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A simple mathematical model for an investor’s
gains and losses over time shows that, in the
long run, those with large sums to invest have
an excellent chance of reaching their goal while
the marginal investors have a high probability of
going bankrupt. A greedy investor, rich or poor,
will hit the bottom in the long run, with prob-
ability one. Consequences for the population at
large are discussed.

1. Introduction

Is gambling good for you ? The answer is, of course, No.
Not just for moral or ethical reasons, since gambling is
a perverse way of risk taking, but for good practical
reasons based on some sound and simple mathematics.

Mathematics, like philosopher’s God, is impersonal, and
the mathematics of risk taking is independent of who
is taking risk and for what purpose. So the article is
also about the genuine and needed risk taking of en-
trepreneurs (which includes farmers), businessmen and
investors.

Our main results are in Sections 2 and 3. The impli-
cations for the population at large are discussed in Sec-
tion 4.

2. A Simple Gambling Scheme (also known as
Simple Symmetric Random Walk)

Suppose the gambling scheme consists of tossing a fair
coin, (i.e., the probability of the coin falling heads is 1/2,
which is also the probability of tails). At each toss the
gambler receives one rupee from the gambling house if
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the coin falls heads up, and she gives one rupee to the
gambling house if it falls tails up. Suppose the gambler
starts with an initial capital of Rs.a > 0, and let us
suppose that she wishes to increase it to Rs.N > a and
that she stops gambling as soon as the goal N reached.
In case the gambler reaches 0, before reaching N, then
too the game stops since the gambler has no money left
to gamble.

What do you think will happen ?
Clearly there are three events possible:

1) The tossing of the coin continues indefinitely, i.e., the
gambler never accomplishes the goal of reaching N, nor
does she become bankrupt by reaching 0.

2) The gambler accomplishes the goal of reaching N in
a finite number of steps (before reaching 0) and stops
gambling any further.

3) The gambler becomes bankrupt, i.e., reaches 0 in a
finite number of tosses (before reaching N) so the game
stops.

The following proposition is a consequence of more gen-
eral considerations of the next section (which includes
the above gambling scheme as a special case).

Proposition 2.1 (i) The probability of the first event is
zero or equivalently, the gambling will almost surely end
i a finite number of tosses,

(ii) the probability of event (2) of the gambler reaching
N in a finite number of tosses (before reaching 0, i.e.,
becoming bankrupt) is <, where a is the initial capital

N
of the gambler,

(14i) the probability of event (3) of the gambler becoming
bankrupt in finite number of tosses is 1 — 1 .

Thus, for example, if N = 107 (a crore), the gambler’s

Simple Random Walk

At time zero start at some
integer a. Then toss a coin
whose probability for
‘heads’ isp,0<p<1.If
‘heads’, move to the right
one step, i.e., to (¢ + 1) and
if ‘tails’, move to the left
one step , i.e., to (a — 1).
This isyour positionattime
one. Now repeat this at each
time step with the tosses
beingindependent. The tra-
jectory you generate is
called a simple random
walk with initial value a
and parameter p. If p =1/2
thenitis called simple sym-
metric random walk.

This model is of relevance
in many areas of science
such as physics, operations
research, mathematical fi-
nance and population ge-

netics.
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chances of becoming a crorepati are high, say 0.7 or
more if her initial capital a is 70 lakhs or more. On the
other hand if her capital is 3 lakhs or less, her chances
of becoming a crorepati is only 0.03 or less. Thus a rich
gambler has a higher probability of reaching her goal
than a poor one.

The above gambling scheme may also be viewed as a
kind of walk, called simple symmetric random walk with
absorbing barriers. Consider a person starting at a pos-
itive integer a, 0 < a < N, and executing a walk along
the z-axis as follows: she tosses a fair coin and takes a
step of unit length in positive direction if the coin falls
heads up, and she takes a step of unit length in the neg-
ative direction if the coin falls tails up. The process is
repeated at the person’s new position, and so on. The
walk stops as soon as the person reaches 0 or N, these
being the absorbing barriers. Proposition 2.1 says that
the walk will end in a finite number of steps with prob-
ability one and that the probabilities of reaching N and

a

0 are §+ and 1 —  respectively.

Let X; denote the gambler’s possible capital at time .
It is a random variable. Assume that the game has not
stopped up to the nth toss and that aq,ao, -, a, are
respectively the capital of the gambler after the 1st, 2nd

-+, nth toss. The sequence (ay,as,---,a,) is called the
path of the gambler’s capital (or fortune) up to time n.
Let P(A | B) denote the conditional probability of an
event A given that an event B has occured. The simple
gambling scheme or the simple symmetric random walk
X;,i=1,2,3,--- is Markovian, which means that, for
all n > 1, and any integer z, 0 < x < N, and any
a1, o, -+, an,

PXpp=2|Xi=a,Xo=ag, -+, X,y = ay)
:P(Xn+1:x|Xn:an).

In other words, the conditional probability distribution
of X,11, given the path of the gambler’s capital up to
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time n, depends entirely on the capital of the gambler
at time n, and not on the path of her capital up to time
n. That is, given the ‘present’, i.e., the value X,, at time
n, the ‘past’, i.e., X;, 7 < n — 1 is not relevant for the
probability distribution of the ‘future’, i.e., X, .

In the next section we will discuss a gambling scheme
more general than the simple symmetric random walk.
This scheme allows the gambler to bet amounts more
than one rupee, and at the same time allows her the
freedom to decide on how much to bet (but not more
than N) at any given time. Moreover, she can decide
this amount (of how much to bet) based on the entire
path of her capital up to that time. That is, she can be
non-Markovian.

Since it is the careful investor, rather than an impulsive
gambler, who takes into account the history of the mar-
ket before readjusting her portfolio, we will change our
language and speak in terms of sober and calculating
investor rather than a compulsive gambler. It is impor-
tant to note that an investor need not be an individual,
but can be a company, small or large, a corporation, a
government body, a charitable organization or trust or
any other such institution.

3. An Investor’s Martingale Walk: The Case of
a Single Investor

We will now consider a simple generalization of the above
model. At time 0 the investor invests an amount a,
0 < a < N, with the hope of receiving a fixed higher
amount b, a < b < N, at time 1 but is aware that
she may loose in the process, and is willing to receive a
smaller amount ¢, 0 < ¢ < a. The quantities a,b and ¢
are chosen by the investor at the start. If she receives
the amount b at time 1 then her gain ¢ is b — a, while
if she receives the amount ¢ at time 1 then her loss [ is
a—c. Note that b—c=b—a+4+a—c=g+1. The
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Martingale

The property that the aver-
age value of an investment
portfolio at time (n + 1)
over the random market
fluctuations equals the
value at time » is known as
the martingale property. It
is of great importance in

financial mathematics.

probabilities 2 = p(b), y = p(c) that the investor receives
the amount b or ¢ at time 1 respectively are determined
by the simultaneous equations:

x4y =1, (1)
br + cy = a, (2)

which gives
a—c l b—a g
= b: :—’ = = = .
r=pl) =g = o v= ) = T =

The requirement bp(b) + cp(c) = a is known as fair game
or martingale condition in probability theory. It is a
consequence of no arbitrage opportunities requirement
in financial mathematics. It says that on an average
each investor neither loses or gains at each step. If this
were not so and, say, the investor can expect to gain
then a lot of investors will jump in and the gain will be
lost. On the other hand if on an average you expect to
lose then no investor will want to stay in the market.
Thus (2) is a reasonable assumption.

We can rewrite this condition as gp(b) —Ip(c) = 0. Since
a is fixed, we may think of p(b) also as the probability
P(g) of the investor making a gain of amount g while
p(c) may be interpreted as the probability P(l) that the
investor makes a loss of amount [, so that the fair game
or martingale condition becomes

gP(g) —1P(l) =0,

which is interpreted to mean that on an average the
investor will break even.

From the equations
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we note at once that I < g if and only if P(g) < P(l),
so that under the martingale condition (2) a ‘large’ gain
is possible only with ‘small’ probability, while a ‘small’
gain is possible with ‘high’ probability, in which case
the loss is ‘big’ should the investor be unlucky to loose.
Thus, these equations may be viewed as equations of
the statutory warning in fast forward and small print:
‘mutual fund investments are subject to market risk,
read the offer document carefully before investing’.

The term ‘fair game’ comes from classical betting con-
siderations (see Doob [1], Feller [2]) where a gambler is
supposed to be playing against a gambling house, and
the role of the investor is replaced by that of the gam-
bler. If a is the amount the gambler bets, and receives
an amount b > a if she wins and an amount ¢ < «a if she
loses, then the game is said to be favorable to the gam-
bler if bp(b)+cp(c) > a, whereas it is said to be favorable
to the gambling house if bp(b) + ¢p(c) < a, and, fair if
the equality holds. Here, as before, p(b), p(c) denote the
probabilities of the gambler receiving the amount b and
¢ respectively. We note that the ‘fair game’ condition
also seems to be fair between any two investors, rich or
poor, because the probabilities P(g) and P(l) of gain
and loss depend entirely on ¢ and [ and not on the ini-
tial investment a. However, these conclusions of fairness
between the market forces and the investor or between
two investors are deceptive as we will see.

If the investor chooses to attempt to make full gain,
i.e., chooses b = N, and is lucky enough to receive the
amount N at time 1, then she is contented and does
not invest any more. Similarly if she chooses ¢ = 0 and
is unlucky enough to loose, then at time 1 she has no
capital to invest, so that she does not invest anymore.
In case she receives an amount d at time 1 which can
be either b or ¢, and if 0 < d < N, then she invests
the amount d hoping to obtain a fixed higher amount e,
d < e < N at time 2, but is willing to receive a fixed
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smaller amount f, 0 < f < a, should she loose. The
probabilities p(e), p(f), whose sum is one, are again de-
termined by the ‘fair game’ condition fp(f)+ep(e) = d.
The process continues. Some care is required to describe
the situation at time n. Let z; denote the amount the
investor receives at time ¢, or already has this amount
at time ¢, (which is the case if x;_; = 0 or N). If at time
n the investor has amount x, and if x,, = 0 or N, then
she does not invest anymore. Otherwise 0 < z,, < N, in
which case she invests this amount again choosing new
quantities, say o and 3, 0 < a < 2, z, < B < N,
which she is willing to receive at time n + 1.

These quantities can depend on x¢y = a, 21,2, , Tn,
since the investor chooses a and 3 keeping in mind the
history of the market and the world up to time n. The
probabilities p(a) and p(8) with which these values are
realized satisfy (1) and (2), i.e.,

pla) +p(B8) =1, (3)

ap(a) + Bp(B) = z, (fair game condition).  (4)
Thus,
B — In
B—a’

Ty —

B—a

p(B) = (5)

pla) =

Let p(xy1, 9, -+, 2,) denote the probability that the in-
vestor receives an amount z; at time 1, x at time 2,
and in general, an amount x,, at time n. Let p(x,41 |
Ty, T, -+, T,) denote the conditional probability that
the investor receives an amount z,,,.1 at time n+ 1 given
that she has received an amount z; at time 1, x5 at time
2, and in general an amount z,, at time n.

Recall that for any two events A and B, the probability
of A and B happening together, P(A N B), and the
conditional probability of A given B, P(A | B), satisfy,
P(ANB)=P(A|B)-P(B). Thus,
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p(l'l,l'Q, e 71'71)
= p(l'n ’ X1, T, - 7xn—1)p(x17x27 e 71'71—1)'

On iteration we have
p(x1, xo, -+ xy) = I p(a; | 21,20, -+, 2-1),  (6)

where p(z; | o) is interpreted to mean p(z; | a) = p(x1)
since p(a) = 1. Now, from (5), we see that p(z; |
Ty, T, -+, T;—1) is a ratio of two positive integers be-
tween 1 and N, so that

1
p(xi |1,z wim1) > N

Hence from (6),

1

n
p(l'l,l'Q,“‘,l'n)Z (F) .

Let A,, denote the set of paths (z1, z9, - - -, x,) with z,, =
0 or z,, = N, and let B, = remaining set of paths,
namely those paths (21, z9,- -, z,) of length n for which
0 < &, < N. Note that for a path (z1, 29, -, z,) in By,
O0<z;< N,foralli,1 <i<n.

There is a non-increasing path a > xy > z9 > x3 >
-+ > x, > --- wherein there are strict inequalities until
an z; is 0, after which they are all equalities. Moreover,
the first ¢ for which x; = 0 is at most equal to a < N.
There is a non-decreasing path a < 7 < x99 < 23 <
-+ <z, < --- wherein there are strict inequalities until
an x; is N, after which they are all equalities. Moreover,
the first ¢ for which z; = N is at most equal to N —a <
N. So the probability of the set of paths (x1, z9, -+, 2y)

. . 1 N
with :cN:OorN1S>2<N> , 1.e.,

p(Ay) > 2 (%)N,
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whence

p(By) <1—2 (%)N

Consider now a path (x1,x2, -+, zy), of length N, with
0 < xy < N. Then the probability of the set of paths
starting at x at time N and not hitting 0 or N during

N
time points (N+1, N+2,--- 2N) is again < 1—2 (%) :
This implies that

1 N
p(Ban | By) < 1_2<N> |

We see therefore that

p(Ban) = p(Ban | By) - p(Bn) < <1 -2 (N) ) .

In general we have,

p(Brn) < <1—2<%>N>k7 k=1,2,--.

Hence
p(Bin) — 0 as n — oo.

In addition, p(B,,) is non-increasing in n, hence p(B,,) —
0 asn — oo.

This implies that

p| () Bn| =limp(B,) =0.
n>1 "
But

B=()Bwn

n>1

is the event that the gambling does not terminate in
finite time. Thus, we have proved the first part of:
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Theorem 3.1 (i) The probability of the set of an in-
vestor’s paths which hit 0 or N at some finite time is
one, so that with probability one the investor will, in fi-

nite amount of time, either go bankrupt or reach her goal
N.

(ii) The probability that the investor reaches N in finite
time is +, and the probability that she reaches 0 in finite

; ; a
time 1s 1 R

Next we prove (ii). Let us be more mathematical. Write
X,, for the amount the investor receives or has at time
n. Given X1 =21, Xo = x9,--+, X;,_1 = 2,_1, We know
that X,, assumes at most two values and the probabil-
ities with which these values are assumed satisfy the
martingale condition (4) with n replaced by n — 1. We
now write this as a conditional expectation:

EX, | Xi=21,Xo=29, -, Xpo1 =Tp_1) = Tp1.

We abbreviate E(X,, | X1 = 21, Xy = 29, -, X1 =
Tp1) as E(X, | z1,22, -+, zp_1). Writing E(X) for the
expected value of a random variable X, we see that

E(X,) = ZE(Xn]:cl,:cz,---,:cn_l)p(:cl,:cz,---,:cn_l)
C

= > wpap(w1, @0, Ta1)

C
= Z xn—lp(Xn—l = xn—l) = E(Xn—l)

Tpn—1€D

where C is the set of investor paths up to time n — 1,
while D is the range of random variable X,,_;. We thus
have

E(Xp) = BE(Xn1) = =E(X)=a  (7)

We have seen in (i) that lim, . X, = X exists with
probability one and X, assumes only two values 0 and
N. Also

|EX, — EXo |< E| X, — Xo |<2NP(B,).
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By the first part of the theorem, P(B,) — 0 as n — oo,
and since, by (7), E(X,) = a for all n, we see that

E(Xy) = a.

If s and ¢ denote the probabilities with which X, as-
sumes values 0 and N respectively, then we have

E(Xex)=0-s+t-N =a,

so that

t=p(Xoo = N) = — (Xoo=0)=1— —
—= co = = -, S = co — —= —_ —.

P NP N
This proves the second part and completes the proof of

the theorem.

A reader familiar with advanced probability will note
that the above theorem follows from Doob’s Martingale
convergence theorem, since the process X,,,n =1,2,---
is a uniformly bounded martingale (see [1], [3]).

Thus our model of an investor’s walk, though hypotheti-
cal, and does not take into consideration the complexity
of the market, does confirm the practical advice that
honest investment advisers give to the middle class in-
vestors in India:

“If you do not have much money and your livelihood de-
pends on what you earn on your savings, or your margin
of saving is small, then be careful, but if your livelihood
is taken care of, and financially you are sufficiently se-
cure, then it is a good idea to take chances with mutual
funds, and possibly earn a larger return.”

A special case of investor’s walk, namely, symmetric ran-
dom walk with absorbing barriers, is already discussed
in Section 2 above, and its implication for a gambler is
well discussed in the probability literature, even when
the probabilities are not symmetric (see [2], Chapter
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XIV). Our model above, though based on a martingale
building block, is much more general than the simple
symmetric random walk, and leads to the same conclu-
sions in so far as the investor is concerned. Since the
transition probabilities at each stage are completely ar-
bitrary (but for the martingale requirement), they need
not be Markovian; so the investor’s walk we have dis-
cussed is not a random walk in the strict sense of the
term. Hence we call it a Martingale walk.

It is important to note that the probability - of reaching
N depends only on a and not on what strategy (bold or
conservative) the investor adopts.

If the investor is greedy and not contented with receiv-
ing the amount N, and executes her martingale walk
without an absorbing barrier at the upper end, then she
will eventually hit zero with probability one, no matter
how rich she is to begin with. To see this we note that
p(Xeo =0) =1— % — 1 as N — oo no matter what

N
the starting capital a.

4. Implications for the Population as a Whole

So far we have discussed the implications of our con-
clusions for an individual investor, locally, as they say
in mathematics. Are there implications globally, or for
society at large? Surely there are. A constant refrain of
sensitive and observant individuals, whether in India or
in an advanced western country, is that “rich are get-
ting richer and poor are getting poorer” (see [4],[5],[6]).
These individuals are not necessarily left-leaning, and
these are not views expressed out of ideological consider-
ations, but rather out of concern for what they see. Can
one justify these views, especially when one sees an in-
dividual poor person doing well by sheer hard work, and
a well-to-do person getting poor? It seems we can. For

the refrain ‘rich getting richer and poor getting poorer’

is only an imperfect articulation of an obvious statisti-

A greedy investor,
no matter how rich,
will hit the bottom
in the long run.
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Law of Large Numbers

Ifyou do notknow the prob-
ability of ‘heads’ with a
given coin then a reason-
able thing to do is to toss it
a large number n of times
and look at the proportion
of'heads that you get as an
estimate of p. The law of
large numbers provides the
justification for this by as-
serting that if the tosses are
independent then this pro-
portion converges to p with
probability one as n goes to
infinity. A more general
version of this law is the
basis for modern statistical

inference.

Indeed, we see that
the collective
invested wealth of
the investors does
not change much,
but gets redistributed
more lopsidedly.

cal consequence of Theorem 3.1 together with the law of
large numbers. (It says that if an experiment results in
one of two possible outcomes, say success S or failure F'
with probabilities p and (1 — p) respectively and if the
experiment is repeated independently n times and p,, is
the proportion of successes in these n repetitions, then
pn gets close to p with high probability that goes to one
as n goes to infinity.) Indeed, we see that the collective
invested wealth of the investors does not change much,
but only gets redistributed more lopsidedly.

Imagine that the market has 200 investors, 100 of them
well to do and the remaining hundred not so well to do.
Assume that the maximum possible receivable amount
is 10 units, i.e., N = 10. (A unit could be thousand,
10 thousand, 100 thousand, or a million or more.) As-
sume that each of the well to do investor invests 7 units,
while those not so well to do invest 3 units each. (We
will assume that the ‘fair game’ condition holds and the
process (X)), of investor’s earnings is a Martingale.)

According to our theorem, the probability of a well to
7

do investor reaching 10 units in the long run is 15, and
the probability that a well to do investor hits 0 is 15. As-
sume that the investors act independently. Let W; and
Ly be the number of winners and losers among the well
to do investors. Then by the law of large numbers Wy
is approximately 70, and they will reach 10, while L is
approximately 30, and they will hit 0. In contrast, if Ws
and Lo are the number of winners and losers among the
not so well to do investors, then Lo = approximately
70, they will hit 0, and, Wy = approximately 30, and
they will hit 10. Thus originally there were no paupers
among the investors, now there are nearly 100 paupers
among them, nearly 70 of them are those who were not
well to do to begin with. Nearly 30 among them are pre-
viously well to do investors. Also there are now nearly
100 very well to do and contented investors, nearly 30

among them were not so well to do in the beginning. We
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also note that the total amount investment of at time
zero is 7x 100+ 3 x 100 = 1000 which remains nearly the
same since according to the new distribution of earned
or lost wealth the total wealth remains approximately
10 x 100 + 0 x 100 = 1000.

One can refine these assertions further by using what is
known as the central limit theorem (see [3]).

Remark. The question whether the gambler and the
investor in this article should be male or female was
decided by tossing a coin.
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