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In this article, we compute the volume V, of
the unit ball in an n-dimensional space. For
n = 1,2,3, the volumes are respectively 2, 7,47 /3,
which are the length of interval [—1,1], area of a
unit circle and volume of the unit sphere. The
numbers V,, ‘appear’ to increase. But in fact this
not so. In fact V,, tends to zero as n tends to
infinity!

For a positive integer n, the unit ball in n dimension is
defined as the set S, = {7 : & = (x1,29,...,2,),2; €
R,1<i<n,Y |2} <1} where R is the set of real num-
bers. Thus S,, consists of all points & = (z1,z2,...,2,)
in n-dimensional Euclidean space R"™ that are at a dis-
tance less than or equal to one from the origin. Let

V, = / ldzidzs ... dx, (1)

be the Riemann integral of the function f(z) = 1 over
the unit ball S,,. Then V,, can be thought of as the ‘n di-
mensional’ volume of S,,. In a recent issue of Resonance'
the problem of showing that V,, — 0 as n — oo was
posed. In this article a solution to that problem and
some further results are presented.

Note that
1
V1 = / 1d1‘1 = 2,
-1
V2 = /1d1‘1d1‘2,
Sa
= 7
and

V3 = / 1dl‘1dl‘2dl‘3
S3
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— /S (/52 1dg:~2d933)) (1 — z})day,

Ty = S R— Ty =
Co G- T

where

T3
(1= a2

Thus,

Vg = / VQ(\/l—I%)del
S1

One is led to the recurrence relation

Vit = /Vn(\/l—x%) dry for n>1
S1

= V,bn, (2)
where
+1
op = / (1 —2%)"2dx. (3)
-1
It is easy to check that 6; = 5, 6 = % and hence

Vi=2<Vo=m<Vy= 4?” suggesting that V,, could
be increasing with n. But 63 = 2f01(1 — 22)32dz =
2f0ﬂ/2 cos* #df = %7‘[’ < 1 implying that V3 < Vj. Since
0, decreases with n, it follows that V;, is decreasing in n
for n > 3.

Since for 0 < |z| < 1, (1 — 2)™? — 0, one expects that
0p, — 0 as n — oo. This is indeed the case. Here is a
proof. Fix 0 < e < 1. Then for n > 1,

op = / (1 —a2)"2da +/ (1 —2)"2dz
|lz|<e

e<|z|<1
< 24 (1— Y22

So L
lim,, oo 6n < 2¢, (4)
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where for any sequence {a,, },>1 of real numbers, lim,,_,.a,
(read as lim sup,,_, ay,) is defined as lim,,_.o, M,,, where

M, = limg_ max(an, Gpi1,- .-, Gpig)-

Notice that for each n, k, M, = max(an, Gn41, - -, Antk)
is non-decreasing in & and hence M,, = {limy oMy
exists. Again, since M, is non-increasing in n, lim, M,
does exist. Thus, for any sequence {ay}n>1, limy,—oon
is always well defined. Similarly lim, ,  a, (read as
liminf,,_..ay) can be defined and it can be shown that
a sequence {a,},>1 converges to a real number a, i.e.,

lim a,, = a, if and only if lim,, ,a, = a = lim,,_, a,.

Going back to (4) we can conclude that since e > 0 is
arbitrary,
lim ¢, <0.

n—oo

Also since 6,, > 0 for alln > 1,

lim ¢, > 0.

n—oo

Thus,
lim ¢, exists and is 0. (5)

n—oo

Now we can use the recurrence relation (2) to show that
lim, .oV, = 0. In fact, we can show more. Namely
that for any n > 0,

lim — = 0. (6)

To prove (6), note that by (5) there is an N,, such that
for n > N, 0 <6, <n/2. Thus, for n > N,,

n n—N,
Vo=V, [[ 6 < Va, (g) " (7)
§=N,,

This, in turn, yields, for n > N,,.

T (1Y
n" T oM\ 2
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Since (1/2)" M — 0 as n — oo, we get
Vo
lim,,oo— < 0.
T]TL

But % > 0 and so liminfn_)oo;/—z > 0. So we conclude
that for any n > 0,

i.e., (6) is established.

One can refine this further. The proof of (6) is based on
(5). Now (5) can be improved to assert that

lim v/né, = V2r. (8)

n—~oo

To see this, note that

Vb, = \/ﬁ/_llu—x?)"ﬂdx

by the change of variable + — \/Lﬁ Now as n — oo,

2 n/2 2 /9 . . .
<1 - = — e7/2 and the region of integration

[—v/n,v/n] goes to (—o00,00). This suggests that the
integral in (9) converges as n — oo to

IE/ e 2 qu. (10)

This interchange of integration and limit as n — oo can
be justified and is done so in the appendix. To evaluate
I note that

S
i
_ / / 2 1 drdd (11)
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(by changing (u,v) to polar coordinates (r,6))

00 ) /2
— 4 (/ e " /2rdr) / do | =4
0 0

Thus I = v27. So (8) is established.

= 2.

N3

Since )
Vi, =W (H@) for n > 2,
J=1

it follows that
1 1 1 <X
ElogVn = 510gV1 + E;bg@j\/b
1 n—1
o Z log j.
7j=1
This implies that

1 1 ¢ , 1
- <logVn+§Zlog]> = glogvl

J=1

n—1
1 1
+—1logn + — log(6;/7).
groen 1 S o)
It can be shown that if lim,, .. a, = a exists in R then

%Z?Zl a; (called the Cesaro average) also converges to
a.

Since (8) holds,
1 n—1
—Zlog(éj\/;) — log V2w, asn — oo.
n
j=1

Thus it has been shown that

1 —
—log(V,,Vn!) = log V2
n
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or equivalently
(Vo V)™ — V/2r (12)

The function ¢(u) = \/%eﬂﬂﬁ is called the standard
normal (Gaussian) probability density. It is of great im-
portance in probability theory and statistics and many
areas of science. Many real world distributions such as
heights of men in a given population are approximately
normally distributed. In the popular science literature

the graph of ¢(-) is called the ‘bell curve’.
Thus, we have established the following:

Theorem 1. Letforn > 1S5, ={7Z:2 = (x1,29,...,1,),
x;, € R, 1 <4< n, ?w% < 1} be the unit ball in the
n-dimensional Euclidean space R", where R is the set
of real numbers. Let V,, = fSn ldzidxs . .. dx,, the Rie-
mann integral of the function f(z) = 1 over S, be the
‘n-dimensional volume’ of S,,. Then

() Vi=2Va=m Vyg=Fandforn >2V, =

Vi H;;i 6;, where 65, = fjl(l — z2)k2dz;
(ii) v/nb, — V21 as n — oo;
(iii) For any n > 0, X—Z — 0 as n — oo;

(iv) (VpvVn)Y™ — /21 as n — oo.

Along the same lines one can establish the following gen-
eralization.

Theorem 2. Fix 0 < p < co. Let for n > 1.

The function

¢(u) = y\/ﬁe—uz/z

is called the standard
normal (Gaussian)
probability density. It
is of great importance
in probability theory
and statistics and
many areas of
science.
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In the ‘so-norm’ the be the unit ball in the n-dimensional Euclidean space
volume of the unit R™ with the ‘p norm’. Let V,,, = fsw ldz,dze...dx,
ball in 2" in the n- be ‘the n-dimensional volume’ of Sy, ;.

dimensional Then
space. This is

actually an n-cube.

. n— 1
(i) Vip=2,Vop=Vip Hj:f 87, where 6, = [ (1—
|1 |P) /P dy;

(ii) n'/Pe,, — 2pt/r~t [ e P du = e(p), say;
(iii) For any n > 0, ‘2“‘7;1’ — 0;

(iv) (Vo (n)YP)Y" = ¢(p) as n — oo.

Remarks

1. Note that if one defines the unit ball in ‘co-norm’
as Spnoeo = {T : 7 = (v1,%2,...,2y), |z <1 for
all 1 < i < n} then S, is the cube with sides
[—1,41] in all n directions and its volume V,, » is
2" and hence does not go to zero.

2. The fact that V,, o — 0 as n — oo was cited by Pro-
fessor John Hoperoft of Cornell University, a well-
known computer scientist, as one of many counter
intuitive results about high-dimensional Fuclidean
spaces and the need to include the study of these
in the curriculum for computer science students in
this information age.
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Appendix
Here we show that
vn AL S )
lim (1 — —) du = / e " Pdu. (A1)
n—oo 7\/5 n — oo

The function ¢(x) =1 — 2 — e " on R satisfies ¢'(z) =
—1+ e and hence < 0 for all x > 0 and > 0 for all
r < 0 and = 0 for x = 1. Thus, ¢(.) is increasing in
(—00,0), decreasing in (0,00) and 0 at x = 0. This

yields
U2 7u2/n
1—— ) <e
n

for all u real. For any k& > 1 and n > k?

NG AL AL
/ (1——) dn = / (1——) du
—VR n lul<k 2
u? n/2
—|—/ (1 — —) du.
k<lul< i 2

n/2
Then function ¥, (u) = (1 — “—;) converges uniformly

to ¢ (u) = e /% in [—ky, k] and both v, and 1 are
continuous functions. So, for each 1 < k < o0,

u? n/2 2
/ (1 — —) du — e W2y,
lul<k n ul<k
Also

u? n/2 2
/ (1 — —) du < / e 2y
k<|u|<vm n k<|ul
< / e 2 du
k<|ul

(since k > 1)
4e7F/2
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Thus

'/ (1 - u_) du / e~ 2y
—vn n —0o
u?\ 2
2
< / (1 — —) du — / e W2y
u| <k n u|<k

+2/ e w2y
|u| >k

This yields,
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Now letting k T oo yields (A1).
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