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1  those statisticians who use
the Bayesian approach
2 those families of priors π  such
that the posteriors π ‘ are also
of the same family (for instance,
beta prior for the Binomial( n , p)
problem)

1. T he Changing Face of St at ist ics

Classical stat ist ical methodology depended essent ially
on mathematical tools for its development. In order to
make problems analyt ically tractable, a number of as-
sumptions had to be made on the nature of the data,
models formulated had to be fairly simple even if un-
real ist ic, and crit eria for inference had to be reasonably
manageable. Methods developed from such an approach
led to fairly easy computat ions on mechanical calcula-
tors and later, electronic calculators. In the last quar-
ter of the 20th century, due to rapid developments in
computing technology, t here was no longer any need to
constrain methodological developments or appl icat ions
to limited computing resources. In stat ist ical applica-
t ions, users are now prepared to analyse huge dat a sets,
formulate highly complex models when called for , for-
mulate cri teria not necessari ly amenable to analyt ically
tractable and easi ly computable solut ions, etc. The
early part of this development saw a host of Monte
Carlo simulat ion exercises, increasing use of randomiza-
t ion techniques, and theemergenceof resampling meth-
ods such as bootstrap and other cross-val idat ion meth-
ods. (See [1],[2]).

During t his process, while stat ist ical applicat ions were
gett ing more and more daring in terms of formulat-
ing highly nonlinear and otherwise complicat ed mod-
els, Bayesians1, who t i ll then were limit ing their ef-
forts to fairly simple priors such as conjugatepriors 2 to
achieveanalyt ical t ractabili ty, started formulat ing more
complex and realist ic priors result ing in analyt ical ly in-



19RESONANCE  December  2003

GENERAL    ARTICLE

Keywords
Bayesian approach, posterior
distr ibution, Dirichlet prior,
Metropol is–Hast ings a lgo-
r i thm,  re jec t ion sampl ing,
Gibbs sampler, proposal den-
sity, Rao–Blackwellisation, bi-
nomial, multinomial, Gamma,
uniform.

1.  Simple Monte Carlo, Reso-
nance , Vol.8, No.4, p.17, 2003.
2. The Markov Chain Case,
Resonance , Vol.8, No.7, p.63,
2003.
3. Statistical Concepts, Reso-
nance, Vol.8, No.10, p.30, 2003.

t ractable situat ions { for instance, posterior distribu-
t ions whose moments arenot easily worked out analyt i-
cally. (For an introduct ion to Bayesian stat ist icsand for
explanat ionsof terms used here, see [3].) Onereason for
this is that the integrat ion needed t o ¯nd the normaliz-
ing constant was not tractable, thus making t he density
incompletely speci¯ed. In somesituat ions, numerical in-
tegrat ion solved t he problem reasonably well. However,
simulat ion-based methods such as Monte Carlo integra-
t ion often give more e± cient solut ions t o these prob-
lems, especially in higher dimensions. But under cert ain
circumstances, direct generat ion of random samples for
Monte Carlo integrat ion is not possible and more com-
plex MonteCarlo methods such asMarkov Chain Monte
Carlo (MCMC) methods are needed.

Such cases arise for instance, when the target distrib-
ut ion (for us, the posterior distr ibut ion ¼

0
(µjx )) is in-

completely speci¯ed or speci¯ed indirect ly, say, a joint
distribut ion being speci¯ed in terms of several condi-
t ional and marginal distribut ions. In many of these sit-
uat ions, so long as the target distribut ion isuniquely de-
¯ned from t hegiven speci¯cat ions, it ispossible toadopt
an iterative random sampling (Monte Carlo) procedure,
which at the point of convergence will deliver a ran-
dom draw from the target distribut ion. These iterat ive
MonteCarlo procedures typically generate a random se-
quence with the Markov property such that the Markov
chain is ergodic with a limit ing distribut ion coinciding
with the target distribut ion. There is a whole family
of such iterat ive procedures collect ively called Markov
Chain Monte Carlo (MCMC) procedures, di®erent pro-
cedures being suitable for di®erent situat ions.

In the earlier parts of thisseriesof art icles the focuswas
on the theoret ical aspects of the MCMC methods. In
this part , we discuss a few stat ist ical applicat ions.
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2. A pplicat ion of M et ropol is{ H ast ings A lgor i t hm

We shall il lustrate applicat ions of the Metropolis{ Hast-
ings (M{ H) algor ithm described in Part 2 of this series
of ar t icles to the generat ion of a random sample from a
gamma dist ribut ion and from theposterior distribut ion
of Weibull parameters in a Bayesian context. But before
that we discuss some preliminaries.

I nverse CDF M et hod:

It is well known ([4] pp.54{ 55) that i f the distribut ion

funct ion F (x)
def
´ P (X · x) of a random variable X is

cont inuous and strict ly increasing then U = F (X ) »
U[0; 1], meaning that U is uniformly distribut ed in the
interval [0; 1]. In t his case, F ¡ 1 is easily dē ned. T hus
a sample U from U[0; 1] can be used to get a random
sample X ´ F (U) with distribut ion funct ion F . For
example,

F¯(x) =
(

0 for x < 0
1 ¡ e¡ ¯x for x ¸ 0 ;

where 0 < ¯ < 1 , is the distribut ion funct ion of an
exp(¯) random variable. Since F ¡ 1

¯ (u) = ¡ ln(1¡ u)
¯ , for

0 < u < 1, i f U is a uniform [0, 1] random variable, then
¡ ln( 1¡ U)

¯ will have exp(¯) dist ribut ion. Note t hat since
1¡ U is also a uniform [0, 1] random variable, ¡ ln U

¯ will
also work.

Next consider the problem of generat ing a sample from
the gamma(®; ¯) distribut ion.

D e¯nit ion: A gamma distribut ion with parameters
(®; ¯) , writ ten as G(®; ¯), is a cont inuous probabili ty
distribut ion on (0; 1 ) with probabili ty density

f ®;¯(x) =
¯®

¡ (®)
e¡ ¯xx®¡ 1;

where ¡ (®) =
Z 1

0
e¡ x x®¡ 1dx for 0 < ® < 1 is the

well-known gamma funct ion.
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I f U1; U2; : : : ; Uk are independent ident ical ly distributed
(i.i.d.) U[0; 1] variables then it can be shown (see [4]
p.248) that

X k;¯ ´ ¡
1
¯

kX

i= 1

ln Ui

has a G(k; ¯) distribut ion. T hus if ® = k is a posit ive
integer, t hen this problem has an easy solut ion. I f not,
we need t o use other methods. One such method is
Reject ion Sampling.

R eject ion Sampling

Example 1:

Let a random variableX havedensity speci¯ed asf (x) =
3
2(1 ¡ x2); 0 · x · 1. The CDF is 0, for x < 0; is
3
2(x ¡ x 3

3 ), for 0 · x · 1; and 1, for x > 1. TheCDF is a
cubic in x and the inverseCDF method involves solving
a cubic equat ion, which involves some e®ort. However,
the following Reject ion Sampling method is quite easy
to implement: Choosea random sampleY from uniform
[0, 1]. Accept Y as a random sample from the density f
with probabil ity (1 ¡ Y 2); else reject i t and repeat the
procedure unt i l a Y is accepted. Keep repeat ing this
procedure unt il the desired number of samples are ac-
cepted. In order to decide to accept Y with probabili ty
(1 ¡ Y 2), select a random sample U from uniform [0, 1]
and if U · (1 ¡ Y 2), accept.

For Reject ion Sampling, an envelope or a maj or izing
densit y funct ion gY of another random variable Y is
needed such that cgY (x) ¸ f X (x) 8x, for some const ant
c > 0. Further, for the method to work, it should be
easy t o draw random samples from Y. cgY is cal led the
major izing funct ion. gY is also called the proposal
densit y. T he algori thm is:

1. Draw Y from gY (:):

2. Draw U from U(0; 1).
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3. If U · f X (Y)=cgY (Y ) then accept Y as thedesired
real izat ion;
else return to Step 1.
Repeat unt i l one Y is accepted.

Repeat this to select the desired number of samples. For
distribut ions wit h ¯nite support and bounded density, g
can always be chosen as uniform.

In Example1, g is the uniform [0, 1] density and c = 3
2.

Now, the probabil ity of drawing an accept ed value in
the interval (x; x + dx) is proport ional to

g(x)dx
f (x)
cg(x)

=
1
c

f (x)dx:

Thus the accepted sample is from f (x) and accept ed
proport ion of sampled values is 1

c .

Example 2: Drawing from G(®; 1)

We discuss Reject ion Sampling from G(®; ¯) when ¯ =
1, when ® is not an integer. Let us use t he notat ion [®]
for the integer part of ®, i.e., if k · ® < k + 1, k an
integer, then [®] = k. It can bechecked t hat the density
of G([®]; [®]

® ) is a majorizing density with

c =
¡ ([®])
¡ (®)

(®)®

[®][®]
e¡ (®¡ [®]) :

The met hod thus is:

(a) Draw Y from G([®]; [®]
® ).

(b) Accept Y with probabil ity

p = (
ey exp (¡ y=®)

®
)®¡ [®]

which is the rat io of the density of G(®; 1) t o c t imes t he
density of G([®]; [®]

® ). [See [5], pp.94, 242.]
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M { H A lgor it hm for Gamma (®, 1) Sampling

Asdiscussed in Part I I of this series, the general Metro-
polis{Hast ings (M{ H) algorithm is as follows: The tar-
get density f (x) is speci¯ed (possibly without the con-
stant term) and a s̀uitable' proposal condit ional density
h(yjx) ischosen such t hat for all x, f (y) > 0 if and only
if h(yjx) > 0. Then the algori thm is as follows:

Star t at t = 0with avaluex0 in thesupport of t he target
distribut ion,i .e.,a possible value from that distribut ion.
At step t:

(a) Draw Yt from h(yjX t ).

(b) Let

X (t+ 1) =
(

Yt with probabil ity pt

X t otherwise,

where pt = minf ½t = h(X t jYt ) f (Yt )
h( Yt jX t )f (X t ) ; 1g:

(c) Set t = t + 1 and go to step (a) .

Run this unt i l t = n (a suitably chosen large value).
Then X n hasa density that is close to the target density
f (x).

A special case of the M{H algorithm is the so-cal led
Independence M{ H algor ithm, where in step (a), the
distribut ion does not depend on thecurrent valueof x t,
whereas in the general form of the M{ H algorithm, it
does. In the general case, the proposal distribut ion is
a condit ional distribut ion Yt jX t , which is i llustrated in
Example 3 below.

For the above problem with t he G(®;1) distribut ion, an
Independent M{ H algor ithm with theproposal distribu-
t ion the sameas themajorising density of t he Reject ion
Sampling is as follows:

Star t at t = 0 with some value x0,0 < x0 < 1 . At step
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t , (a) Draw Yt from G([®]; [®]
® ) .

(b) Let

X ( t+ 1) =
(

Yt wit h probability pt
xt ot herwise,

where

pt = minf ½t = (
Yt

x t
exp(

x t ¡ Yt

®
)®¡ [®]); 1g:

(c) Set t= t+ 1 and go to step (a).

Run t his unt il t= n (a suitably chosen large value).

Thestep `with probability' can be implemented by using
a draw from U[0; 1]. Denot ing the target density by f
and the proposal density by h(x), pt is obtained as

minf
f (Yt )h(Yt )
f (x t )h(x t )

; 1g:

Not ice that in this expression, t he const ants in both f
and h cancel out; however, for implementing step (a),
full knowledgeof the density of Yt is required. Thus the
M{ H algorithm can be carried out to draw from a dis-
t ribut ion for which the constant is not speci¯ed. In the
gamma distribut ion example, the Reject ion Sampling
method iseasier to implement than theM{H algori thm,
since the full density of G(®; 1) is anyway known. How-
ever, weil lustrate theM{H algor ithm with thisexample.

Wegenerated 3336 samples by thismethod wheren was
chosen to be 1000. Thehistogram of the sampled values
and the actual gamma(2.43, 1) density are given in Fig-
ures 1 and 2 respect ively. Descr ipt ive stat ist ics based
on these samples are given in Table 1. From these it is
clear that t he M{ H algorit hm provides a good way of
generat ing random samples whose distribut ion is close
t o that of an incompletely speci¯ed distribut ion.
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Figure 1 (left). Histogram of
gamma (2.43, 1) density
generated using Metropo-
lis–Hastings algorithm.
Figure 2 (right). Theoretical
Gamma (2.43, 1) density.

Table 1. Descriptive statis-
tics from data generated for
gamma (2.43, 1) density by
Metropolis–Hastings algo-
rithm.

Stat ist ic From simulat ion Theoret ical

No. of cases 3336 {
Minimum 0.02359 0
Maximum 13.37880 1
Median 2.02555 2.1060
Mean 2.42552 2.43
SD 1.72762 1.5588
Variance 2.98465 2.43

Here we used a simple ¯xed-length stopping rule for de-
ciding when to stop a Markov chain and accept the last
valueasa samplefrom t hestat ionary distribut ion. How-
ever, the issue of convergence diagnostics and stopping
rules for MCMC aremorecomplex and research on these
issues is st il l going on. See [5] (Example 6.3.3, pp.242{
243) for a discussion of the gamma example described
above.

Exam pl e 3: B ayesian Inference for Weibul l D is-
t r ibut ion

A Weibull distribut ion has the fol lowing density form:

f (x) ´ f (xj®; ´ ) / ®́ x®¡ 1e¡ ´ x ®
; 0 < x < 1



26 RESONANCE  December  2003

GENERAl  ARTICLE

(where/ means`proport ional to') with parameters (®; ´ ).
Consider the pr ior distribut ion for the parameter (®; ´ )

¼(®; ´ ) / e¡ ®´ ¯¡ 1e¡ »´

and i.i.d. observat ions x1; x2; : : : ; xN from f (x). The
posterior distribut ion of (®; ´ ) given thedata (x1; x2; : : : ;
xN ) has density

g(®; ´ ) = ¼(®; ´ jx1; x2; : : : ; xN )

/ f (x1)f (x2) : : : f (xN )¼(®; ´ ):

To get a sample from the posterior density one may use
the M{ H algorithm with proposal distribut ion

q(®0; ´ 0j®; ´ ) =
1

®́
e¡ ®0

® ¡ ´ 0

´ ;

that is a product of two independent exponent ial dis-
tribut ions with means ®, ´ . (See [6], Example 6.3.2, p.
305.)

Thus the M{ H algorithm for this problem is:

1. Data x1; x2; : : : ; xN with N = 10 are given as
0.645, 0.647, 0.422, 0.899, 0.228, 1.083, 0.450, 0.985,
1.106, 0.701.

2. Prior distribut ion parameters ¯; » are given as 1.5
and 0.5 respect ively.

3. Init ial values ®(0) ; ´ ( 0) are given as 1.5 and 1 re-
spect ively.

4. Generate M{ H Markov chains of length n = 250
and retain the nt h element of the chain. Call the
chain (®(t ) ; ´ ( t )); t = 0; 1;2; : : : Iterat ions proceed
as follows from (®( t ) ; ´ ( t )) to (®(t + 1) ; ´ (t+ 1)) :

(a) Generate a random draw from

q(®0; ´ 0j®(t ) ; ´ (t )) =
1

®( t)´ (t ) e
¡ ®0

®( t ) ¡ ´ 0

´ ( t) :
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(b) Compute

½(®0; ´ 0; ®( t ) ; ´ ( t )) =

minf
g(®0; ´ 0)

g(®( t ) ; ´ (t ))
q(®( t ) ; ´ ( t ) j®0; ´ 0)
q(®0; ´ 0j®(t ) ; ´ ( t ))

; 1g:

(c) Draw R from uniform (0,1).

(d) If R · ½(®0; ´ 0; ®( t ) ; ´ ( t )), then
let ®( t+ 1) ; ´ (t+ 1) = ®0; ´ 0

else let ®(t+ 1) ; ´ ( t+ 1) = ®(t ) ; ´ (t ) :

(e) Stop when t = n = 250. Output (®( n) ; ´ (n)).

Repeat this m = 100 t imes.

Some descript ive stat ist ics of this joint posterior distri-
but ion of (®; ´ ) are given in Table 2 and Figure 3.

Stat ist ic ALPHA ETA

No. of cases 100 100
Minimum 4.142530 0.875560
Maximum 14.489841 4.358850
Median 7.917805 1.911510
Mean 8.234183 2.023315
SD 2.212684 0.730947
Variance 4.895969 0.534283
Correlat ion ¡ 0:3206

Figure 3. Histograms and
scatter plot of Weibull pos-
terior   of parameters α  and
η generated by M–H algo-
rithm.

Table 2. Descriptive statis-
tics of the posterior distri-
bution of  α , η generated by
M–H algorithm.
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Data Model

nO = 176 r 2

nA = 182 p2 + 2pr
nB = 60 q2 + 2qr
nAB = 17 2pq

Total 435

There are issues regarding the appropriate choice of n,
choice of t he proposal density, etc., which we shall not
address in t his art icle. It must be noted that when the
M{ H chain is run upton = 250, thevalue (®( n); ´ (n)) has
a distribut ion that is only close to but not exact ly equal
to t he target distribut ion, i.e., theposter ior distribut ion.

3. A pplicat ion of Gibbs Sampling

Example 4: Gibbs Samp ling for M ult inomial

Consider the following mult inomial model with data.
Here the 4-cell mult inomial probability vector is a func-
t ion of the paramet ers p; q; r with p + q+ r = 1. One
may wish to formulate a Dirichlet prior for p; q; r . But
it wil l not be conjugate to t he 4-cell mult inomial prob-
abi lity (likelihood in terms of p; q; r ) from the data and
this makes it di± cult to work out t he poster ior distri-
but ion of p; q; r . Although no data are missing in the
real sense of the term, it is prō table to split each of the
nA and nB cells into two: nA int o nA A ; nA O wit h cor-
responding probabili t ies p2; 2pr and nB into nB B ; nB O

with corresponding probabili t ies q2; 2qr . Consider the
6-cell mult inomial problem as a complete problem with
nAA ; nB B as `missing' data.

Of course, p+ q+ r = 1. Let n = nO + nA + nB + nA B . Let
us denote the observed data by ņ = (nO ; nA ; nB ; nAB ).

Suppose one wants to do Bayesian est imat ion of p; q; r
with a Dirichlet prior with parameters ®; ¯; ° with the
ìncomplete' observed data ņ .

The likel ihood upto a mult iplicative constant is:

L(p; q;r ) = r 2nO (p2 + 2pr)nA (q2 + 2qr)nB (pq)nA B :

The posterior of (p; q; r ) given ņ , is proport ional to

r2nO + ° ¡ 1(p2 + 2pr)nA (q2 + 2qr )nB (p)nA B + ®¡ 1(q)nA B + ¯¡ 1:

It is not easy to deal wit h this and work out mean,
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median and such useful post erior integrals. This is the
sort of situat ion where Gibbs sampler is useful.

Let nA = nA A + nAO , nB = nB B + nB O . Let uswritenOO

for nO for the sake of elegant and consistent notat ion.
It iseasy to see that if we have the `complete' data, i.e.,
observat ions ~n = (nOO ; nAA ; nAO ; nB B ; nB O ; nAB ), t hen
the likelihood is, upto a mult ipl icat ive const ant

(p2)nA A (q2)nB B (r 2)nO O (2pq)nA B (2qr)nB O (2pr )nA O

= pn+
A qn+

B r n+
O ;

where
n+

A = 2(nAA +
1
2

nA B +
1
2

nAO )

n+
B = 2(

1
2

nAB + nB B +
1
2

nB O )

n+
O = 2(

1
2

nAO +
1
2

nB O + nOO:)

Thus the posterior distribut ion for (p; q; r ) can be seen
to be Dirichlet with parameters n+

A + ®¡ 1; n+
B + ¯ ¡

1; n+
O + ° ¡ 1, when the prior is Dirichlet with parame-

ters (®; ¯; ° ). This simple solut ion to this c̀omplete'
problem will now be exploited in the Gibbs Sampler.

It follows from the model and the assumed priors that
the condit ional distribut ions of (nAA ; nB B ) given ņ and
(p; q; r ) is that of two independent binomials:

(nAA jņ ; p; q; r ) » Binomial(nA ;
p2

p2 + 2pr
) (A1)

(nB B jņ ; p; q; r ) » Binomial(nB ;
q2

q2 + 2qr
): (A2)

Also theposterior distribut ion of (p; q; r ) given (observed
data, missing data), i.e., that of

(p; q; r j ņ ; nAA ; nB B ) is Dirichlet

(n+
A + ®¡ 1; n+

B + ¯ ¡ 1; n+
O + ° ¡ 1): (B )
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Stat ist ic PMEAN QMEAN RMEAN PRB QRB RRB

No. of cases 10000 10000 10000 10000 10000 10000
Minimum 0.20149 0.05579 0.60135 0.24116 0.08460 0.61160
Maximum 0.31637 0.12704 0.71819 0.29356 0.10922 0.66590
Median 0.25306 0.08988 0.65678 0.26418 0.09573 0.63994
Mean 0.25306 0.09022 0.65671 0.26430 0.09588 0.63982
SD 0.01561 0.00970 0.01437 0.00683 0.00295 0.00719
Variance 0.00024 0.00009 0.00021 0.00005 0.00001 0.00005

MLE for p, q, r respect ively 0.26444 0.09317 0.64239

Table 3. Descriptive Statis-
tics from Gibbs samples of
mean and Rao–Blackwelli-
sed estimates of p, q, r.

Gibbs sampling for this problem is straightforward {
start ing from init ial est imat es for p; q; r , use random
draws from (A1, A2) and (B) in turn unt il c̀onvergence'
to get a random sample from the joint distr ibut ion of
(p; q;r ; nA A ; nB B )jņ . Suppose one has N such indepen-
dent samples (p(i ) ; q(i ) , r (i ) ; n( i)

A A ; n(i )
B B ). Recall from Part

I I I , the idea and technique of Rao-Blackwellisat ion for
variance reduct ion. Est imatesof posterior mean of p;q; r
are obtained by Rao{ Blackwellisat ion, namely by

1
N

NX

i = 1
E (p(i ) ; q( i ) ; r ( i) j ņ ; n( i )

A A n( i )
B B )

=
1
N

NX

i = 1

(®+ n+
A ; ¯ + n+

B ; ° + n+
O)=(®+ ¯ + ° + n):

We ran such a Gibbs sampler for this problem with
N = 10,000 and the results are presented in Table 3 and
Figure 4.

The values of ®; ¯; ° were 2, 2 and 2.

The t able and thehistograms give est imates of p; q; r by
the method of sample means (cal led pmean, etc.) and
by Rao{ Blackwellisat ion (cal led praobwell, etc). They
show how useful Gibbs sampling method is. T hey also
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Figure 4. Histogram of mean estimates of p, q, r  and Rao-Blackwellised Estimates of p, q, r (called
RBEP, RBEQ, RBER).
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show how much more e± cient the Rao{ Blackwellised
(PRB, QRB, RRB) est imates are.

Concluding R emarks

In this four-part art iclewehaveatt empted to givean in-
troduct ion t o Markov chain Monte Car lo methods, and
through theexamples tried to givesome idea of thecom-
putat ional intensity with which t hese methods have to
be applied. The theory and methodology of MCMC
are sti ll evolving, especially in respect of diagnost ics for
convergence of the Markov chains generated by the al-
gori thms. We have not t ouched upon these rather dif-
¯cult but important and crucial aspect s of the MCMC
methodology. We hope that the collect ion of ar t icles in
Resonancestart ing from Kunte [7,8] on Stat ist ical Com-
put ing, and art icleson bootstrap and Bayesian stat ist ics
that have fol lowed, culminat ing in Chakraborty's [9,10]
and t hese MCMC art icles, give the reader the ° avour of
modern comput er-intensive stat ist ical methods.


