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Abstract

Glycation causes severe damage to protein structure that could lead to amyloid formation in special cases. Here in
this report, we have shown for the first time that hen egg white lysozyme (HEWL) does not undergo amyloid
formation even after prolonged glycation in the presence of D-glucose, D-fructose and D-ribose. Cross-linked
oligomers were formed in all the cases and ribose was found to be the most potent among the three sugars. Ribose
mediated oligomers, however, exhibit Thioflavin T binding properties although microscopic images clearly show
amorphous and globular morphology of the aggregates. Our study demonstrates that the structural damage of hen
egg white lysozyme due to glycation generates unstructured aggregates.
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Introduction

Non-enzymatic glycation of proteins is a post-translational
modification process which involves covalent bond formation
between free amino groups of proteins and reducing sugars [1].
It results in the modification of proteins which leads to the
formation of groups of heterogeneous compounds commonly
referred to as advanced glycation end products (AGEs) [2,3].
AGEs play a crucial role in aging processes and debilitating
diseases such as Alzheimer’s disease [4]. Conformational
alterations in the protein structure result due to glycation, which
affects the physical and functional properties of proteins [5].
Glycation can also lead to protein aggregation [4]. Formation of
toxic protein aggregates commonly known as amyloid fibrils, is
associated with neurological disorders such as Alzheimer’s,
transmissible spongiform encephalopathies etc [6,7]. AGE
modified amyloid fibrils have been found in the brain tissues of
patients suffering from Alzheimer’s, transmissible spongiform
encephalopathy and the islets of Langerhans of diabetic
patients [8-10]. Fibrils possess a common core crossed β-sheet
structural motif [11] and glycation facilitates the formation of the
cross-linked beta structure [4]. Moreover, a recent report has
shown that the glycated Aβ1-42 peptide with an altered
secondary structure is more toxic with respect to the
pathogenesis associated with Alzheimer’s disease [12]. These

findings have encouraged researchers to investigate the
structural changes of proteins that evolve due to glycation and
to explore the possible link between glycation of proteins and
amyloid formation.

Hen egg white lysozyme (HEWL) is known to possess a well-
defined three dimensional structure, folding mechanism and
thermodynamic parameters [13-16]. Human lysozyme is a
structural homologue of HEWL, which is known to be involved
in a systemic amyloidosis disease due to a point mutation in
the lysozyme gene [17]. Fibrils obtained from human lysozyme
in vitro were found to be similar with those obtained from
patients and also fibrils obtained from human lysozyme bear a
notable resemblance with HEWL fibrils [18,19]. A recent report
has shown that human lysozyme fibrils can induce the
secretion of innate immune receptors where the cross β-sheet
structure plays a crucial role [20]. Membrane activity and the
ability of inducing apoptosis in neuroblastoma cells by HEWL
fibrils support the use of HEWL as a suitable model to study
the mechanistic aspects of amyloid formation in vitro [21,22].

The potential glycation sites in HEWL are considered to be
the N-terminal α-amino group, ε-amino group of lysine residues
and guanidino group of arginine residues [23]. Reports are
available on glycation of HEWL [24-29]. HEWL was found to
bind with AGEs and exhibit a protective character due to its
crucial role in the elimination of AGEs generated in vivo [30].

PLOS ONE | www.plosone.org 1 September 2013 | Volume 8 | Issue 9 | e74336



Several studies have revealed the involvement of different
proteins in the formation of AGEs and their relation with protein
aggregation and amyloid formation [4,31-38]. Based on the
information above and considering the role of lysozyme in our
natural immune system [39, 40], we have chosen HEWL to
examine the effect of glycation and its consequences on HEWL
aggregation in vitro. In the present article, we have treated
HEWL over a prolonged period (~180 days) in the presence of
D-glucose (glucose), D-fructose (fructose) and D-ribose
(ribose) at pH 7.4 at 37 °C. Glycation of HEWL was
characterized using different spectroscopic and microscopic
techniques. HEWL was found to form cross-linked oligomeric
species in the presence of all the three sugars. Ribose was
found to exert the most proficient role in comparison to fructose
and glucose. Our study demonstrates that glycation of HEWL
promotes aggregation but no fibrillar species was observed.
Recent studies have shown that methylglyoxal (glycating
agent) favors formation of native like aggregates of insulin [41]
and cytochrome c [42]. This study will be beneficial in terms of
understanding the effects of glycation on the structural aspects
of proteins and its consequences in protein aggregation.

Materials and Methods

Materials
Hen Egg White Lysozyme (HEWL), Thioflavin T (ThT) were

purchased from Sigma Chemical Co. (St. Louis, USA) and
used as received. D-glucose, D-fructose and D-ribose and all
other chemicals were obtained from SRL (India). Protein
molecular weight marker (14.3-97.4 kDa) was purchased from
Bangalore, Genei.

Preparation of glycated HEWL: prolonged incubation to
facilitate aggregation

HEWL (10 mg/ml) [ε280=37646 M-1cm-1] [43] was incubated in
0.1 M sodium phosphate buffer of pH 7.4 at 37 °C for 30 days
in the absence and presence of three reducing sugars such as
D-glucose (glucose), D-fructose (fructose) and D-ribose
(ribose) of 0.5 M concentration in each case. This incubation
was extended up to 180 days to promote aggregation. Sodium
azide (1 mM) was used to prevent bacterial growth. Incubation
process was carried out under sterile conditions. Aliquots were
withdrawn at definite time intervals and sodium phosphate
buffer (10 mM) of pH 7.4 was used for dilution to achieve the
final desired concentration of protein in each study. In each
study, the control is native HEWL incubated in the absence of
sugars at pH 7.4 at 37 °C keeping the other conditions similar
to that of sets (HEWL-glucose/ HEWL-fructose/ HEWL-ribose).

Fluorescence measurements: steady state
fluorescence

The formation of AGEs was monitored using different
fluorescence spectroscopic techniques. At definite intervals (in
days), aliquots were withdrawn and used for fluorescence
measurements using a final protein concentration of 5 µM.
Fluorescence of the samples was monitored using excitation
wavelengths of 295, 335, 350 and 370 nm respectively in a

Horiba Jobin Yvon Fluoromax-4 spectrofluorimeter. Slit width
and integration time were kept at 5 nm and 0.2 sec
respectively. Tryptophan (Trp) fluorescence was monitored
using λex of 295 nm ensuring no contribution from Tyrosine
(Tyr) residues. Measurement of fluorescence intensity using
excitation and emission at 350 nm and 450 nm respectively
indicates formation of AGEs [44]. Excitation at 335 nm and 370
nm correspond to the formation of two AGE products such as
pentosidine and malondialdehyde (MDA) [45,46]. The
fluorescence intensity values corresponding to different sets
(HEWL-glucose/HEWL-fructose/HEWL-ribose) have been
corrected with respect to the blank (glucose/fructose/ribose)
and thus represent the difference fluorescence intensity in each
case.

Synchronous fluorescence study
Aliquots were withdrawn from HEWL solutions incubated in

the presence of glucose, fructose and ribose respectively after
an incubation of 31 days at pH 7.4 at 37 °C to examine the
synchronous fluorescence. Samples were scanned using a
protein concentration of 10 µM between 200 to 600 nm keeping
the offset value (Δλ) at 40 nm in Horiba Jobin Yvon Fluoromax
4 spectrofluorimeter [47]. Slit width and integration time were
kept at 5 nm and 0.2 sec respectively. The number of band
components and respective peak positions were determined
from the second derivative spectra.

Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE)

SDS-PAGE was carried out under reducing conditions.
Aliquots (100 µM) withdrawn at different times were mixed with
sample buffer (2X) containing sodium dodecyl sulfate (SDS) (4
g), bromophenol blue (1%, 4 ml), β-mercaptoethanol (10 ml),
glycerol (20 ml) and Tris–HCl [pH 6.8, 1 M, 12.5 ml] (the
volume was adjusted to 100 ml with water for the sample
buffer). Prior to loading, samples were boiled for 2 min and
then applied to a 15% resolving gel and electrophoresis
conducted in a Mini Dual vertical electrophoresis unit (Tarson).
Gels were stained with Coomassie brilliant blue (SRL, India)
and destained using a mixture of CH 3COOH/MeOH/H 2O (37.5
ml, 25 ml, 430 ml) with gentle agitation.

Circular dichroism (CD) measurements
Aliquots withdrawn at definite time intervals were scanned in

a Jasco-810 spectrophotometer. Far UV–CD spectra were
accumulated between 190 to 240 nm at a scan rate of 50
nm/min keeping the protein concentration at 20 µM using a
quartz cuvette having a path length of 0.1 cm. Protein
secondary structure contents were estimated using an online
server DICHROWEB [48]. Near UV–CD spectra were acquired
between 250 to 350 nm at a scan rate of 100 nm/min keeping
protein concentration of 100 µM. Sodium phosphate buffer (10
mM) of pH 7.4 was used for dilution in each case.

Prolonged Glycation of Hen Egg White Lysozyme

PLOS ONE | www.plosone.org 2 September 2013 | Volume 8 | Issue 9 | e74336



SDS-PAGE: detection of glycoprotein using fuchsin
staining

SDS-PAGE was performed as mentioned earlier in the
previous section. After the completion of the gel run, it was
removed and placed in 8%/6% (v/v) AcOH/MeOH solution for
gel fixing. The gel was then washed with an oxidizing agent
(Sodium periodate in the presence of 2 drops of concentrated
H2SO4) for 15 min. The gel was washed with 3% (v/v) AcOH
solution twice for 5 min followed by Fuchsin staining.
Destaining was achieved using sodium bisulfite (NaHSO3) for
10 min and the gel finally washed with 3% (v/v) AcOH solution
to acquire the required staining. Horseradish peroxidase was
used as a marker as it is a glycoprotein and develops magenta
color in the presence of Fuchsin staining [49, 50].

Matrix assisted laser desorption ionization-time of
flight (MALDI-TOF)

Incubated HEWL solutions were diluted up to a concentration
of 100 µM and then mixed with matrix (saturated solution of
sinapic acid in 50% (v/v) CH3CN/H2O solution) in a 1:1 ratio.
Samples were then placed on the spot plate, air dried and
spectra obtained in a VOYAGER-DE PRO instrument.

Thioflavin T (ThT) fluorescence
ThT is an amyloid marker dye which intensely fluoresces at

~485 nm upon binding with amyloid fibrils [51,52]. Aliquots from
each set were withdrawn at definite interval of days and mixed
with ThT to accomplish final protein and dye concentrations of
2 µM and 5 µM respectively. Samples were incubated for 2 min
and scanned in a Horiba Jobin Yvon Fluoromax 4
spectrofluorimeter. Excitation and emission maxima were kept
at 450 nm and 485 nm respectively. Slit width and integration
time were kept at 5 nm and 0.3 sec respectively. Sodium
phosphate buffer (10 mM) of pH 7.4 was used for dilution and
spectra were corrected with respect to the corresponding
blank.

Fluorescence microscopy
ThT (10 µl of 1 mM) was mixed well with the glycated protein

solutions (5 µl) after 30 days and 180 days of incubation to
achieve the required staining and placed on a glass slide after
covering with a cover slip. Images were obtained using a Leica
DM 2500M microscope equipped with a fluorescence
attachment. Filter cube no 2 (Leica I3 11513878, BZ: 01) was
used for ThT excitation and emission. The images were
acquired with a Leica DFC 310 FX camera attached with the
microscope. All observations were performed at 10X/0.25 (N
PLAN EPI).

Field emission scanning electron microscopy (FESEM)
Aliquots were withdrawn (2 µl) from each set after an

incubation of 60 days at 37 °C at pH 7.4 in the absence and
presence of sugars and placed on glass pieces (thoroughly
cleaned), air dried and gold coated. Samples were then
scanned using a Carl Zeiss field emission electron microscope
operating at 5 kV.

Transmission electron microscopy (TEM)
HEWL solutions incubated in the absence and presence of

sugars at 37 °C at pH 7.4 after 180 days of incubation were
diluted to a final concentration of 50 µM and placed on TEM
grids. Uranyl acetate [1% (w/v)] was used to accomplish the
required staining, air dried and scanned in a TECNAI G2 20S-
TWIN transmission electron microscope operating at an
accelerating voltage of 80 kV.

Results and Discussion

Glycation results in the structural alteration of proteins.
Formation of crossed beta structures in proteins is often
associated with glycation and even amyloidal aggregates have
been observed as a result of glycation [4,31,32]. Studies have
revealed a relationship between the effect of glycation on
protein structure, protein aggregation, and fibrillation [31-38].
Recent studies have shown the presence of high levels of
AGEs in the brains of patients suffering from neurological
disorders and their involvement in amyloid deposition [8,53]. In
addition, glycation has been shown to enhance the severity
linked with the neurotoxicity of Aβ1-42 peptide [12]. Sugars such
as glucose, fructose and ribose are common reducing sugars
which are well known glycating agents among which the effect
of ribose is less studied. In the present article, we have
investigated whether prolonged glycation of HEWL can lead to
amyloid formation as no such report is available till date, to the
best of our knowledge, in case of HEWL. We have used
different spectroscopic and microscopic techniques to examine
glycation of HEWL and its consequences in aggregation of
HEWL in the presence of three reducing sugars such as
glucose, fructose and ribose over a prolonged period.

Fluorescence study: steady state measurements
HEWL was subjected to prolonged glycation in the presence

of glucose, fructose and ribose to observe whether glycation
could lead to amyloid formation of HEWL. Steady state
fluorescence methods were employed to investigate structural
changes of HEWL during the incubation period. Formation of
AGEs is monitored using excitation and emission at 350 nm
and 450 nm respectively [44]. Two different AGEs, pentosidine
and malondialdehyde (MDA) formation can be monitored using
λex values of 335 nm and 370 nm respectively [45,46]. We have
measured the fluorescence properties of incubated HEWL
solutions using λex values of 295 nm, 335 nm, 350 nm and 370
nm respectively [Figure 1 and Figure 2]. We have found a
considerable reduction in Trp (λex=295 nm) fluorescence with
increasing incubation period (~120 days) in the presence of
each sugar [Figure 1 (a)]. The relative reduction in Trp
fluorescence intensity with respect to the control is maximum
for ribose (~83% loss) followed by fructose (~60% loss) and
glucose (~51% loss). The Trp fluorescence spectra of HEWL
solutions after an incubation of 31 days are given in Figure 1
(b). We have noticed that λmax of Trp fluorescence of the control
remains the same as would have been expected [Figure 1 (b)].
In the presence of glucose, no prominent shift in λmax was found
whereas the presence of fructose and ribose results in a red
shift of ~8 nm and ~30 nm respectively [Figure 1 (b)]. This is
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indicative of an exposure of Trp residues of HEWL to a more
polar medium in presence of sugars which is most pronounced
in case of ribose [Figure 1 (b)]. Earlier studies have also shown
a loss in Trp fluorescence of human serum albumin (HSA) and
γ-crystallin due to glycation [54,55]. The red shift in λmax of Trp
fluorescence spectrum of γ-crystallin occurs on glycation which
has been attributed to exposure of Trp residues to the solvent
medium that is similar to the results obtained in this study [55].
We have found that on excitation at 350 nm (indicative of other
types of AGEs), incubated HEWL solutions show strong
fluorescence in each case (λem=420 nm) [Figure 2 (a)]. HEWL
solutions, upon excitation at 335 nm (λem=410 nm) and 370 nm
(λem=440 nm) [Figure 2 (b) and (c)] exhibit intense fluorescence
which also increases with increasing incubation period. This
clearly indicates the formation of two specific AGE products,
pentosidine and malondialdehyde (MDA) respectively. In each
case, we have noticed that the formation of AGEs reaches a
maximum in the presence of ribose implying that ribose plays
the most effective role among the sugars used. This is in good
agreement with the previously observed fact that the glycating
ability of these sugars lies in the order: D-glucose < D-fructose
< D-ribose [56]. The higher glycation ability of ribose is

attributed to its puckered aldopentose ring structure, which
makes it more reactive towards the amino groups in
comparison to the other sugars [57,58]. Therefore, it is evident
that treatment with sugars such as glucose, fructose and ribose
cause prominent structural changes of HEWL along with the
formation of AGE products where the effect of ribose is
predominant.

Synchronous fluorescence
Synchronous fluorescence studies have been performed to

get more detail about the fluorescence property of treated
HEWL solutions after 31 days of incubation at 37 °C at pH 7.4.
We have noticed that the control does not show any peak in
the range from 350 to 550 nm; whereas in the presence of
sugars two major peaks are observed [Figure 3 (a)]. The peak
near 380 nm is more prominent compared to the other peak
near ~415-420 nm in all the cases [Figure 3 (a)]. The maximum
intensity of the peak at 380 nm was obtained in the presence of
ribose followed by fructose and glucose [Figure 3 (a)]. Our
observation is similar to that found earlier in AGE formation of
bovine serum albumin (BSA) where ribose was found to be the
most potent in generating the 380 nm band [59]. This signifies

Figure 1.  Determination of Trp fluorescence on glycation of HEWL in the presence of different sugars using fluorescence
spectroscopy.  (a) Histogram represents Trp fluorescence intensity of different HEWL solutions incubated in the presence of
glucose, fructose and ribose respectively over a period of 120 days. (b) Representative Trp fluorescence spectra of different HEWL
solutions incubated in the presence of glucose, fructose and ribose respectively obtained after an incubation of 31 days. Control
represents native HEWL incubated in the absence of sugars at pH 7.4 at 37 °C keeping other conditions similar as that of sets in
each case.
doi: 10.1371/journal.pone.0074336.g001
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Figure 2.  Characterization of different AGE products formed during glycation of HEWL in the presence of different sugars
using fluorescence spectroscopy.  Histograms represent fluorescence intensity of different HEWL solutions incubated in the
presence of glucose, fructose and ribose respectively over a period of 120 days. Formation of different AGE products such as (a)
other AGE products (λex=350 nm), (b) pentosidine (λex=335 nm) and (c) malondialdehyde (MDA) (λex=370 nm). [HEWL]=5 µM in
each case. Control represents native HEWL incubated in the absence of sugars at pH 7.4 at 37 °C keeping other conditions similar
as that of sets in each case.
doi: 10.1371/journal.pone.0074336.g002
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that the structural changes of proteins are most prominent in
the presence of ribose followed by fructose and glucose. To
further illustrate this result, we have plotted the second
derivative spectra of synchronous fluorescence in each case.
We have found two peaks, one at ~375-380 nm and another
one at ~415-420 nm respectively [Figure 3 (b)]. Synchronous
fluorescence reveals that the effect of ribose is most dominant
among the three sugars used which are in accordance with the
steady state fluorescence studies.

Formation of higher oligomers: SDS PAGE
To monitor the formation of HEWL aggregates in presence of

sugars, SDS-PAGE has been performed under reducing
conditions. We have found that after an incubation of 1 day, in
the presence of glucose, only monomeric HEWL exists (lanes
2-4) [Figure 4 (a)]. On the other hand, in the presence of
fructose, dimeric species are also formed (lane 5-7) [Figure 4
(a)]. Ribose imparts the most noteworthy effect which is clear
from SDS-PAGE as trimeric species are formed within a day
(lanes 2-4) [Figure 4 (b)]. After 20 days of incubation we have
found that even in the presence of glucose, both dimer and
trimers were generated (lanes 2-4) [Figure 4 (a)]. Trimer and
tetramer formation was also observed in the presence of
fructose (lanes 5-7) [Figure 4 (a)] which is most prominent in
case of ribose as expected (lanes 2-4) [Figure 4 (b)]. After

incubation of 31 days, this becomes more evident as ribose
shows formation of oligomeric species in HEWL most
effectively followed by fructose and glucose [Figure 4]. This
scenario becomes distinctly clear upon quantitation of oligomer
formation via densitometric analysis of SDS-PAGE [Figure 5].
We have found that the presence of ribose results in the
formation of dimeric species to a higher extent as compared to
fructose after 1 day of incubation [Figure 5 (a)]. After 20 days
and 31 days of incubation, the formation of higher oligomeric
species was found to be maximum in the presence of ribose
and minimum in presence of glucose [Figure 5 (b) and (c)]. In
each case the relative concentration of oligomers varies in the
order: dimer > trimer > tetramer. Therefore, it appears that
aggregated cross-linked products of HEWL are indeed formed
in the presence of all the three sugars with ribose playing the
most potent role. Our observations are similar to those found
earlier in the fructosylation reaction of hemoglobin, where the
presence of a cross-linked aggregated population was noticed
[60].

Circular dichroism study: conformational aspects of
glycation

Circular dichroism is a useful technique to explore
conformational changes in protein structure, especially α-helix
to β-sheet transformations [61]. The far UV-CD spectrum of

Figure 3.  Synchronous fluorescence characteristics of HEWL during glycation in the presence of different sugars.  (a)
Synchronous fluorescence spectra of control and HEWL solutions treated in the presence of glucose, fructose and ribose
respectively after 31 days of incubation at 37 °C at pH 7.4; (b) Second derivative plot of synchronous fluorescence spectra of HEWL
solutions incubated in the presence of glucose, fructose and ribose respectively obtained after 31 days of incubation at 37 °C at pH
7.4. Protein concentration=10 µM and Δλ=40 nm in each case.
doi: 10.1371/journal.pone.0074336.g003
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control shows a minimum at 208 nm [Figure 6], which is
indicative of α-helical structure [62]. We have noticed that in the
presence of glucose, fructose and ribose, the CD mdeg value
at 208 nm decreases with increasing incubation period which
points toward a loss in helicity [Figure 6]. Lowering in the mdeg

value at 208 nm is relatively less in the presence of glucose
which is more pronounced in the presence of fructose and
ribose. Thus presence of sugars causes prominent secondary
structural changes in HEWL (loss in helicity) that is shown to
be more effective in the presence of ribose. Quantitative

Figure 4.  Detection of oligomerization of HEWL during glycation in the presence of glucose, fructose and
ribose.  Representative SDS polyacrylamide gel electrophoresis of different HEWL solutions obtained after incubation at pH 7.4 at
37 °C in the presence of different sugars at definite intervals of time (1 day, 20 days and 31 days respectively). (a) In each case lane
1: molwt marker; lane 2-4: HEWL-glucose; lane: 5-7: HEWL-fructose respectively; (b) In each case lane 1: molwt marker; lane 2-4:
HEWL-ribose; lane: 5: Control (native HEWL incubated at pH 7.4 at 37 °C in the absence of sugars) respectively.
doi: 10.1371/journal.pone.0074336.g004
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analysis of CD spectra reveals that with increasing incubation
period, there is an increase in % β-sheet content of HEWL
solutions in presence of all the sugars [Figure 7]. Though
increasing trend is more or less maintained throughout the

incubation period, we have found slight fluctuation in the % β-
sheet content of HEWL solutions in presence of three sugars.
Earlier reports have revealed that glycation over a longer
period has led to cross-linked beta sheet structure which might

Figure 5.  Densitometric analysis of SDS-PAGE.  Histograms represent relative mean band intensity of different oligomeric
species (dimer, trimer and tetramer) with respect to their corresponding monomer at definite time intervals (a) 1 day, (b) 20 days
and (c) 31 days respectively.
doi: 10.1371/journal.pone.0074336.g005
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be true in this case as well [4]. Near UV-CD spectra of control
shows maxima around ~282, ~285 and ~295 nm respectively
[Figure 8]. Near UV-CD spectra of HEWL solutions is disrupted
to the greatest extent in the presence of ribose followed by
fructose and glucose. Thus it becomes evident that maximum
perturbation of the tertiary structure of HEWL occurs in the
presence of ribose followed by fructose and glucose [Figure 8].
However, in presence of glucose, minimum changes in shape
of the spectrum were observed. Thus ribose exhibits most
potent role in affecting protein structural changes in
comparison to fructose and glucose. This is in accordance with
the findings obtained from steady state fluorescence
measurements where we have found the maximum red shift in
λmax of Trp fluorescence spectrum of HEWL in presence of
ribose.

Detection of glycated proteins: Fuchsin based SDS-
PAGE

SDS-PAGE has been performed (under reducing conditions)
using Fuchsin staining to determine the attachment of the
sugar moiety to HEWL. Periodic acid-Schiff base (PAS)
reaction is the governing protocol, where periodic acid oxidizes
vicinal diol groups to form aldehyde followed by reaction with
Schiff reagent to generate a magenta color. This staining is
achieved with fuchsin [50]. We have found that horseradish
peroxidase, the marker protein is stained in the presence of
fuchsin producing a magenta color as would have been
expected [Figure 9]. The controls in this experiment are native
HEWL and the individual sugars. It was found that they do not
develop any color in the Fuchsin based SDS-PAGE assay
[Figure S1]. After an incubation of 31 days, HEWL solutions in
the presence of glucose (lane 2 and 5), fructose (lane 3 and 6)
and ribose (lane 4 and 7) subjected to SDS-PAGE (fuchsin
based) develop a magenta color similar to that of horseradish
peroxidase [Figure 9]. This clearly indicates the attachment of
sugar moiety to HEWL. This further confirms the formation of
AGEs in HEWL in the presence of all the sugars which is
strongly supported by other studies as well. To further ensure
addition of sugar moiety to HEWL, we have performed MALDI-
TOF experiments and found that in each case the molecular
mass of native HEWL [Figure 10 (a)] increases which
corresponds to the attachment of ~6 glucose [Figure 10 (b)], ~9
fructose [Figure 10 (c)] and ~13 ribose [Figure 10 (d)] sugar
moieties respectively.

ThT fluorescence study: nature of the cross-linked
aggregates

We have found that cross-linked oligomers of HEWL formed
during treatment with sugars. We have also noticed that the %
β-sheet content of HEWL solutions increases during the
incubation period. This has encouraged us to investigate the
ThT binding property of these aggregates. ThT is an amyloid
specific dye which fluoresces strongly upon binding with
amyloid fibrils [51,52]. We have found that up to ~180 days of
incubation, there is no significant change in ThT fluorescence
for HEWL solutions in the presence of glucose [Figure 11].
HEWL solutions in the presence of fructose show slightly more
ThT fluorescence which is ~2.5 times compared to the control

solution (native HEWL incubated at pH 7.4 at 37 °C keeping
the other conditions similar to that of sets incubated with the
individual sugars) [Figure 11]. Ribose treated HEWL solutions

Figure 9.  Identification of attachment of sugar moieties to
HEWL: Fuchsin based SDS PAGE.  Representative SDS
polyacrylamide gel electrophoresis of different HEWL solutions
obtained after incubation at pH 7.4 at 37 °C for 31 days in the
presence of different sugars using Fuchsin staining. lane 1:
Horseradish peroxidase; lane 2 and 5: HEWL-glucose; lane 3
and 6: HEWL-fructose; lane 4 and 7: HEWL-ribose.
doi: 10.1371/journal.pone.0074336.g009

Figure 10.  Determination of the mass of glycated
HEWL.  MALDI TOF spectra of different HEWL solutions
obtained after an incubation of 31 days at pH 7.4 at 37 °C (a)
Native HEWL (14345.30 Da) (b) HEWL-glucose (15401.22 Da)
(c) HEWL-fructose (15955.81 Da) (d) HEWL-ribose (16233.48
Da).
doi: 10.1371/journal.pone.0074336.g010
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show a prominent ThT fluorescence (~5 times compared to the
control) for up to ~31 days. After 31 days of incubation we
observe a decreasing trend in the ThT intensity (HEWL-ribose
solutions) up to ~180 days which then becomes similar to that
in the presence of fructose. Thus it appears that HEWL
oligomers formed in the presence of ribose possess ThT

binding property, other oligomeric species formed in the
presence of fructose and glucose do not bind prominently with
ThT. We speculate that oligomeric aggregates formed in the
presence of glucose and fructose might be amorphous
whereas HEWL solutions treated in the presence of ribose
might be fibrillar in nature.

Figure 6.  Variation of secondary structural components during glycation of HEWL in the presence of different
sugars.  Representative far UV-CD spectra of (a) HEWL-glucose, (b) HEWL-fructose and (c) HEWL-ribose solutions respectively
obtained after incubation at pH 7.4 at 37 °C at different time intervals. [HEWL]=20 µM in each case.
doi: 10.1371/journal.pone.0074336.g006
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Fluorescence microscopy, FESEM and TEM
Microscopic studies were undertaken to analyze the nature

of the HEWL aggregates formed. We have found that after 30
days of incubation none of the treated HEWL solutions (in the
presence of three sugars) exhibited any prominent
fluorescence, not even in the presence of ribose [Figure S2].
Thus HEWL aggregates formed, during the course of
incubation in presence of sugars are amorphous in nature.
However, after an incubation of 180 days also these treated
HEWL solutions do not show any notable change [Figure S2].
Thus it is evident that HEWL does not undergo fibrillation
during treatment with sugars. To get a further insight about the
morphology of the species formed, we have obtained FESEM
and TEM images. We have found that none of them display
fibrillar morphology, only globular and amorphous structures
are visible in the FESEM images after 60 days of incubation
where the control does not show any aggregated morphology
[Figure 12 (a-d)]. Our findings are similar to the results
obtained earlier where glycation (in presence of D-ribose)
results in formation of globular aggregates of α-synuclein which
show ThT binding affinity [35]. Furthermore, TEM images
clearly show that globular structures are visible in all the cases
after 180 days of incubation. Here again the control does not
exhibit any aggregated morphology [Figure 12 (e-h)]. Therefore
it is clear that extended incubation of HEWL with sugars
generates amorphous and globular aggregates. A previous
study has shown the formation of nanofibrillar structures of
HSA in the presence of glucose, fructose and ribose after
prolonged glycation [31]. Apart from fibrillar morphology,
globular and amorphous types of aggregates were also visible

in this case [31]. However, we have found that glycation of
HEWL in the presence of three different sugars does not
induce amyloid formation even after ~180 days of incubation.
Oligomeric species of amorphous and globular morphology
were formed with enhanced β-sheet content. Earlier reports
have shown that amorphous aggregates could also be
cytotoxic in comparison to the fibrillar morphology [63,64].
Therefore, our study adds fruitful information regarding the
morphological diversity of protein aggregates. This will be
beneficial in terms of a further understanding of the nature and
type of protein aggregates generated during glycation of
globular proteins.

Conclusions

In the present article, we have investigated the effect of
glycation on HEWL from the structural point of view and its
outcome after a prolonged period. We have found that
glycation promotes generation of cross-linked oligomers in
HEWL instead of amyloidal aggregates. Ribose was found to
be the most effective sugar in facilitating HEWL aggregation.
Conformational alteration that is helix to β-sheet transition
occurs during glycation of HEWL. Though oligomeric species
formed in presence of fructose and mainly ribose, possess ThT
binding affinity, they did not show any fibrillar morphology in the
microscopic studies. Therefore it appears that prolonged
glycation of HEWL results in the formation of cross-linked β-
sheet rich oligomers which are amorphous and globular in
nature. Our study reflects that glycation causes structural
changes of HEWL, generates cross-linked oligomers, but failed

Figure 7.  Estimation of β-sheet content of HEWL solutions incubated in the presence of different sugars.  Percentage β-
sheet content of different HEWL solutions (HEWL-glucose, HEWL-fructose and HEWL-ribose) obtained after incubation at pH 7.4 at
37 °C estimated using online server DICHROWEB at different time intervals.
doi: 10.1371/journal.pone.0074336.g007
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to generate fibrillar species. An earlier study has shown
glycation induced fibrillation of HSA after an incubation of ~20
weeks [31]. Here we have found that even after ~180 days
(~24 weeks) of incubation in the presence of sugars, HEWL
does not undergo fibrillation. Ribose has been used as a

bioactive component over a longer period. In vivo
administration of ribose is associated with several risk factors
such as hypoglycemia, enhanced insulin levels as well as
formation of cross-linked protein aggregates (glycation
reaction) which results in cellular dysfunction [65]. A recent

Figure 8.  Tertiary structural alterations of HEWL solutions during glycation in the presence of three different
sugars.  Representative near UV-CD spectra of (a) HEWL-glucose, (b) HEWL-fructose and (c) HEWL-ribose solutions respectively
obtained after incubation at pH 7.4 at 37 °C at different time intervals.
doi: 10.1371/journal.pone.0074336.g008
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Figure 11.  Variation in the ThT intensity during glycation of HEWL in the presence of three different sugars.  Histogram
represents ThT fluorescence of different HEWL solutions after incubation at pH 7.4 at 37 °C at different time intervals in the
presence of different sugars such as glucose, fructose and ribose respectively.
doi: 10.1371/journal.pone.0074336.g011

Figure 12.  Identification of the nature of the aggregates formed during glycation of HEWL.  FESEM (a-d) and TEM images
(e-h) of different HEWL solutions obtained after an incubation at pH 7.4 at 37 °C at different time intervals in the presence of
different sugars. For FESEM images scale bars represent 2 µm for HEWL-glucose and HEWL-fructose; 20 µm for Control and
HEWL-ribose respectively. For TEM images scale bars represent 200 nm.
doi: 10.1371/journal.pone.0074336.g012
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study has revealed that ribose is an effective glycating agent
compared to glucose both in vitro and in vivo [58]. Our
observations will help in structural analysis of sugar induced
damages of HEWL which is a structural homologue of human
lysozyme (responsible for systemic amyloidosis disease).
Glycation has been found to exert notable effects in relation to
neurological disorders. Therefore, our study adds meaningful
information regarding glycation related structural alterations of
globular proteins and their contribution to amyloid formation.
Our study also gives an insight into sugar mediated
aggregation of HEWL through the formation of cross-linked
oligomers (non amyloidal) and specifically emphasizes the
importance of ribose in HEWL glycation.

Supporting Information

Figure S1.  Fuchsin based SDS-PAGE of Controls. Lane 1:
Horseradish peroxidase (marker); lane 2: Control (native
HEWL in the absence of sugars incubated at pH 7.4 at 37 °C
keeping the other conditions similar as that of sets); lane 3:
glucose; lane 4: fructose; lane 5: ribose.

(TIF)

Figure S2.  Characterization of oligomeric species formed
during glycation of HEWL in the presence of different
sugars. Fluorescence microscopic images of different HEWL
solutions after incubation at pH 7.4 at 37 °C in the presence of
different sugars such as glucose, fructose and ribose
respectively at different time intervals (a-d) 30 days, scale bars
represent 100 µm; (e-h) 180 days, scale bars represent 20 µm.
(TIF)
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