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ABSTRACT

Hypoxic preconditioning reprogrammes the brain’s response
to subsequent H/I (hypoxia–ischaemia) injury by enhancing
neuroprotective mechanisms. Given that astrocytes normally
support neuronal survival and function, the purpose of the
present study was to test the hypothesis that a hypoxic
preconditioning stimulus would activate an adaptive astro-
cytic response. We analysed several functional parameters 24
h after exposing rat pups to 3 h of systemic hypoxia (8% O2).
Hypoxia increased neocortical astrocyte maturation as
evidenced by the loss of GFAP (glial fibrillary acidic protein)-
positive cells with radial morphologies and the acquisition of
multipolar GFAP-positive cells. Interestingly, many of these
astrocytes had nuclear S100B. Accompanying their differ-
entiation, there was increased expression of GFAP, GS
(glutamine synthetase), EAAT-1 (excitatory amino acid
transporter-1; also known as GLAST), MCT-1 (monocarbox-
ylate transporter-1) and ceruloplasmin. A subsequent H/I
insult did not result in any further astrocyte activation. Some
responses were cell autonomous, as levels of GS and MCT-1
increased subsequent to hypoxia in cultured forebrain
astrocytes. In contrast, the expression of GFAP, GLAST and
ceruloplasmin remained unaltered. Additional experiments
utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-
cAMP), which mimicked several aspects of the preconditioning
response, to determine whether activated astrocytes could
protect neurons from subsequent excitotoxic injury. dbcAMP
treatment increased GS and glutamate transporter expression
and function, and as hypothesized, protected neurons from

glutamate excitotoxicity. Taken altogether, these results
indicate that a preconditioning stimulus causes the pre-
cocious differentiation of astrocytes and increases the
acquisition of multiple astrocytic functions that will contrib-
ute to the neuroprotection conferred by a sublethal
preconditioning stress.
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INTRODUCTION

Preconditioning refers to a paradigm whereby exposing cells

or an organ or organism to a sublethal insult provides

protection against a subsequent insult that would normally

produce injury. Although both acute and long-term pre-

conditioning have been demonstrated, several studies have

confirmed that the protective effect of an episode of hyp-

oxic preconditioning occurs when the interval between the

preconditioning event and the subsequent lethal event is

,24 h. Hypoxic preconditioning in the neonatal rat (8% O2,

for 3 h) was originally shown to provide tolerance to H/I

(hypoxia–ischaemia) brain injury in the neonatal rat brain:

this phenomenon has subsequently been demonstrated for

the adult brain (Gidday et al., 1994; Vannucci et al., 1998;

Bergeron et al., 2000; Jones and Bergeron, 2001). Since

preconditioning provides dramatic neuroprotection there is

much interest in understanding the molecular mechanisms
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underlying the cell retention that is achieved in order that it

might be mimicked using pharmacological agents. Several

studies have shown that hypoxic exposure alters gene

expression and that it activates several intracellular signalling

pathways, some of which may contribute to the adaptive

responses observed after hypoxia (Semenza, 2000; Bernaudin

et al., 2002; Ran et al., 2005).

Many studies seeking to identify mechanisms of hypoxic

preconditioning-induced adaptive responses have focused on

the neuronal response to this insult. For instance, investiga-

tors have shown increased levels of anti-apoptotic Bcl-2,

increased levels of HIF-1 (hypoxia-inducible factor-1)-

regulated genes, and an increased capacity of neurons to

sequester calcium (Gidday, 2006). However, astrocytes serve

many essential physiological functions in the CNS (central

nervous system) on which neurons depend for their survival

and peak functional performance. These include inducing the

formation and maintenance of the blood–brain barrier,

clearing extracellular potassium that accumulates with

neuronal activity and collecting and metabolizing excitatory

amino acids (Sofroniew and Vinters, 2010). Astrocytes also

store energy in the form of glycogen that can be metabolized

to pyruvate for their own survival or to lactate for export to

neurons for additional fuel during energy crises, such as

during H/I (Swanson and Choi, 1993). Astrocytes also produce

enzymes to detoxify metals and xenobiotics (Sofroniew

and Vinters, 2010). Additionally astrocytes, and especially

perivascular astrocytes, express ceruloplasmin, which is a

multifunctional protein that serves as an amine oxidase, an

antioxidant and a ferroxidase. Ceruloplasmin expression

increases when astrocytes become activated (Kuhlow et al.,

2003). A subset of these astroglial functions are induced in

adult astrocytes in response to hypoxic or chemical

preconditioning (Romera et al., 2004, 2007; Kawahara et al.,

2005; Hoshi et al., 2006, 2010; Yamada et al., 2006; Zhang

et al., 2007; Weller et al., 2008; Yu et al., 2008). Therefore we

were interested in establishing whether immature astrocytes

would respond to a preconditioning event by enhancing their

expression of the proteins that support these essential

support functions, which, in turn, would enable them to

better support neurons to survive a subsequent lethal

excitotoxic challenge.

To test this hypothesis, we studied the status of multiple

indicators of the astrocytic physiological state, including

GFAP (glial fibrillary acidic protein), the neurotrophic,

calcium-binding protein, S100b, GS (glutamine synthetase),

EAAT-1 (excitatory amino acid transporter-1; also known as

GLAST), MCT-1 (monocarboxylate transporter-1) and CP

(ceruloplasmin) levels 24 h after a 3 h hypoxic exposure (a

time corresponding to the beginning of a subsequent H/I

insult in previous preconditioning experiments). We were

particularly interested in evaluating GS and GLAST as indices

of glial glutamate handling capacity, as levels of glutamate

have been shown to increase to as high as 500 mM after H/I in

the newborn and neurons are extremely vulnerable to

excitotoxic death in the immature brain (Hagberg et al.,

1993). To determine whether these changes were direct re-

sponses of astrocytes to hypoxia, we evaluated the effects of

hypoxia on enriched cultures of forebrain astrocytes. Finally,

astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP) –

which mimics some but not all of the preconditioning

responses – were utilized to determine whether alterations in

glutamate handling would influence neuronal survival.

Altogether, our results indicate that a preconditioning

stimulus elevates multiple astrocytic functions that endow

them with an enhanced capacity to protect neurons from a

subsequent challenge.

MATERIALS AND METHODS

Materials
Unless otherwise stated, all chemicals and laboratory reagents

were purchased from either Fisher Scientific (Pittsburgh, PA,

U.S.A.) or Sigma (St. Louis, MO, U.S.A.). Eagle’s minimum

essential media and DMEM/F12 [DMEM (Dulbecco’s modified

Eagle’s medium) with nutrient F12 mixture in the ratio 1:1]

were purchased from Mediatech/Life Technologies (Fisher

Scientific). Fetal bovine serum was purchased from Tissue

Culture Biologicals (Tulare, CA, U.S.A.). Calf serum was

purchased from Hyclone (Logan, UT, U.S.A.). Neurobasal and

B27 supplements were purchased from Invitrogen (Carlsbad,

CA, U.S.A.). Cytosine b-D-arabinofuranoside and dbcAMP

were purchased from Sigma. Rabbit polyclonal antibodies

against cow GFAP (catalogue no. Z0334) were purchased

from Dako (Carpinteria, CA, U.S.A.). Mouse anti-S100b was

purchased from Sigma (catalogue no. SAB1402349). Mouse

monoclonal antibody against GS (catalogue no. MAB302) was

purchased from Millipore (Temecula, CA, U.S.A.). Rabbit

polyclonal anti-GS antibodies were purchased from Sigma

(catalogue no. G2781), mouse monoclonal anti-EAAT-2

antibodies were purchased from BD Biosciences (catalogue

no. 611654; San Jose, CA, U.S.A.) and mouse monoclonal anti-

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) were

purchased from Millipore (catalogue no. MAB374). Mouse

anti-CP was purchased from BD (catalogue no. 611488).

Secondary antibodies for immunofluorescence were donkey

anti-rabbit Dylight 488 or donkey anti-mouse IgG Dylight

549 from Jackson Immunoresearch (West Grove, PA, U.S.A.).

TRIzolH was purchased from Molecular Research (Bethesda,

MD, U.S.A.), and reverse transcriptase reaction reagents,

buffers and enzymes were purchased from Sigma or Qiagen

(Valencia, CA, U.S.A.). D-[3H]aspartate and [35S]UTP were

purchased from New England Nuclear (Boston, MA, U.S.A.).

Hypoxic preconditioning
Wistar rat pups at P6 (postnatal day 6, where P1 is the day of

birth) underwent hypoxic preconditioning as described
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previously (Gidday et al., 1994; Vannucci et al., 1998). Control

animals were maintained at 37 C̊ for 3 h under atmospheric

conditions. To determine the effect of a subsequent H/I

episode, P7 rat pups underwent permanent unilateral (right)

carotid artery ligation, followed 2 h thereafter by 60 min of

systemic hypoxia as described previously (Vannucci and

Vannucci, 2005). The interval from the onset of hypoxic

preconditioning to the onset of cerebral H/I was 24 h and the

animals were allowed to survive for an additional 24 h. All

experiments on animals were carried out in accordance with

institutional guidelines and subsequent to IACUC committee

approvals, and the present authors further attest that all

efforts were made to minimize the number of animals used

and their suffering.

In situ hybridization
Animals were anaesthetized with a mixture of ketamine (75

mg/kg) and xylazine (5 mg/kg) prior to intracardiac perfusion

with 4% (w/v) paraformaldehyde. Brains were postfixed with

4% paraformaldehyde overnight and then cryoprotected for at

least 24 h in 30% sucrose in 0.1 M phosphate buffer (pH 7.4).

The brain samples were frozen in embedding medium (O.C.T.;

Sakura Finetek, Torrance, CA, U.S.A.) on a solid CO2/ethanol

slush. Brains were sectioned at 12 mm and thaw mounted on to

SuperfrostPlusTM slides and then placed at 280 C̊. In situ

hybridization using a 35S-labelled riboprobe for GFAP was

performed as previously described (Vannucci et al., 1998).

Immunofluorescence
Vibratome sections (50 mm) were cut on a Ted Pella 1000

series vibratome, incubated in 0.2% Triton X-100 in TBS (Tris-

buffered saline; pH 7.4) for 30 min and then blocked for 1 h

with 10% (v/v) donkey serum, 10% (w/v) BSA and 0.05% Triton

X-100 in TBS. Sections were incubated in mouse anti-S100b

(Sigma) and rabbit anti-GFAP (Dako; diluted 1:500) and

incubated for 24 h at 4 C̊, followed by extensive rinses in

TBS containing 1.5% NaCl and 0.05% Triton X-100. Secondary

antibodies were incubated for 24 h at 4 C̊ (diluted 1:400). The

secondary antibodies were carefully examined to ensure that

there was no cross-talk between fluorescent dyes or cross-

reactivity between secondary antibodies. No signal above

background was obtained when the primary antibodies were

replaced with pre-immune sera. The sections were then

washed, counterstained with DAPI (49,69-diamidino-2-pheny-

lindole; 1 mg/ml; Sigma) for 5–10 min and coverslipped with

Fluorogel (Electron Microscopy Sciences, Hatfield, PA, U.S.A.).

Then 5 mm z-stacks were captured using a Zeiss LSM-510

microscope. Z-series projections were generated, rotated by

10˚and assembled in a montage using Adobe Photoshop CS-2.

Astrocyte cultures
Primary astrocyte cultures were prepared from 1–2-day-old

rat pups using standard methods (Levison and McCarthy,

1991). For the experiments described in Figure 3, enriched

astrocyte cultures were prepared using the shaking method

and then transferred to a chemically defined medium for 5

days to enhance their maturation (S.W. Levison, unpublished

data). On day 6, the astrocytes were subjected to hypoxia

(8% O2) for 3 h, in a Forma O2/CO2 incubator (Forma

Scientific, Marietta, OH, U.S.A.) and then maintained under

atmospheric conditions (21% O2/5% CO2) for 24 h. For the

experiments described in Figures 4–6, astrocyte cultures were

prepared as described by Hamby et al. (2006), save for the use

of EGF (epidermal growth factor) and antibiotics. Once the

astrocytes reached confluence, cultures were treated once

with 8 mM cytosine b-D-arabinofuranoside for 4–8 days to

substantially reduce microglial contamination. Thereafter,

cultures were maintained in growth medium (Hamby et al.,

2006).

For activated astrocyte studies, monolayers of primary rat

astrocytes were maintained for 7–8 days in growth medium

alone or in growth medium containing 250 mM dbcAMP, both

of which were replenished every 2–3 days prior to

experimentation.

Neuronal cultures
Neuronal cultures were prepared by enzymatically and

mechanically dissociating cortices of E15 (embryonic day

15) mouse cerebrum and plating the resulting cells at 6 hemi-

spheres per plate in neurobasal medium supplemented with

B27 and 50 i.u. (international units)/ml penicillin/50 mg/ml

streptomycin. Glutamine (1.5 mM) was added just prior to

use. At 2 days after plating, cultures were treated once with 1

mM b-D-arabinofuranoside for an additional 2 days. The

medium was partially replenished (1/2 volume exchange)

twice per week and on the day of experimentation [DIV (days

in vitro) 8]. All cultures were kept at 37 C̊ in a humidified 6%

CO2-containing atmosphere.

Immunoblotting
Western blots from tissue homogenates

First, 10–15 mg of protein was separated on 7% Tris/acetate

polyacrylamide gels electrophoresed at 150 V for 80 min and

transferred at 300 mA for 80 min to nitrocellulose

membranes. The membranes were stained with 0.1%

Ponceau S in 5% acetic acid to confirm proper transfer of

proteins. Then, membranes were blocked for 1 h in 10% non-

fat dried skimmed milk diluted in PBS-T (0.05% Tween 20 in

PBS). Membranes were incubated overnight at 4 C̊ in primary

antibody diluted in 1% BSA/PBS-T. After incubation with the

primary antibody, the blots were extensively washed with

PBS-T for 30 min and then incubated for 1.5 h at room

temperature (20 C̊) with secondary antibody conjugated with

horseradish peroxidase diluted in 1% BSA/PBS-T. The

membranes were then washed extensively in PBS-T for 30

min prior to visualization using RenaissanceTM chemilumin-

escence (NEL104; NEN Life Science, Boston, MA, U.S.A.).
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E 2011 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

161



Blots were probed with rabbit anti-EAAT-1 (1:1000; Alpha

Diagnostic, San Antonio, TX, U.S.A.), mouse anti-GS (1:2000;

Millipore) or rabbit anti-GFAP (1:5000; Dako), rabbit anti-

ceruloplasmin (1:10000; Dako) or rabbit anti-MCT-1 [1:8000;

a gift from Dr Ian Simpson (Department of Neural and

Behavioral Sciences, Penn State College of Medicine, Hershey,

PA, U.S.A.) (Vannucci and Simpson, 2003)]. The blots were

visualized using the RenaissanceTM chemiluminescence

reagent from NEN. Images were obtained and quantified

using a UVP imaging system with LabWorks software (UVP,

Upland, CA, U.S.A.).

Western blots from astrocyte cultures

Cultures grown in 15 mm multi-well dishes (Falcon Primaria,

Becton Dickinson, Lincoln Park, NJ, U.S.A.) were washed with

0.4 ml of ice-cold PBS. Then, 50–100 ml of lysis buffer

containing 1% Nonidet P40, 5 mM EDTA, 5 mM iodoaceta-

mide and 16CompleteTM protease inhibitor cocktail (Roche

Diagnostics, Mannheim, Germany) in TBS was added to each

well. Plates were placed on ice for 30 min while rocking and

cells were harvested by gentle scraping. Cellular debris was

pelleted (10000 g, 10 min and 4 C̊) and cell lysates were

stored at 220 C̊. Protein concentration was determined using

the BCA assay (Pierce, Rockford, IL, U.S.A.). First, 5–15 mg of

protein was separated by SDS/10% PAGE under reducing

conditions and electrophoretically transferred to nitrocellu-

lose. Membranes were washed twice with water (20 ml, 5

min) and proteins of interest were detected using the primary

antibodies at 1 mg/ml visualized using species-specific

WesternBreeze Immunodetection kits (Invitrogen) as per the

manufacturer’s instructions. Results were recorded on an

X-ray film (Fujifilm, Tokyo, Japan). Digitized images were

analysed by computer-assisted densitometry (Gel-Pro analy-

zer; Media Cybernetics) and protein levels were normalized to

their respective GAPDH levels.

Measurement of excitatory amino acid transport
D-[3H]aspartate was used as the substrate for glutamate

transporters as described and characterized previously

(Vidwans and Hewett, 2004). Cells were washed twice with

HBSS (Hepes-buffered salt solution; 120 mM NaCl, 5.4 mM

KCl, 0.8 mM MgCl2, 1.8 mM CaCl2, 20 mM Hepes, 15 mM glu-

cose and 0.01 mM glycine) and rocked for 10 min at room

temperature. The buffer was then fully exchanged with HBSS

containing D-[3H]aspartate (final concentration: 0.1 mCi/ml)

and 50 mM of unlabelled aspartate as a carrier. Uptake was

terminated after 3 min by washing three times with ice-cold

choline stop buffer containing 116 mM choline chloride, 0.8

mM MgSO4, 1 mM KH2PO4, 10 mM Hepes, 5 mM KOH, 10 mM

glucose, 0.9 mM CaCl2 and 5 mM of non-radioactive D-

aspartate (4 C̊). This time point was within the linear range of

uptake for both dbcAMP-treated and -untreated cultures

(results not shown). Culture wells were subsequently

aspirated dry and cells were lysed by the addition of 400 ml

of warm 0.2% SDS. The amount of accumulated radioactivity

was estimated in 50% of the cell lysate via liquid scintillation

counting (Packard TriCarb 4000 scintillation counter). Total

protein content per well was determined using the BCA assay

(Pierce). Readings of c.p.m. are expressed as c.p.m./mg of

protein.

Toxicity bioassay
Astrocytes were washed twice and then incubated for 45–90

min with a medium containing glutamate: the final well

volume equalled 75 or 100 mM. Culture medium from six

wells was removed, pooled and then combined with the

neuronal plating medium and added to the pure neuronal

cultures for the next 16–18 h. Cell viability was assessed using

the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-

tetrazolium bromide] reduction assay (Lobner, 2000), with

minor modifications. MTT (3 mg/ml in PBS) was added to each

well and cultures were placed in a humidified, 6% CO2-

containing incubator at 37 C̊. At least 4 h later, the medium

was aspirated and 400 ml of acidic propan-2-ol was added to

dissolve the formazan salt. A 200 ml portion was transferred

to a 96-well plate and attenuance was measured at 540 nm

using a reference wavelength of 690 nm (Spectramax Plus384;

Molecular Devices). Neuronal cell death was measured in

parallel from the same cells by determination of levels of LDH

(lactate dehydrogenase) released into the cell culture medium

prior to the addition of MTT (Uliasz and Hewett, 2000). Data

are expressed as a percentage of total neuronal LDH activity

(defined as 100%), which was determined in each experiment

by assaying the supernatant of parallel cultures exposed for

16–18 h to 75 or 100 mM glutamate.

Statistical analyses
Data were analysed using one-way ANOVA followed by the

Student–Newman Keul’s test or the Student’s t test to detect

significant differences between two means with P,0.05.

RESULTS

To assess how hypoxic preconditioning might affect the

astrocytes in the immature brain, we first performed

immunofluorescence for GFAP and for S100b. In the

neocortex of control animals, GFAP staining was sparse and

those cells that were GFAP immunoreactive in the gray

matter had long radial processes (Figures 1A and 1C). A

subset of these cells was S100b immunoreactive (Figures 1B

and 1C). In the animals exposed to 3 h of hypoxia 24 h earlier,

the GFAP immunoreactive cells were now more intensely

immunoreactive and they possessed multipolar morphologies

(Figures 1D and 1F). S100b immunoreactivity also was

markedly increased, and in most of S100b-immunoreactive
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cells the S100b was located in the nucleus (Figures 1E and

1F). GFAP and S100b immunoreactivity were also increased in

the CA1-3 layers of the hippocampus and in the dentate

gyrus of the hippocampus (compare Figures 1G and 1I with

Figures 1J and 1L). Again, S100b was nuclear and not

cytoplasmic (Figures 1H–1L). Reflecting the increase in

GFAP immunoreactivity, the expression of GFAP mRNA as

demonstrated by increased hybridization signal was increased

Figure 1 Increase in GFAP and S100B expressions in the preconditioned neonatal rat brain
Vibratome sections from normal (A–C, G–I, M) and preconditioned (D–F, J–L, N) brains at the level of the hippocampus were
processed for GFAP (green) immunofluorescence in combination with S100B (red) from neocortex (A–F) and hippocampal CA2
regions (G–L). Images are Z-stacks from 1 mm confocal Z-sections through 5 mm. Arrows in (E, F, K, L) point to S100B
immunoreactive astroglial nuclei. Other sections were processed for in situ hybridization using a 35S-labelled riboprobe for GFAP, 24
h after exposure to hypoxia. Arrows in (M, N) point to the dentage gyrus and CA2 regions of the hippocampus where the intensity of
GFAP mRNA expression, shown here as white silver grains from the in situ hybridization, was significantly higher in the pre-
conditioned brains. Scale bars: (A–L) 50 mm and (M, N) 1 mm.
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in the hippocampus and the overlying white matter

(Figures 1M and 1N). Sections were also stained for GS, but

it was difficult by immunofluorescence to detect changes in

GS (results not shown).

Western blotting showed that there was a 3-fold increase in

the level of GFAP and an 8-fold increase in the level of GS

compared with controls 24 h after hypoxic preconditioning

(Figures 2A and 2B). Whereas preconditioning in vivo is viewed

as a milder insult that, by definition, does not damage the

brain, prolonged H/I produces cell death and causes significant

astrocyte activation. To evaluate the extent of glial activation,

we exposed a group of preconditioned animals to an additional

episode of 60 min of H/I. Contrary to our expectations, there

was no additional increase in the expression of GFAP and GS in

brains from preconditioned animals that were subsequently

subjected to H/I (Figures 2A and 2B).

As glutamate transporters are essential for buffering

extracellular glutamate, thereby protecting neurons from

excitotoxic stresses under both physiological and pathological

conditions, we next tested whether the preconditioning

paradigm induced the glutamate transporter EAAT-1 (GLAST).

GLAST, like GS, was induced 8-fold in the brains of

Figure 2 Effect of hypoxic preconditioning on GFAP, GS, GLAST,
ceruloplasmin and MCT-1 expression levels in the neonatal rat brain
(A) GFAP, GS and GLAST expression was analysed by Western blotting, with
protein samples extracted from a wedge-shaped section of preconditioned
brains composed of the neocortex, white matter and a portion of the striatum
as described previously (Vannucci et al., 2004). Equivalent regions of the
ipsilateral and contralateral hemispheres of preconditioned animals subjected
to H/I for 60 min and control animals were analysed. Blots were re-probed for
b-tubulin to establish equal protein loading. (B) Densitometric measurements
were carried out on individual immunoblots for each antibody tested and
values represent the means¡S.E.M. for six animals. The solid line represents
the normalized values of the controls. (C) Western-blot analysis of CP and
MCT-1. The fold change in expression levels of CP and MCT-1 in preconditioned
animals over the control is shown. *P,0.05 using the Student’s t test.

Figure 3 Effect of hypoxia in regulating the expression of astrocyte-
specific enzymes and transporters is selective in vitro
Western blot showing the expression of GFAP, GS and GLAST (A) and CP
and MCT-1 (B) in astrocytes exposed to either 21%O2/5% CO2 (atmospheric
condition) or 8% O2 (hypoxic condition) for 3 h in vitro. Results are
representative of results obtained from three independent experiments where
each condition was evaluated in duplicate. Densitometric measurements
were carried out on individual immunoblots for each antibody tested and the
values represent the means¡S.E.M. for three separate experiments. *P,0.05
by the Student’s t test.
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preconditioned animals as compared with naı̈ve controls

(Figures 2A and 2B). As seen with GFAP and GS, the level of

GLAST in the hemispheres of preconditioned animals

subjected to H/I for 60 min was comparable to the induced

level of GLAST in the animals exposed to the preconditioning

stimulus (Figure 2A).

Astrocytes maintain high intracellular concentrations of

certain antioxidants and play an important role in antioxidant

defences in the brain. As oxidative injury is an important

component of H/I cell death, we assessed whether the

antioxidant potential of astrocytes might be altered by a

preconditioning stimulus. Indeed, a 2-fold increase in the ex-

pression of ceruloplasmin was observed in the preconditioned

neonatal rat brain as compared with the normal control

(Figure 2C). As levels of lactate increase during H/I and acidosis

can be neurotoxic, we analysed the expression of MCT-1. MCT-1

levels increased by 2-fold in neonatal rat brains subjected to

hypoxic preconditioning at 24 h of recovery as compared with

naı̈ve control (Figure 2C).

To determine whether these changes are a direct response of

astrocytes to hypoxia, we placed highly enriched cultures of

forebrain type 1 astrocytes (A2B5-negative/GFAP-positive)

produced from the neonatal rat brain into a reduced oxygen

environment (8% O2) for 3 h and analysed protein expression

24 h after returning the cells to an atmospheric environment.

Western-blot analyses revealed a 2-fold increase in the levels

of GS (Figure 3A) as well as MCT-1 in the astrocytes subjected

to hypoxia as compared with the control (Figure 3B).

Interestingly, the expression of GFAP, GLAST and ceruloplasmin

did not change after hypoxia (Figures 3A and 3B), indicating

that some, but not all, of the responses observed in the

preconditioned brain may occur in a cell-autonomous manner.

To determine whether activated astrocytes would protect

neurons from a subsequent glutamate challenge, we assessed

their excitatory amino acid buffering capabilities. For these

studies, astrocytes were treated with dbcAMP, which has been

shown to increase astrocytic morphological complexity, GFAP

and vimentin immunoreactivity as well as other functional

properties of activated astrocytes (Fedoroff et al., 1984;

Eddleston and Mucke, 1993). dbcAMP was chosen since the in

vitro hypoxia was insufficient to induce glutamate transporter

expression, whereas dbcAMP is known to do so (Gegelashvili

Figure 4 dbcAMP increases astrocytic glutamate uptake and metabolism proteins
Rat astrocytes were treated with a medium alone (lanes 1 and 3) or with a medium containing 0.25 mM dbcAMP (lanes 2 and 4) for 7
days. Then, 5 mg (A) or 15 mg (B) of protein was analysed by Western blotting for GS (A) and GLT-1 (B). Densitometric measurements
were carried out on individual immunoblots for each antibody tested. Values represent the means¡S.E.M. for eight individual
experiments. Values below the bars represent the mean fold increase in protein expression that followed dbcAMP treatment. *P,0.05
by the unpaired Student’s t test following Welch’s correction for unequal variances. (C) Astrocyte cultures were treated with dbcAMP
(0.25 mM) for 8 days. The uptake of D-[3H]aspartate (0.1 mCi/ml) was measured at 3 min. Results shown are expressed as c.p.m./mg of
protein per 3 min and are the means¡S.E.M. (n512 culture wells from three separate experiments). The value above the bar
represents the mean fold increase of D-[3H]aspartate uptake after treatment with dbcAMP. *P,0.05 by the unpaired Student’s t test
(P,0.05).
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et al., 1996; Swanson et al., 1997). Astrocytes stimulated with

dbcAMP adopted a stellate morphology that was accompanied

by a 1.7-fold increase in GS and a 2.2-fold increase in GLT-1

expression (Figures 4A and 4B). This increase in glutamate

clearing proteins was accompanied by a 1.9-fold increase in

functional excitatory amino acid uptake as measured using D-

[3H]aspartate (Figure 4C). dbcAMP did not increase levels of CP

in these rat astrocyte cultures (Supplementary Figure S1 avail-

able at http://www.asnneuro.org/an/003/an003e062add.htm).

To determine whether the dbcAMP-stimulated astrocytes

would prevent neuronal cell death on challenge using an

excitotoxic stimulus, HBSS containing glutamate was added to

the astrocytes for 45–90 min, after which the buffer was col-

lected and transferred to pure neuronal cultures. After 16–18 h,

neuronal cell viability was determined using MTT (Figures 5A

and 5B) and LDH (Figures 5C and 5D) assays. Highly enriched

neuron cultures exposed to glutamate-containing medium

transferred from dbcAMP-treated astrocytes were two to four

times less likely to die than cells exposed to glutamate-

containing medium transferred from untreated astrocytes

(Figure 5). Of note, this protective effect was both time and

concentration dependent such that higher concentrations

(Figures 5B and 5D) of glutamate took a longer time to become

detoxified than lower concentrations (Figures 5A and 5C). For

example, only 60% of the neurons were viable as assessed by

the MTT assay after being incubated with a medium that

originally contained 100 mM glutamate and was detoxified

by the dbcAMP-treated astrocytes for 75 min, whereas 90% of

the neurons were viable when 75 mM glutamate was used

(Figures 5B and 5D compared with Figures 5A and 5C).

DISCUSSION

Multiple pathogenetic mechanisms contribute to H/I injury

to the brain, such as inadequate blood flow autoregulation,

elevated extracellular excitatory amino acids, altered cerebral

metabolism, accumulation of toxic metabolites, elevated

intracellular calcium, release of cytokines and prostaglandins,

iron accumulation and overproduction of free radicals.

Hypoxic preconditioning can mitigate the detrimental ef-

fects of H/I on neurons by inducing endogenous adaptive

mechanisms that can protect the perinatal brain from

subsequent injury. Many in vivo and in vitro studies were

designed to determine how preconditioning induces adaptive

responses in neurons. Despite the importance of astrocytes in

maintaining brain homoeostasis, fewer studies have been

conducted to distinguish the direct effects of hypoxic

preconditioning on astrocytes, which might then provide

neuroprotection. Of those studies that have evaluated

astroglial responses to preconditioning stimuli, except for a

few (Brucklacher et al., 2002; Jones and Bergeron, 2004;

Figure 5 dbcAMP-preconditioned astrocytes have an enhanced capacity to protect neurons from glutamate excitotoxicity
Rat astrocytes were treated with a medium alone [(2)dbcAMP] or with a medium containing 0.25 mM dbcAMP [(+) dbcAMP] for 8
days. Glutamate was added to the astrocytes for 45–90 min after which the buffer was collected and transferred to highly enriched
murine neuronal cultures. After 16–18 h, neuronal cell viability was determined using the MTT (A, B) or LDH assay (C, D) (n54–6
from three separate experiments). An asterisk indicates a value significantly different from the control (0 min), which were cultures
exposed to a final concentration of 75 mM (A, C) or 100 mM (B, D) glutamate for 16–18 h. The symbol ‘#’ indicates a significant
between-group difference. Results were analysed using one-way ANOVA followed by the Student–Newman Keul’s test after an
appropriate transformation of percentile data (P,0.05).
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Cimarosti et al., 2005), most have studied astrocytes in the

adult brain (Trendelenburg and Dirnagl, 2005). Therefore the

present study was designed to determine how immature

astrocytes would respond to a preconditioning stimulus and

to test the hypothesis that preconditioning paradigms induce

adaptive responses from astrocytes, enabling them to protect

neurons from the assortment of noxious signals generated

after a more severe hypoxic episode.

Our results on preconditioning-induced tolerance provide

several novel insights: (i) hypoxic preconditioning leads to

the precocious differentiation of neocortical astrocytes; (ii)

preconditioning induces nuclear S100B, which has been

implicated in glial differentiation; (iii) preconditioning

increases the expression of astrocytic GS and GLAST, mediators

crucial for detoxifying extracellular glutamate; (iv) precondi-

tioning induces the expression of ceruloplasmin and MCT-1,

thereby enhancing lactate transport and antioxidant functions

of astrocytes respectively; (v) hypoxic preconditioning strongly

activates astrocytes since no further activation was solicited

after a subsequent exposure to 60 min of H/I; (vi) a subset of

these responses are cell autonomous as they are elicited by

exposing astrocytes in vitro to hypoxia; (vii) changes in

glutamate transporter expression correlate with the buffering

capability of astrocytes for glutamate and protect neurons

from an excitotoxic insult.

Progress has been made in understanding the role of

astrocytes in ischaemic injury (Nedergaard and Dirnagl, 2005).

There is solid evidence that astrocytes can critically influence

neuronal survival during ischaemia and other brain insults.

Astrocytes can protect neurons by providing trophic support,

for example by releasing erythropoietin, which can inhibit

neuronal apoptosis (Ruscher et al., 2002). Oxygen–glucose

deprivation or treating astrocytes with pharmacological

agents that stabilize hypoxia-inducing factors increases the

production and secretion of VEGF (vascular endothelial

growth factor) and erythropoietin (Chavez et al., 2006; Chu

et al., 2010). Astrocytes also scavenge oxygen free radicals via

g lutath ione , meta l loth ioneins or ceru loplasmin

(Trendelenburg et al., 2002). Furthermore, studies have shown

that the glycogen accumulates in the brain after a traumatic

or metabolic insult, which might be protective (Folbergrova

et al., 1996). Astrocytes are the principal repositories of

glycogen in the brain, and experimentally induced increases

in astrocytic glycogen protect neurons in vitro from

ischaemia and glucose deprivation (Swanson and Choi,

1993; Wender et al., 2000). Recent studies in immature brain

have shown that hypoxic preconditioning increases brain

glycogen and this additional pool of metabolic fuel delays

energy depletion during H/I (Brucklacher et al., 2002). These

studies provided the impetus for the present study to test the

involvement of astrocytes in hypoxic preconditioning-

induced neuroprotection.

However, in the neonatal brain, many astrocytes are

immature and thus might be less competent to provide

neuroprotection. Using confocal microscopy for GFAP we were

struck by the finding that there were far fewer GFAP-positive

radial cells in the neocortices of rats exposed to hypoxia 24 h

earlier compared with controls. Moreover, when we stained for

S100B, which is expressed by mature astrocytes, we found

that S100B staining was increased. However, whereas S100B

is expressed in both the nuclei and processes of mature

astrocytes, S100B was solely nuclear. Studies of S100B

function in gliogenesis have shown that S100B is expressed

at high levels in oligodendrocyte progenitors that are

beginning to differentiate and that S100B is lost as they

mature. In S100B-null mice, oligodendrocyte maturation is

delayed, supporting the conclusion that S100B promotes

oligodendrocyte differentiation. In contrast, S100B begins to

be expressed by astrocyte precursors during the first week of

life in rats and mice and is expressed at even higher levels in

mature astrocytes. In neither lineage has it been established

how S100B promotes differentiation; however, S100B has

been shown to increase the activity of the nuclear kinase NDR

(nuclear Dbf2-related) (Deloulme et al., 2004).

Our findings are similar to those of Sizonenko et al. (2007),

who found that H/I brain damage in P3 rat pups disrupted the

normal radial glial architecture, distorted the radial pattern of

Nestin immunostaining, increased GFAP-immunopositive

astrocytes and reduced neocortical fractional anisotropy by

magnetic resonance imaging (Sizonenko et al., 2007). H/I at

P3 produces neuronal cell death, which complicates any

interpretation of the causes of the alterations in the radial

glial cells. With 3 h of hypoxia at P5, there is virtually no

increase in neuronal cell death; therefore, our results suggest

that neonatal hypoxia is sufficient to induce the premature

differentiation of radial glial cells into astrocytes.

Our GFAP in situ hybridization, immunohistochemistry and

Western-blot results revealed that hypoxia alone was sufficient

to elevate GFAP expression in the preconditioned brain

compared with the normal. Whereas the function of GFAP

has long been rather elusive, there are recent studies showing

that GFAP interacts with GLAST through a PDZ domain on

GLAST and that increasing levels of GFAP will increase the

levels of GLAST as well as [3H]aspartate uptake (Sullivan et al.,

2007a). Furthermore, GFAP and GLAST levels both decrease

subsequent to neonatal hypoxic brain injury, and the regions

where these proteins are lost correspond to brain areas that are

most susceptible to injury. Preconditioning, by inducing levels

of GFAP, may thus prevent the loss of GFAP during the H/I

insult, thus preserving levels of GLAST, which in turn would

limit glutamate accumulation and excitotoxicity (Sullivan

et al., 2007b).

Astrocytes have the innate capacity to promote neuronal

survival and have been shown to limit neuronal death from

excitotoxins (Rosenberg and Aizenman, 1989), oxidants

(Wilson, 1997; Dringen et al., 2000) and other stressors.

Glutamate is not only the predominant excitatory neuro-

transmitter in the CNS (Fonnum, 1984; Anderson and

Swanson, 2000; Danbolt, 2001) but it is also a potent

neurotoxin whose excitotoxicity has been implicated in

triggering neuronal death in ischaemia (Takagi et al., 1993;

Vannucci et al., 1999). The rapid removal of glutamate from
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the extracellular space is required for the survival and normal

functioning of neurons, and the energy-dependent glial

glutamate transporter has been shown to be important for

sustaining neuronal functions (Anderson and Swanson, 2000;

Voutsinos-Porche et al., 2003). Moreover, glutamate is

predominantly converted into glutamine in astrocytes by

the enzyme GS and returned to neurons in order to replenish

the presynaptic neurotransmitter pool to maintain synaptic

transmission (Sibson et al., 2001). GS also increases after

ischaemia (Petito et al., 1992). Therefore the capacity of

astrocytes to reduce extracellular levels of glutamate can

dramatically impact the extent of neuronal damage after an

insult. Given the complications associated with administering

NMDA (N-methyl-D-aspartate) receptor antagonists to the

developing brain, enhancing astrocytic glutamate detoxifica-

tion may represent a novel alternative means of providing

neuroprotection after a developmental brain injury

(Ikonomidou et al., 1999).

Glutamate transporters are necessary in order to maintain

resting levels of glutamate, and effective glutamate uptake

by astrocytes prevents glutamate neurotoxicity (Rothstein

et al., 1996; Tanaka et al., 1997). Previous studies have shown

that b-lactam antibiotics, which are potent stimulators of

glutamate transporters, offer neuroprotection by increasing

the transporter expression (Rothstein et al., 2005). More-

over, the expression of the glutamate transporter EAAT-2

increases significantly in the cortex 24 h after hypoxic pre-

conditioning (Cimarosti et al., 2005). We therefore measured

the levels of GS and GLAST to understand whether precon-

ditioning regulates the astrocytic capacity to handle elevated

glutamate that would, in turn, be instrumental in shaping the

kinetics of glutamatergic synaptic activity during subsequent

H/I. Immunoblot analysis revealed an 8-fold increase in

the levels of both GS and GLAST in the forebrain of the

preconditioned animals as compared with the normal. Since

GS and GLAST are almost exclusively produced by astrocytes

(Danbolt, 2001), our results suggest that astrocytes could play

a crucial role in hypoxic preconditioning-mediated neuro-

protection by metabolically reducing excess glutamate in the

preconditioned brain. Furthermore, our results show that

once induced, the levels of GS and GLAST are maintained,

suggesting a long half-life, so that they are readily available

to detoxify the extraordinarily high levels of glutamate that

are released subsequent to an H/I episode.

Increased iron accumulation and overproduction of free

radicals have been associated with neuronal damage caused

by H/I (Palmer et al., 1999; Wallin et al., 2000). Our in vivo

studies revealed a 2-fold increase in the levels of cerulo-

plasmin in the preconditioned brain. As ceruloplasmin is a

multifunctional protein that is expressed by astrocytes and

that can serve as an amine oxidase, an antioxidant or a

ferroxidase, a testable prediction (which future studies could

evaluate) is that higher levels of ceruloplasmin should protect

neural cells from oxidative stress (Patel et al., 2002).

To investigate whether all these changes are a direct

response of astrocytes to hypoxia, we studied the effects of

reduced oxygen on primary astrocyte cultures. Similar to the

results obtained in vivo, exposure to hypoxia in vitro

increased the levels of GS and MCT-1, although to a lesser

extent. However, in contrast with the in vivo condition, there

was no change in the levels of GFAP, GLAST or ceruloplasmin.

Thus hypoxia regulates the expression of a subset of

astrocyte-specific enzymes and transporters. These differ-

ences are likely attributable to the inability of astrocyte

cultures to faithfully mimic the in vivo environment. In

support of this hypothesis, we have observed that reducing

the volume of medium overlying cultured astrocytes reduces

MCT-1 expression as well as glucose utilization, consistent

with the interpretation that under standard in vitro culture

conditions the astrocytes are hypoxic due to poor solubility of

O2 in the culture medium (S.W. Levison and I. Simpson,

unpublished data). Moreover, it has been well established that

there are multiple astrocyte populations in vivo. Hence, these

cells may not adequately model the responses of every type

of astrocyte in vivo.

That GLAST and ceruloplasmin were not induced in the

astrocytes in vitro in direct response to hypoxia suggests that

additional signals are necessary for their induction. One likely

possibility is that signals from activated microglia are

necessary. Indeed in earlier studies we showed that IL-1

(interleukin-1) induced ceruloplasmin and that ceruloplasmin

was not induced in mice lacking the IL-1 type 1 receptor.

However, the observation that neither ceruloplasmin nor

GLAST was induced in the mixed brain cultures where microglia

were certainly present would argue against this hypothesis.

At a critical threshold, H/I will overwhelm the normal

capacity of astrocytes to maintain metabolic homoeostasis,

resulting in the depletion of energy substrates, neuronal

overexcitation and accumulation of toxic by-products of

metabolism that are detrimental to neuronal viability. Our

studies add to the emerging body of literature that supports

the view that preconditioning triggers metabolic reprogram-

ming by inducing the expression of proteins involved in the

supply and demand pathways of metabolism, thus shifting

the threshold where damage will occur. Investigating the

mechanisms by which astrocytes respond to hypoxic pre-

conditioning could be a productive focus for future research

on the mechanisms of neuroprotection, which could lead to

the identification of new small molecules that could activate

astrocytes, mimicking the preconditioning stimulus with

therapeutic benefits. However, caution is needed when

applying these findings to newborns as it is conceivable that

the precocious transformation of radial glial cells into mature

astrocytes could have a deleterious rather than a beneficial

outcome.
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