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! those statisticians who use
the Bayesian approach
2those families of priorsp such
that the posteriors p ‘are also
of the same family (for instance,
beta prior for the Binomial(n, p)
problem)

1. The Changing Face of Statistics

Classica satistical methodology depended essentially
on mathematical tools for its development. In order to
make problems analytically tractable, a number of as-
sumptions had to be made on the nature of the data,
models formulated had to be fairly smple even if un-
realistic, and criteria for inference had to be reasonably
manageable M ethods developed from such an approach
led to fairly easy computations on mechanical calcula-
tors and later, electronic calculators. In the last quar-
ter of the 20th century, due to rapid developments in
computing technology, t here was no longer any need to
constrain methodological developments or applications
to limited computing resources. In statistical applica-
tions, users are now prepared to analyse huge dat a sets,
formulate highly complex models when called for, for-
mulate criteria not necessarily amenable to analytically
tractable and easily computable solutions, etc. The
early part of this devdopment saw a host of Monte
Carlo smulation exercises, increasing use of randomiza-
tion techniques, and the emergence of resampling meth-
ods such as bootstrap and other cross-validation meth-
ods. (See[1],[2)).

During this process, while statistical applications were
getting more and more daring in terms of formulat-
ing highly nonlinear and otherwise complicated mod-
els, Bayesians!, who till then were limiting their ef-
fortsto fairly smple priors such as conjugate priors ? to
achieve analytical tractability, started formulating more
complex and realistic priors resulting in analytically in-
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tractable situations { for instance, posterior distribu-
tions whose moments are not easily worked out analyti-
cally. (For an introduction to Bayesian statisticsand for
explanations of terms used here, see[3].) Onereason for
thisisthat theintegration needed to nd the normaliz-
ing constant was not tractable, thus making the density
incompletely speci ed. In somesituations, numerical in-
tegration solved t he problem reasonably well. However,
smulation-based methods such as Monte Carlo integra-
tion often give more et cient solutions to these prob-
lems, especially in higher dimensions. But under certain
circumstances, diredt generation of random samples for
Monte Carlo integration is not possible and more com-
plex Monte Carlo methods such asMarkov Chain Monte
Carlo (MCMC) methods are needed.

Such cases arise for instance, when the target distrib-
ution (for us, the posterior distribution lZi(u'x)) IS in-
completely speci ed or speci ed indirectly, say, a joint
distribution being speci ed in terms of several condi-
tional and marginal distributions. In many of these sit-
uations, solong as thetarget distribution isuniquely de-
“ned from the given sped cations, it is possible toadopt
an iterative random sampling (Monte Carlo) procedure,
which at the point of convergence will deliver a ran-
dom draw from the target distribution. These iterative
Monte Carlo procedurestypically generate a random se-
guence with the Markov property such that the Markov
chain is ergodic with a limiting distribution coindding
with the target distribution. There is a whole family
of such iterative procedures collectively called Markov
Chain Monte Carlo (MCMC) procedures, di®erent pro-
cedures being suitable for di®erent stuations.

In the earlier parts of thisseries of articlesthe focus was
on the theoretical aspects of the MCMC methods. In
this part, we discuss a few statistical applications.
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2. Application of Metropolis{Hastings Algorithm

We shall illustrate applications of the Metropolis{ Hast -
ings (M{H) algorithm described in Part 2 of this series
of articlesto the generation of a random sample from a
gamma distribution and from the paosterior distribution
of Weibull parametersin a Bayesian context. But before
that we discuss some preliminaries.

Inverse CDF Method:
It iswell known ([4] pp.54{55) that if the distribution

function F(x) derP(X -+ X) of a random variable X is
continuous and strictly increasing then U = F(X) »
U[0; 1], meaning that U is uniformly distributed in the
interval [0;1]. Inthiscase, Fi! iseasily de ned. Thus
a sample U from UJ[0; 1] can be used to get a random
sample X ~ F (U) with distribution function F. For
example, (

0 forx<O

F()= 1j € * forx, 0

where 0 <~ < 1 | isthe distribution function of an

exp(") random variable. Since Fi*(u) = ; "YW for
O< u< 11, ifUisauniform [0, 1] random variable, then
T:T& UL

i ———= will have exp( ) distribution. Notethat since

1i U isalso auniform [0, 1] random variable, j = will
also work.

Next consider the problem of generating a sample from
the gamma(®; ) distribution.

De nition: A gamma distribution with parameters
(® ), written as ®; ), is a continuous prabability
distribution on (0;1 ) with probability density
-—®
fa—(X) = g _xx®i 1;
“07 (@
1

where j (®) = . e *x® ldx for 0 < ® < 1 isthe
wdl-known gamma function.
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If Up; Up; o Uk are independent identically distributed
(i.i.d.) U[0;]] variables then it can be shown (see [4]
p.248) that

.1

Xk~ i — In Y
i=1

has a Gk; ) distribution. Thus if ® = k is a positive
integer, then this problem has an easy solution. If not,
we need to use other methods. One such method is
Rgection Sampling.

Rejection Sampling
Example 1:

Let arandom variable X have density speci ed asf (x) =
31i x»);0- x- 1 TheCDFisO, for x < 0; is
3(xi X33), foo0- x- 1;and 1, for x> 1. TheCDFisa
cubicin x and theinverse CDF method involves solving
a cubic equation, which involves some eRort. However,
the following Regection Sampling method is quite easy
toimplement: Choose arandom sampleY from uniform
[0, 1]. Accept Y asarandom sample from the density f
with probability (1i Y?); else rgect it and repeat the
procedure until a Y is acoepted. Keep repeating this
procedure until the desired number of samples are ac-
cepted. In order to decide to accept Y with probability
(1i Y?), sdlect arandom sample U from uniform [0, 1]
andif U - (1i Y?), accept.

For Rejection Sampling, an envelope or a majorizing
density function gy of another random variable Y is
needed such that cgy (x) , fx (x) 8x, for some const ant
c > 0. Further, for the method to work, it should be
easy to draw random samples from Y. cgy iscaled the
majorizing function. gy is also called the proposal
density. The agorithm is:

1. Draw Y from gy (%):
2. Draw U from U(0; 1).
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3. fU - fx(Y)=cgy (Y)thenaccept Y asthe desred
realization;
elsereturn to Step 1.
Repeat until one Y is accepted.

Repeat thisto select the desired number of samples. For
distributions with nite support and bounded density, g
can always be chosen as uniform.

In Example 1, g is the uniform [0, 1] density andc= 3.

Now, the probability of drawing an accepted value in
the interval (x;x + dx) is proportional to

109 - L yaxe

cg(x C

Thus the accepted sample is from f (x) and accepted
proportion of sampled values is ‘é

g(x)dx

Example 2. Drawing from G(®; 1)

We discuss Rgjection Sampling from G(®; ) when =
1, when ®isnot an integer. Let us use the notation [®]
for the integer part of ®, i.e,, if k - ®< k+ 1, k an
integer, then [®] = k. It can be checked that the density
o G([€]; ) is a majorizing density with

c= L(.@l@)fei @i [@]) -
i (®) [®
The meahod thus is.
() Draw Y from G([@]; 10)).
(b) Accept Y with probability
ey exp (i y=®))®; @
®

which istheratio of the density of G(®; 1) to ctimesthe
density of G([®]; '¥)). [See[5], pp.94, 242]
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M{H Algorithm for Gamma (®, 1) Sampling

Asdiscussed in Part |1 of this series, the general Mero-
polis{Hastings (M{H) algorithm is as follows. The tar-
get density f (x) is speci ed (possibly without the con-
stant term) and a ‘suitable’ proposal conditiona density
h(yjx) ischosen such that for all x, f (y) > 0if and only
if h(yjx) > 0. Then the algarithm is as follows:

Startat t = Owith avaluexg in thesupport of t he target
distribution,i.e.,a possible value from that distribution.
At step t:

(a) Draw Y; from h(yjXy).
(b) Let

(
X _ Yy with probability py
D~ X, otherwise,

R — hXtiY)f (Y1) . 1.
where pr = minf% = | G0 ) 10:

(c)Sett=1t+ 1and goto step (a).

Run this until t = n (a suitably chosen large vaue).
Then X, hasadendty that is closeto thetarget density

f(x).

A speda case of the M{H algarithm is the so-called
Independence M{H agorithm, where in step (a), the
distribution does not depend on the current value of x;,
whereas in the general foom of the M{H algorithm, it
does. In the genera case, the proposal distribution is
a conditional distribution Y;jX:, which isillustrated in
Example 3 below.

For the above problem with the G(®;1) distribution, an
Independent M{H algorithm with the proposal distribu-
tion the same as the majorising density of t he Regjection
Sampling is as follows:

Start at t = 0 with some value xo,0< Xxo < 1 . At step

IR
AT -

RESONANCE | December 2003 a .

23



GENERAI | ARTICLE

t, () Draw Y; from ([@];'2).
(b) Let

(
Y, with probability p

Ky = X, otherwise,

where

X i Y

pu = minf g = (Xi: exp( )* 1) 10:

(c) Set t=t+1 and go to step (a).
Run thisuntil t=n (a suitably chosen large value).

The step ‘with probability' can beimplemented by using
a draw from U[Q; 1]. Denoting the target density by f
and the proposal density by h(x), p: is obtained as

fOYOh(Y) .
f (xh(x) 2

Notice that in this expresson, the constants in both f
and h cancel out; however, for implementing step (a),
full knowledge of the density of Y; isrequired. Thusthe
M{H algorithm can be carried out to draw from a dis-
tribution for which the constant is not speci ed. In the
gamma distribution example the Reection Sampling
method iseasier toimplement than the M{H agorithm,
since the full density of G(®, 1) is anyway known. How-
ever, weillustratetheM{H algorithm with thisexample

mi nf

We generated 3336 samples by thismethod where n was
chosen to be 1000. The histogram of the sampled values
and the actual gamma(2.43, 1) density are givenin Fig
ures 1 and 2 respectively. Descriptive statistics based
on these samples are given in Table 1. From theseit is
clear that the M{H algorithm provides a good way of
generating random samples whose distribution is close
to that of an incompletely sped ed distribution.
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Figure 1 (left). Histogram of
L ) . . gamma (2.43, 1) density
Satlstlc From SmU|at|0n Thmral(ﬁl generated using Metropo_
lis—Hastings algorithm.
No. of cases 3336 { Figure 2 (right). Theoretical
Minimum 0.02359 0 Gamma (2.43, 1) density.
Maximum 13.37880 1
Median 2 02555 2.1060 Table 1. Descriptive statis-
Mean 2 42552 243 ticsfromdatagenerated for
' i gamma (2.43, 1) density by
D . 172762 1.588 Metropolis—Hastings algo-
Variance 2.98465 243 rithm

Here we used a smple xed-length stopping rule for de-
ciding when to stop a Markov chain and accept the last
valueas a samplefromthe stationary distribution. How-
ever, the issue of convergence diagnostics and stopping
rulesfo- MCMC are more complex and research on these
issues is ill going on. See [5] (Example 6.3.3, pp.242{
243) for a discusson of the gamma example described
above.

Example 3: Bayesian Inference for Weibull Dis-
tribution

A Weibull distribution has the following density form:
f(x)” f(xj® )/ &x®% *":0<x<1
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(where/ meansproportional to') with parameters (®;").
Consider the prior distribution for the parameter (®;")

]/(®;' )/ ei ® i 1ei »

I (xa)f (x2) 1o:f (Xn)A®; 7 ):

To get a sample from the posterior density one may use
the M{H algorithm with proposal distribution

o .0

o o) = st

that is a product of two independent exponential dis-
tributionswith means ®, " . (See [6], Example 6.3.2, p.
305.)

Thus the M{H algorithm for this problem is:

1. Data Xj;Xg;:::;Xn with N = 10 are given as
0.645, 0.647, 0.422, 0.899, 0.228, 1.083, 0.450, 0.985,
1.106, 0.701.

2. Prior digtribution parameters ;» are given as 1.5
and 0.5 respectively.

3. Initial values ®9;" (9 are given as 1.5 and 1 re-
spectively.

4. Generate M{H Markov chains of length n = 250
and retain the n'" dement of the chain. Call the
chain (®Y;" M) t = 0;1;2;::: Iterations proceed
as follows from (&"Y;” ) to (@+ ;" (t+1):

(a) Generate a random draw from

26
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Table 2. Descriptive statis-
tics of the posterior distri-

bution of a,h generated by

Minimum 4.142530 0.875560
Maximum 14.489841 4.358850

Statistic ALPHA ETA

Median 7.917805 1.911510
Mean 8.234183 2.023315
SD 2.212684 0.730947
Variance 4.895969 0.534283
Correlation i 0:3206

(b) Compute
yeh e @y, W) =
P (il WY (SRS G W
" a@; 0y @ ga; m) 19
(c) Draw R from uniform (0,1).

(d) If R - %@, S&Y;" W), then
let ®t+1);' (t+1) = ®);'0
dse | et ®t+1);'(t+1) = @t);'(t):

(6) Stop whent = n= 250. Output (&M ;" (M),

Repeat thism = 100 times.

Some descriptive statistics of thisjoint posterior distri-
bution of (®;") are given in Table 2 and Figure 3.

=T
I
|
|
) { Hh
1l I =
o 'c’“'.i.:';f’-: Figure 3. Histograms and
| Toaaiaii scatter plot of Weibull pos-
':“?""5""" IV T terior of parametersa and
N ‘*—"'.E_":"r Ch _|_|| P
: h generated by M-H algo-
ALFHA ETA rithm.
viw
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Data Model

no = 176 r2
na = 182 p?+ 2pr

ng = 60 o+ 20r

Nag = 17 qu

Total 435

There are issues regarding the appropriate choice of n,
choice of the proposal density, etc., which we shall not
address in this article It must be noted that when the
M{H chainisrunupton = 250, thevalue (&™"; " (M) has
adistribution that isonly closeto but not exactly equal
tothetarget distribution, i.e, the posterior distribution.

3. Application of Gibbs Sampling
Example 4. Gibbs Sampling for M ultinomial

Consder the following multinomial model with data
Herethe 4-cell multinomial probability vector is a func-
tion of the parameers p;g;r with p+ g+ r = 1. One
may wish to formulate a Dirichlet prior for p;qg;r. But
it will not be conjugate to the 4-cell multinomia prob-
ability (likelihood in terms of p; g, r) from the data and
this makes it di+ cult to work out the posterior distri-
bution of p;qgr. Although no data are missing in the
real sense of theterm, it is pro tableto split each of the
na and ng cells into two: na into naa;nao With cor-
responding probabilities p?; 2pr and ng into ngg;Nso
with corresponding probabilities of; 2qr. Consider the
6-cell multinomial problem as a complete problem with
Naa;Ngg @S Missing' data.

Of course, p+qg+r =1. Le&n=no+natng+nap. Let
us denote the observed data by n = (ng;Na;Ng;Nag).

Suppose one wants to do Bayesian estimation of p;q;r
with a Dirichlet prior with parameters ®, ;° with the
‘incomplete’ observed datan.

The likdihood upto a multiplicative constant is:
L(pigir) = r#°(p® + 2pr)"* (g* + 29r)"° (pa) ™*:

The posterior of (p;q;r) given n, is proportional to
20t A+ 20r)™ (¢ + 20)™ ()™ ™t t n

It is not easy to deal with this and work out mean,

28
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median and such useful posterior integrals. Thisisthe
sort of stuation where Gibbs sampler is useful.

Let no = Nnaa+ Nao, Ng = Ngg + Ngo. Let uswritengo
for no for the sake of elegant and consistent notation.
It iseasy to seethat if we havethe ‘complete data, i.e.,
observations n- = (noo; Naa;Nao;NBB,; NBO, nAB), t hen
the likelihood is, upto a multiplicative const ant

(pZ)nAA (qZ)nBB (rZ)noo (qu)nAB (qu)nso (2pr)nAo

= an qné rna;
where

1 1
Na = 2(Naa + SNas + EnAO)

1 1
ng Z(EnAB + Ngg + EnBO)

+ 1 1
No = Z(EnAO + EnBO + Noo!)

Thus the posterior distribution for (p;q;r) can be seen
to be Dirichlet with parameters ny + ®j 1;ng + |
1;n§ + ° j 1, when the prior is Dirichlet with parame-
ters (®, ;°). This smple solution to this ‘completée
problem will now be exploited in the Gibbs Sampler.

It follows from the model and the assumed priors that
the conditional distributions of (naa; Nss) given n and
(p;q;r) isthat of two independent binomials:

(wain:picir) » Binomia(ny: P, ) (A
2
(nosin;prar) » Binomial(ne; , [, )0 (A2

Alsotheposterior distribution of (p; g; r) given (observed
data, missing data), i.e., that of

(p; g rjU;nAA; Ngg) is Dirichlet

(nNx +®j Ling+ i Lng+°i 1): (B)

—_—
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RESONANCE | December 2003 a .

29



GENERAI | ARTICLE

Table 3. Descriptive Statis-
tics from Gibbs samples of
mean and Rao—Blackwelli-
sed estimates of p, q, r.

Gibbs sampling for this problem is straightforward {
starting from initial estimates for p;q;r, use random
draws from (A1, A2) and (B) in turn until “‘convergence
to get a random sample from the joint distribution of
(pP;g;r;Naa;NeB)jn . Suppose one has N such indepen-
dent samples (p©; g, r©;n{%:nl%). Recall from Part
[11, the idea and technique of Rao-Blackwellisation for
variance reduction. Estimates of posterior mean of p;q; r
are obtained by Rao{ Blackwellisation, namely by

1 X N L
I GRS LUV
i=1

X _ _
= +Nn,;, +nN;;°+Nny)=(®+ + ° +n):
N (®+ny AR SE(© °+n)
i=1

We ran such a Gibbs sampler for this problem with
N =10,000 and the results are presented in Table 3 and
Figure 4.

Thevaluesof ® ;° were2, 2 and 2.

Thetable and the histograms give estimates of p; g, r by
the method of sample means (called pmean, etc.) and
by Rao{Blackwellisation (called pracbwell, etc). They
show how useful Gibbs sampling method is. They also

30

Satigtic PMEAN QMEAN RMEAN PRB QRB RRB
No. of cases 10000 10000 10000 10000 10000 10000
Minimum 020149 0.05579 0.60135 0.24116 0.08460 0.61160
Maximum 0.31637 0.12704 0.71819 0.29356 0.10922 0.66590
Median 0.25306 0.08988 0.65678 0.26418 0.09573 0.63994
Mean 0.25306 0.09022 0.65671 0.26430 0.09588 0.63982
D 0.01561 0.00970 0.01437 0.00683 0.00295 0.00719
Variance 0.00024 0.00009 0.00021 0.00005 0.00001 0.00005

MLE for p, q, r respectively 0.26444 0.09317 0.64239
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Figure 4. Histogram of mean estimates of p, q,r and Rao-Blackwellised Estimates of p, q, r (called
RBEP, RBEQ, RBER).
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show how much more et cient the Rao{ Blackwellised
(PRB, QRB, RRB) estimates are.

Concluding Remarks

In thisfour-part article we have attempted to givean in-
troduction to Markov chain Monte Carlo methods, and
through the examplestried to give someidea of the com-
putational intensity with which these methods have to
be applied. The theory and methodology of MCMC
are still evolving, especially in respect of diagnostics for
conver gence of the Markov chains generated by the al-
gorithms. We have not touched upon these rather dif-
~cult but important and cruda aspedas of the MCMC
methodology. We hope that the collection of articles in
Resonance starting from Kunte[7,8] on Satistical Com-
puting, and articleson bootstrap and Bayesian statistics
that have fdlowed, culminating in Chakraborty's [9,10]
and these MCMC articles, givethereader the ° avour of
modern comput er-intensive statistical methods.
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