X,, ..., X, _,) andthe future (X ,,, X

n+1? 7 n+2’
...) are stochastically independent. This property was introduced
by A A Markov at the turn of the century as a simple notion of
dependence in time evolution and as a departure from full
independence (see Fellerin Suggested Reading). Markov chains
have proved to be very useful in a number of applications,
especially in telephone traffic, computer traffic on the informa-
tion highway, waiting lines, stock prices, etc. When the transition
probability P(X_ ., =j| X =i ) (where P(A|B) stands for the
probability of the event A given that B has happened) depends
only on/ andj and not on n the Markov chain {X } is said to
have time homogeneous or stationary transition probabilities.
Here we discuss only this case. The non time-homogeneous
Markov chains also have important applications. We shall now

assume that the sets of values taken by the chain {X , } ~ known
asthe state spaceis afinite or countable setidentifiedas{1,2,3,...}.
Let p” =P(X,, =j|X, =) =P(X,=j|X,=i) .Then,

by the Markov property,

2 . .
P =P(Xy=j| Xo =)

=D P(X,=j. X, =k| Xy =1)
k

A sequence of random
variables is called a Markov
chain if the past and future of
the chain are mutually
independent, given the present.
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:ZP(X2=j|X1=k,XO=i)P(Xl=k|Xo=i)
k
ZZP(x2:j|x1=k)P(x1=k|x0=i)

k
= Z Pij Dik

k
andmore generally p{” = P(X, = j| X, = i) satisfy

(m+ny) _ (n) . (ny)
Py =2 py Py
k

Thisis known asthe Chapman - Kolmogorovrelation. The above

discussion shows thatin matrix notation is simply

FPand P = ((pfj") )) is the nth power P" of P =((p;)).
The main objects of interest are: (a) the probability distribution
u,of X ie.

u,()=PX, =)

U, ={u, ()} being the distribution of X, (b) the behavior of u,
for large n and (c) the behavior of time averages of the sort

n

1
- Zf(xj) for bounded functions f such as the indicator func-
1

tion /,(x) whichis oneif x isin A and zero otherwise (in this case
the time average is simply the proportion of visits to A by the
chain during the first n steps).

A Markov chain {X} with stationary transition probabilities
P:((p,./.)) is irreducibleif for each pair i, j there is aninteger n such

that p;” = P(X, = j| X, = i) isstrictly positive. A state iis said

to be recurrent it P(X =i forsomen =1 |X, =) is one. That
is, starting from i the chain returns to i with probability one. If
T.=min{n: n>1, X =i} is the first return time to state i/, then i
being recurrent is the same as P(T,< «|X,=i) = 1. A state iis
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transientifitis notrecurrent. Arecurrent state iis called positive
or null recurrent according as the mean value of T, i.e., E(T,|
X,=I) is finite or infinite. It can be shown that in the irreducible
case, if one state is recurrent (null or positive) all states are
recurrent (null or positive). The same is true for transience. A
state i has period d, = g.c.d. {n:P(X =/ X,=/) > 0}. Then, in the
irreducible case d=dfor all i.

If d,=1 then i is called aperiodic. The main limit theorem for
Markov chains is the following.

Theorem 1. Let {X,} be a Markov chain with stationary

transition probability matrix P=((p,/.)). Let the chain be
irreducible, positive recurrent and aperiodic. Then there exists a
probability distribution {n j} such that

i i lim p™ =
(a) foreach i, j lim p;" =

7 ; (convergence to equilibrium)
(b) 7; =Z?Z’ip[j (invariance or equilibrium)

m, = (ET,| Xo =)
(c) (probability of being at j = recipro-

cal of the mean recurrence time)
I )
(d) lim ;Zf(X,) = fn,
0 j

for every bounded function f(.) (law of large numbers i.e. time
average = ensemble average); in particular for f=1,.

If the aperiodicity condition is dropped then (b), (c), (d) are still
true but (a) is replaced by the Cesaro convergencei.e.forall i, j

1 n
lim — " =g
m2r =7,

When the state space is not countable there is an appropriate
extension of the above theorem.

The author would like to thank Alladi Sitaram for encouraging
him to write this article for Resonance and Mohan Delampady
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and Kavi Ramamurthy for editorial and technical assistance.
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*

‘R/Mﬁ one particularly hair-raising incident along the Himalayan trail from Almora

I to the Lipu Lekh Pass on my way to Lake Manasarovar and Mt Kailas in
1945, afew years before the Dragon swallowed Tibet. [t was ata particularly
narrow part of the trail with a thousand feet of vertical scarp on one side
and the roaring Kali river some 300 feet vertically down on the other. | had
walked ahead of the porters while they were striking camp and was all by
myself. Just at that moment a tiny bird — how well | remember that
Yellownaped Yuhina! —got up tothe top of abush, some yards away onthe
flanking hillside. Justas | gotitin the field of my glasses, it hopped a bit
further up, soto geta better view | took a step back, with glasses still glued
to my eyes, and entirely unmindful of where | was standing with my back
tothe abyss. Asldid so, | felta small pebble slip from under my heel and
heard afaint continuing clatter as it went rolling down the hill. Stillunmindful
of anything untoward | casually looked back over my shoulder to see what
itwas all about. What | saw literally made my hair stand on end. Ina flash
I realized that | was on the very edgeof beyond —two inches more and |
would have followed that rollicking pebble. The greatleap forward | made
at that instant would have done credit to Mao's reforming zeal. | am
wondering to this day what my porters would have made of my mysterious
disappearance when they reached the end of the day's march and found
me missing, since finding any trace of a vanished ornithologist in that rocky
gorge of the tumultuous river would indeed have been purely accidental.
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1} { Ornithology may sometimes even entail hazards of a differentkind. | recall

Salim Ali in The Fall of A Sparrow
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