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Abstract

Let (Ω,B, ν) be a measure space and H : Ω → R
+ be B measurable. Let

∫

Ω
e−Hdν < ∞. For 0 < T < 1 let µH,T (·) be the probability measure

defined by

µH,T (A) ≡

(∫

A

e−H/Tdν

)

/

(∫

Ω

e−H/Tdν

)

, A ∈ B.

In this paper, we study the behavior of µH,T (·) as T ↓ 0 and extend the results
of Hwang (1980, 1981). When Ω is R and H achieves its minimum at a single
value x0 (single well case) and H(·) is Hölder continuous at x0 of order α, it is
shown that if XT is a random variable with probability distribution µH,T (·)
then as T ↓ 0, i) XT → x0 in probability; ii) (Xt − x0)T

−1/α converges in
distribution to an absolutely continuous symmetric distribution with density
proportional to e−cα|x|α for some 0 < cα < ∞. This is extended to the
case when H achieves its minimum at a finite number of points (multiple
well case). An extension of these results to the case H : Rn → R

+ is also
outlined.
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Keywords and phrases. Entropy maximization, Gibbs measure, Hamilto-
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1 Introduction

Let (Ω,B, ν) be a measure space, H : Ω → R
+ be B measurable and

∫

Ω e−Hdν < ∞. For 0 < T < 1, let µH,T be the probability measure defined
by

µH,T (A) ≡
(
∫

A
e−H/Tdν

)

/

(
∫

Ω
e−H/T dν

)

, A ∈ B.
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IfQ(A) , µH,1(A), A ∈ B, thenQ is a probability measure and for 0 < T < 1

µH,T (A) ≡
(
∫

A
e−H/θdQ

)

/

(
∫

Ω
e−H/θdQ

)

for A ∈ B and θ = T
T−1 . As T ↓ 0, θ ↓ 0 and conversely. Thus without loss

of generality we may restrict to the case when ν(·) is a probability measure.
We shall do so in the sequel when needed.

The probability measure µH,T (·) is called a Gibbs measure with Hamil-
tonian H and temperature T . In this paper we extend some of the results
of Hwang (1980, 1981) on the behavior of µH,T as T ↓ 0. It is intuitively
clear that as T ↓ 0, µH,T puts more mass on those sets A when e−H is
large or equivalently when H is small. Thus it is not surprising that the set
N , {ω : H(ω) = ess inf H w.r.t. ν} plays an important role. Here ess infH
w.r.t. ν is a number λ such that for any ε > 0, ν {ω : H(ω) < λ− ε} = 0 and
ν {ω : H(ω) < λ+ ε} > 0. Hwang (1980) considered the cases i) ν(N) > 0,
ii) ν(N) = 0 and N a singleton {x0} and iii) ν(N) = 0 and N is a finite
set {x1, x2, . . . , xk} , 1 < k < ∞. He showed, when Ω = R

n and under some
regularity conditions, that as T ↓ 0, in case i)

µH,T (A) →
ν(A ∩N)

ν(N)
for A ∈ B,

in case ii) µH,T converges weakly to the delta measure at x0 and in case iii)
assuming ν is absolutely continuous with density f > 0 on N and H twice
differentiable, µH,T converges weakly to a probability measure on N with
weights proportional to f(xi)ci at xi where c−2

i is the Hessian of H at xi.

In this paper we study the second order behavior of this convergence.
That is, if XT is a random variable with distribution µH,T we study the rate
of approach of XT to its limit as T ↓ 0. We show that in case ii) if Ω = R

and
if H is Hölder continuous at x0 of order α then (XT − x0)T

−1/α converges
in distribution to an absolutely continuous continuous symmetric distribu-
tion with density proportional to e−cα|x|α for some 0 < cα < ∞. We prove
an appropriate extension of this case to case iii), again assuming Ω = R.
Extensions of these with case Ω = R

n, n > 1 are outlined at the end.

In the next section we give some examples of Gibbs measures from sta-
tistical physics, image processing, entropy maximization, perturbations of
Hamiltonian systems with white noise. Section 3 is devoted to some pre-
liminary results. Sections 4 and 5 treat the single well and multiple wells
respectively. The last section discusses the case Ω = R

n.
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2 Some examples of Gibbs measures

2.1 Statistical mechanics. Let S = {s1, s2, . . . , sn} , n < ∞ be a set of
n “sites” and A ≡ {a1, a2, . . . , ak} , k < ∞ be a set of “alphabets” or “spin
sizes”. Let Ω ≡ {ω : ω : S → A} be the set of all functions from S to A.
Each ω in Ω will be referred to as a “configuration”. Let B = P(Ω), the
power set of Ω and Q be the uniform distributions on Ω. Let H : Ω → R

+

and 0 < T < ∞ be given. The Gibbs distribution µH,T , in this case, is given
by

µH,T {ω} =
e−H(ω)/T

∑

ω′∈Ω e−H(ω′)/T
, for all ω ∈ Ω.

The denominator pH,T ,
∑

ω′∈Ω e−H(ω′)/T is known as the partition func-
tion with potential or Hamiltonian H and temperature T. In statistical
mechanics S is taken to be a finite integer lattice in R

3 of the form S ,

{(i1, i2, i3) : ij an integer |ij | ≤ m, j = 1, 2, 3} and A = {−1,+1} . Hence,
n = (2m+1)3 and k = 2. The total number of configurations, the size of Ω,
is kn and here it becomes 2(2m+1)3 . For m = 1, it is 227 a large number. For
m = 2, it jumps to 2125 a very large number indeed. Each configuration ω
is of the form

{

δi : i ∈ S
}

where δi is +1 or −1 means as “spin up” or “spin
down”. Typically the Hamiltonian H(ω) is of the form

H(ω) =
∑

|i−j|≤1

V (δi, δj),

where V : {−1, 1}2 → R and |i − j| =
∑3

s=1 |is − js|. Thus H(ω) depends
on “nearest neighbor interaction”. As the temperature T decreases to zero,
µH,T (·) can be shown to converge to the uniform distribution on the set N
of configurations ω of minimal energy, i.e.

N =
{

ω : H(ω) = inf
{

H(ω′) : ω′ ∈ Ω
}}

.

To find these configurations as well as to obtain a sample from µH,T without
computing the partition function and to estimate certain averages of the
form λ ,

∑

ω∈Ω g(ω)µH,T (ω), Metropolis et al. (1953) invented a computa-
tional technique using Markov chains. This important paper provided the
inspiration for the currently popular simulation tool Markov chain Monte
Carol (MCMC). See Robert and Casella (2004). The Metropolis-Hastings
algorithm in MCMC is due to the adaptation of the Metropolis et al method
by Hastings (1970). Similarly, the Gibbs sampler algorithm in MCMC is due
to the work of Geman and Geman (1984) who introduced it in their work
on image processing. We describe this next.
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2.2 Image processing. Here the set S of sites is the matrix of “pixels”
(i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ M . At each pixel the color level ω(i, j) is one
of k possible levels A ≡ {a1, a2, . . . , ak} . A picture is a configuration ω, i.e.
a map form S ≡ {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ M} to A ≡ {a1, a2, . . . , ak} .
Again, Q is taken to be the uniform distribution on Ω, the set of possible
configurations. For M = 16, k = 2, the size of Ω is 2256 a very large number.
The Gibbs measure is of the form

µH,T (ω) =
e−H(ω)/T

∑

ω′∈Ω e−H(ω′)/T
.

Geman and Geman (1984) have studied this in detail for several special H’s.

2.3 Entropy maximization. Let (Ω,B, ν) be a measure space and h :
Ω → R be B-measurable and c ∈ R. Let

Fh,c ≡
{

g : g : Ω → R
+ B-measurable,

∫

gdν = 1,
∫

hgdν = c
}

.

For any g : Ω → R
+, B-measurable with

∫

gdν = 1, E(g, ν) ≡ −
∫

g log gdν is
called the relative entropy of g w.r.t. ν. Consider the problem of maximizing
E(g, ν) w.r.t. g in Fh,c for given h and c. It is shown in Athreya (2009)
that if there is a θ in R such that

∫

Ω eθhdν < ∞,
∫

Ω |h|eθhdν < ∞, and
∫

Ω heθhdν = c
∫

Ω eθhdν, then g0 ≡ eθh
∫

Ω eθhdν
is the unique solution to the

above problem, i.e. g0 ∈ Fh,c and E(g0, ν) ≥ E(g, ν) for all g ∈ Fh,c. Note
that

µ(A) ≡
∫

A
g0dν, A ∈ B

is a Gibbs measure of the form µh, 1
θ
, i.e. with H = h and T = 1

θ .

2.4 Random perturbations of Hamiltonian systems. Let {X(t) : t ≥ 0}
be the unique solution of the ordinary differential equation

dX(t)

dt
= −u′(X(t)), X(0) = x0,

where u : R → R is a C1 function. For each t > 0, consider an Itô process of
the form

dXε(t) = −u′(Xε(t))dt+
√
εdW (t), t ≥ 0, Xε(0) = x0,

where {W (t) : t ≥ 0} is a standard Brownian motion. Suppose u is such that

c =

∫

R

e−
2u(x)

ε dx < ∞.
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Then for all ε > 0, the Itô process {Xε(t) : t ≥ 0} has a unique stationary
distribution Πε with density

fε(x) =
1

c
e−

2u(x)
ε

w.r.t. Lebesgue measure on R. It can be shown that X(t) converges in
distribution and also in variation norm to the above stationary distribution
Πε as t → ∞. Note that the measure Πε is a Gibbs measure on Ω = R

with H(x) = 2u(x) and T = ε. The behavior of Πε as ε ↓ 0 is of interest in
the study of small perturbations of Hamiltonian system. See Freidlin and
Wentzell (1994).

To find global minima of H, one may consider the following simulated
annealing process

dX(t) = −u′(X(t))dt +
√

T (t)dW (t), t ≥ 0, X(0) = x0.

With proper annealing rates T (t), X(t) converges to the set of global minima
N in probability or weakly to a probability on N . See Hwang and Sheu
(1990).

3 Some preliminary results

Let (Ω,B, Q) be a probability space. Let H : Ω → R
+ be B measurable.

For 0 < T < 1, let

µH,T (A) ≡
(
∫

A
e−H/TdQ

)

/

(
∫

Ω
e−H/T dQ

)

, A ∈ B.

Let λ ≡ ess inf H w.r.t. Q. That is, for all ε > 0, Q {ω : H(ω) ≤ λ− ε} = 0
and Q {ω : H(ω) ≤ λ+ ε} > 0.

Proposition 3.1. For all ε > 0,

µH,T {ω : H(ω) > λ+ ε} → 0 as T ↓ 0.

Proof. Fix ε > 0. Then

µH,T {ω : H(ω) > λ+ ε} =

∫

{H>λ+ε} e
−H/T dQ

∫

Ω e−H/TdQ
≤
∫

{H>λ+ε} e
−H/T dQ

∫

{H≤λ+ε} e
−H/T dQ

≤
∫

{H>λ+ε} e
−H/T dQ

e−(λ+ε)/TQ {H ≤ λ+ ε} =

∫

{H>λ+ε} e
− (H−(λ+ε))

T dQ

Q {H ≤ λ+ ε} .
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By the bounded convergence theorem, the numerator above goes to zero. By
the definition of λ, the denominator is bounded away from zero. 2

Theorem 3.1. Let N ≡ {ω : H(ω) = λ ≡ ess inf H w.r.t. Q}. Assume
Q(N) > 0. Then for all A ∈ B,

µH,T (A) → µ(A) ≡ Q(A ∩N)

Q(N)
as T ↓ 0.

Proof.

µH,T (A) =

∫

A∩N e−H/T dQ+
∫

A∩Nc e
−H/T dQ

∫

N e−H/T dQ+
∫

Nc e−H/T dQ

=
e−λ/T

(

Q(A ∩N) +
∫

A∩Nc e
− (H−λ)

T dQ
)

e−λ/T
(

Q(N) +
∫

Nc e
− (H−λ)

T dQ
) .

By the bounded convergence theorem

∫

Nc

e−
(H−λ)

T dQ → 0 as T ↓ 0,

and the given assertion follows. 2

Remark 3.1. By Vitali-Hahn-Saks theorem, Theorem 3.1 can be strength-
ened to assert that ‖µH,T −µ‖TV → 0 as T ↓ 0, where ‖ · ‖ denotes the total
variation norm.

4 Single well case

Theorem 4.1. Let H : R → R
+ be Borel measurable. Let ν be a measure

on (R,B(R)) and let
∫

R
e−Hdν < ∞. Let for 0 < T ≤ 1

µH,T (A) ≡
∫

A e−H/T dν
∫

Ω e−H/T dν
, A ∈ B(R).

Let x0 ∈ R be such that

i) for all δ > 0, there exists η > 0 such that

a(δ) ≡ inf {H(x) : |x− x0| ≥ δ} > b(η) ≡ sup {H(x) : |x− x0| ≤ η} .
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ii) for all η > 0, ν {x : |x− x0| ≤ η} > 0.

Then

µH,T {x : |x− x0| ≥ δ} → 0 as T ↓ 0.

Proof. For δ > 0, let η > 0 be such that i) above holds. Then

µH,T {x : |x− x0| ≥ δ} ≤
∫

|x−x0|≥δ e
−H(x)

T dν
∫

|x−x0|≤η e
−H(x)

T dν

≤
∫

|x−x0|≥δ e
− (H(x)−b(η))

T dν
∫

|x−x0|≤η e
− (H(x)−b(η))

T dν
≤
∫

|x−x0|≥δ e
− (H(x)−b(η))

T dν

ν {x : |x− x0| ≤ η} .

On the set {x : |x− x0| ≥ δ} , H(x) − b(η) > 0 and so H(x)−b(η)
T → ∞ as

T ↓ 0. Also
∫

|x−x0|≥δ
e−(H(x)−b(η))dν < ∞.

So by the dominated convergence theorem

∫

|x−x0|≥δ
e−

(H(x)−b(η))
T dν → 0 as T ↓ 0.

Since ν {x : |x− x0| ≤ η} > 0, the proof is complete. 2

Remark 4.1. It is clear that the same proof works if R is replaced by a
Polish space.

Remark 4.2. If H(·) is continuous at x0, then hypothesis i) of Theorem
4.1 can be replaced by the hypothesis that for all δ > 0,

a(δ) ≡ inf {H(x) : |x− x0| ≥ δ} > H(x0).

Now let XT be a random variable with probability distribution µH,T . The-
orem 4.1 is the same as saying that under the hypothesis of Theorem 4.1,
XT → x0 in probability as T ↓ 0. This raises the question of how rapidly
does XT go to x0 as T ↓ 0, i.e., the rate of convergence. We address the
question next when Ω = R and ν(·) is the Lebesgue measure.

Theorem 4.2. Let H : R → R
+ be Borel measurable. Assume:
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i) there exists x0 ∈ R, 0 < α, c < ∞ such that

lim
x→x0

H(x)−H(x0)

|x− x0|α
= c;

ii) for all δ > 0, a(δ) ≡ inf {H(x) : |x− x0| ≥ δ} > H(x0);

iii)
∫

R
e−H(x)dx < ∞.

Let

µH,T (A) ≡
∫

A e−H/Tdx
∫

R
e−H/T dx

, A ∈ B(R), 0 < T ≤ 1.

Let XT be a random variable with probability distribution µH,T , i.e. Pr(XT ∈
A) ≡ µH,T (A), A ∈ B(R). Thus as T ↓ 0,

(XT − x0)c
1/α

T 1/α

d−→X,

where X is a random variable with density fX(x) ≡ e−|x|α/
∫

R
e−|x|αdx.

Proof. For T > 0, δ > 0, −∞ < a < b < ∞, let

m1(T, δ) ≡
∫

|x−x0|≤δ
e−

H(x)
T dx,

m2(T, δ) ≡
∫

|x−x0|>δ
e−

H(x)
T dx,

m3(T, δ) ≡
∫

aT1/α

c1/α
≤(x−x0)≤ bT1/α

c1/α

e−
H(x)
T dx.

Let λ ≡ H(x0). We now claim the following

lim
T↓0

eλ/T c1/α

T 1/α
mi(T, δ) ≡







∫

R
e−|u|αdu, i = 1,
0, i = 2,

∫ b
a e−|u|αdu, i = 3.

Assuming the validity of this claim here is the proof of Theorem 4.2. For
−∞ < a < b < ∞,

P r

(

a ≤ (XT − x0)

T 1/α
c1/α ≤ b

)

=
m3(T, δ)

m1(T, δ) +m2(T, δ)
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=

(

eλ/T c1/α

T 1/α

)

m3(T, δ)
(

eλ/T c1/α

T 1/α

)

(m1(T, δ) +m2(T, δ))
.

By the claim, as T ↓ 0, the above quantity converges to

∫ b
a e−|u|αdu
∫

R
e−|u|αdu

which is the stated assertion.

Now to the proof of the claim, by hypothesis i) we can write

H(x) = λ+ |x− x0|α(1 + h(x)),

where limx→x0 h(x) = 0 and have, sup {|h(x)| : |x− x0| ≤ δ} < ∞, for δ > 0
small. Thus

m1(T, δ) =
e−λ/TT 1/α

c1/α

∫

|u|≤ δc1/α

T1/α

e
−|u|α

(

1+h

(

x0+
uT1/α

c1/α

))

du.

By the dominated convergence theorem, for δ > 0 small the integral above
converges as T ↓ 0 to

∫

R

e−|u|αdu

proving the claim for i = 1. Next

m2(T, δ) = e−
a(δ)
T

∫

|x−x0|≥δ
e−

(H(x)−a(δ))
T dx

where a(δ) is as in hypothesis ii). Then

eλ/T c1/α

T 1/α
m2(T, δ) =

e−
(a(δ)−λ)

T c1/α

T 1/α

∫

|x−x0|≥δ
e−

(H(x)−a(δ))
T dx.

Since a(δ) > H(x0) = λ and H(x) ≥ a(δ) for |x−x0| ≥ δ and for 0 < T < 1,

∫

|x−x0|≥δ
e−

(H(x)−a(δ))
T dx ≤

∫

|x−x0|≥δ
e−(H(x)−a(δ))dx

≤
(
∫

R

e−H(x)dx

)

ea(δ) < ∞.
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Also it follows that

e
−
(

a(δ)−λ
λ

)

T 1/α
c1/α → 0 as T ↓ 0.

Thus the claim is proved for the case i = 2. Finally

e
λ
T c1/α

T 1/α
m3(T, δ) =

∫ b

a
e
−|u|α

(

1+h

(

x0+
uT1/α

c1/α

))

du.

Now arguing as for the first case of the claim, the above integral converges
to
∫ b
a e−|u|αdu establishing the claim for case i = 3. 2

Corollary 4.1. Suppose (i) and (ii) of Theorem 4.2. hold and H is
twice differentiable at x0 with H

′′
(x0) = σ2, 0 < σ2 < ∞. Then as T ↓ 0

XT − x0

T 1/2

d−→ N(0, 1/σ2)

Remark 4.3. A simple change of variables yields

∫

R

e−|u|αdu =
2

α
Γ

(

1

α

)

where Γ(p) ≡
∫∞
0 e−uup−1du, 0 < p < ∞.

Some examples:

i) Let

H(x) =

{

− log cosx, |x| ≤ π/2,
0, |x| > π/2.

Then x0 = 0, λ = 0, H ′′(0) = 1. Let 0 < T < 1. So if XT is a random
variable such that

Pr(XT ∈ A) =

∫

A∩[−π
2
,π
2 ]
(cos x)1/T dx

∫

[−π
2
,π
2 ]
(cos x)1/T dx

, A ∈ B(R),

then as T ↓ 0, XT√
T

d−→ N(0, 1).

ii) Let

H(x) =

{

− log(cos |x|β), |x| ≤ π/2,
0, |x| > π/2,

0 < β < ∞.
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Then x0 = 0, λ = 0, α = 2β and c = 1/2. So if XT is a random variable
such that

Pr(XT ∈ A) =

∫

A∩[−π
2
,π
2 ]
(cos |x|β)1/T dx

∫

[−π
2
,π
2 ]
(cos |x|β)1/T dx , A ∈ B(R),

then XT

T 1/α

d−→ X where X has pdf fX(x) = 2
α

1
Γ( 1

α)
e−|x|α, −∞ < u < ∞

and α = 2β.

5 Multiple well case

Theorem 5.1. Let H, µH,T be as in Theorem 4.2. Suppose there exists
a finite set N = {x1, x2, . . . , xm} , 2 ≤ m < ∞ such that

i) H(xi) = λ, 0 ≤ λ < ∞, 1 ≤ i ≤ m,

ii) for all δ > 0, a(δ) = inf {H(x) : |x− xi| ≥ δ, i = 1, 2, . . . ,m} > λ,

iii) there exists 0 < α < ∞, 0 < ci < ∞, i = 1, 2, . . . ,m such that

lim
x→x0

H(x)−H(xi)

|x− xi|α
= ci, for i = 1, 2, . . . ,m.

(α does not change with xi)

Let XT be a random variable with distribution µH,T . Then as T ↓ 0 XT
d−→ Y,

where Y is a random variable with distribution

P (Y = xi) =

1

c
1/α
i

∑m
j=1

1

c
1/α
j

, 1 ≤ i ≤ m.

Proof. For 0 < T < 1, δ > 0, let

mi(T, δ) =

∫

|x−xi|<δ
e−

H(x)
T dx, i = 1, 2, . . . ,m,

m(T, δ) =

∫

|x−xi|≥δ,i=1,2,...,m
e−

H(x)
T dx.
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The argument to establish claim in the proof of Theorem 4.2 yields that
as T ↓ 0 for each δ > 0 sufficiently small such that Ai ≡ {|x− xi| < δ}
i = 1, 2, . . . ,m are disjoint

eλ/T c
1/α
i

T 1/α
mi(T, δ) →

∫

R

e−|u|αdu

for 1 ≤ i ≤ m and
eλ/Tm(T, δ)

T 1/α
→ 0.

Since for δ > 0 small

P (|XT − xi| < δ) =
mi(T, δ)

∑m
j=1mj(T, δ) +m(T, δ)

,

it follows that XT
d−→ Y. 2

Remark 5.1. It is important to note that the Hölder constant α for all
xi is the same but ci can change with i.

The following extension of Theorem 5.1 is straightforward. It allows for
the Hölder constant to vary with xi.

Theorem 5.2. Let H,µH,T , N be as in Theorem 5.1. Assume also i) and
ii) of Theorem 5.1 hold. Now assume

iii)′ for all i, there exists 0 < αi < ∞, 0 < ci < ∞ such that

lim
x→xi

H(x)−H(xi)

|x− xi|αi
= ci.

Let J ≡ {i : 1 ≤ i ≤ m,αi = max1≤j≤m αj} . Then XT
d−→ Y ′ where

P (Y ′ = i) =

1

c
1/α
i

∑

j∈J
1

c
1/α
j

, i ∈ J.

An analog of Theorem 4.2 is the following:

Theorem 5.3. Under the hypothesis of Theorem 5.1, for δ > 0 suffi-
ciently small (such that Ai ≡ {|x− xi| < δ} , i = 1, 2, . . . ,m are disjoint)

Pr

(

a ≤ (XT − xi)c
1/α
i

T 1/α

∣

∣

∣

∣

∣

|XT − xi| < δ

)

→
∫ b
a e−|u|αdu
∫

R
e−|u|αdu

.
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Proof. Same as Theorem 4.2. 2

Remark 5.2. One way to combine Theorems 5.1 and 5.3 is the following:
For T > 0 and small, XT has the same distribution as

Y + T 1/α 1

(C(Y ))1/α
(Z + η(T )),

where Y,Z and η(T ) are independent random variables such that Y is as in
Theorem 5.1, Z has a symmetric distribution in R with density proportional

to e−|x|α, η(T )
P−→ 0 as T ↓ 0 and c(xi) = ci, 1 ≤ i ≤ m.

6 Gibbs measures on R
n

6.1 Single well case.

Theorem 6.1. Let H : Rn → R
+ be Borel measurable. Assume

i) Assume
∫

Rn e
−H(x)dx < ∞. Let for 0 < T < 1

µH,T (A) ≡
(
∫

A
e−H(x)/T dx

)

/

(
∫

Rn

e−H(x)/T dx

)

for A ∈ B(Rn).

ii) Let x0 ∈ R
n be such that for all δ > 0, there exists η > 0 such that

a(δ) ≡ inf {H(x) : |x− x0| ≥ δ} > b(η) ≡ sup {H(x) : |x− x0| ≤ η} .

Then for all δ > 0, µH,T {x : |x− x0| > δ} → 0 as T ↓ 0.

Proof. Same as in Theorem 3.1. 2

Let XT be a random vector in R
n with distribution µH,T (·). A natural

question suggested by Theorem 6.1 is what is the rate at which XT → x0 as
T ↓ 0. To answer this let us start with an example.

Example 6.1. Let n = 2, H(x1, x2) = x21 + x42. Then the hypotheses of
Theorem 6.1 hold with x0 = (0, 0). Let XT = (XT1 ,XT2) be distributed as
µH,T (·). Then for (ai, bi) ∈ R

2, i = 1, 2,

P

(

a1 ≤
XT1√
T1

≤ b1, a2 ≤
XT2

T 1/4
≤ b2

)
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=

∫

a1
√
T1≤x1≤b1

√
T ,a2T 1/4≤x2≤b2T 1/4 e

−x21+x42
T dx1dx2

∫

R2 e
− (x2

1
+x4

2
)

T dx1dx2

.

By the change of variable x1 =
√
Tu1, x2 = T 1/4u2, the right side above

becomes
T 3/4

∫

a1≤u≤b1,a2≤u2≤b2
e−(u2

1+u4
2)du1du2

T 3/4
∫

R2 e−(u2
1+u4

2)du1du2
.

Canceling T 3/4 we see that for 0 < T < 1, (XT1 ,XT2) ∼ (X1,X2) where
(X1,X2) is a random vector with an absolutely continuous distribution with
density proportional to e−(u2

1+u4
2) in R

2. This suggests the following:

Theorem 6.2. Let H : Rn → R
+ be Borel measurable. Assume:

i)
∫

Rn e
−H(x)dx < ∞,

ii) for all δ > 0, a(δ) ≡ inf {H(x) : |x| > δ} > H(0),

iii) there exists α1, α2, . . . , αn ∈ (0,∞) such that for all (u1, u2, . . . , un) ∈
R
n,

H(Tα1u1, T
α2u2, . . . , T

αnun)

T
→ g(u1, u2, . . . , un) ∈ R

as T ↓ 0.

iv)
∫

sup0<T<1 e
−H(Tα1u1,T

α2u2,...,T
αnun)

T du1du2 . . . dun < ∞.

For 0 < T < 1, let XT = (XT1 ,XT2 , . . . ,XTn) be a random vector with
distribution µH,T as in Theorem 6.1. Then

(

XT1

Tα1
,
XT2

Tα2
, . . . ,

XTn

Tαn

)

d−→ X ≡ (X1,X2, . . . ,Xn)

and X has an absolutely continuous distribution in R
n with density propor-

tional to e−g(x1,x2,...,xn).

Proof. Easy verification using the dominated convergence theorem and
hypotheses iii) and iv). 2

Thus different coordinates of XT could go to zero at different rates.

Example 6.2. Let n = 2, H(x1, x2) = x21 + x42 + x1x
2
2 + x21x

2
2. Then

x0 = (0, 0) and

H(
√
Tu1, T

1/4u2) = Tu21 + Tu42 + Tu1u
2
2 + T 3/2u21u

2
2.
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Thus the hypotheses of Theorem 6.2 are satisfied with

g(u) = u21 + u42 + u1u
2
2.

So
(

XT1√
T
,
XT2

T 1/4

)

d−→ (X1,X2),

which has a probability density proportional to

exp
(

−(u21 + u42 + u1u
2
2)
)

.

Another set of sufficient conditions for studying the second order properties
of XT as T ↓ 0 is given below. The proof is similar to that of Theorem 4.2.

Theorem 6.3. Let H(·) satisfy the hypotheses of Theorem 6.1. Let φ :
R
n → R

+ = [0,∞) be such that

i) H(x)−H(x0)
(φ(x−x0))α

→ 1 as x → x0,

ii) φ(βx) = |β|φ(x) for β ∈ R, x ∈ R
n,

iii) 0 < m ≡ inf {φ(x) : ‖x‖ = 1} ≤ M ≡ sup {φ(x) : ‖x‖ = 1} < ∞,

iv)
∫

Rn e
−φ(u)αdu < ∞.

Let XT be a random vector with distribution µH,T . Then

(XT − x0)

T 1/α

d−→ X,

where X is a random vector with density

fX(x) = ce−(φ(x))α for some 0 < c < ∞.

Example 6.3. 1. Let H(·) satisfy i), ii) of Theorem 6.1 and in addition
be C2 at x0 such that there is a positive definite nonsingular matrix D such
that

H(x)−H(x0) =
1

2
〈D(x− x0), (x− x0)〉+ o(|x− x0|2).

Here set φ(x) = (12 〈Dx, x〉)1/2.
2. Let H(·) satisfy i) and ii) and be C4 at x0 with all second derivatives at
x0 vanishing but with H(x)−H(x0) = p(x−x0)+higher order terms where
p(·) is a homogeneous polynomial of order 4. Here set φ(x) = (p(x))1/4.

3. H(x)−H(x0) = ‖A(x−x0)‖α +higher order terms, where A is a nonsin-
gular matrix. Here set φ(x) = ‖Ax‖.
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6.2 Multiple well case.

Theorem 6.4. Let H : Rn → R
+ (n ≥ 2) be Borel measurable. Assume

i)
∫

Rn e
−H(x)dx < ∞,

ii) there exists N ≡ {xi : 1 ≤ i ≤ m} ⊂ R
n, m ≥ 2 such that for all δ > 0,

a(δ) = inf {H(x) : |x− x0| ≥ δ} > λ

and for all i, H(xi) = λ, 0 < λ < ∞,

iii) limx→x0 H(x) = λ for all 1 ≤ i ≤ m,

iv) there exists {αij : 1 ≤ j ≤ n, 1 ≤ i ≤ m} , 0 < α < ∞ such that αij ≥
0, and

∑n
j=1 αij = 1, for all i such that, as T ↓ 0,

1

T
[H(xi1 + Tααi1u1, xi2 + Tααi2u2, . . . , xin + Tααinun)

−H(xi1, xi2, . . . , xin)] → gi(u1, u2, . . . , un),

v) for all i,

sup
0<T<1

e−
H(xi1+Tααi1u1,xi2+Tααi2u2,...,xin+Tααinun)

T ∈ L1(Rn).

Let XT be a R
n valued random vector with probability distribution

µH,T (A) =

∫

A e−H/T dx
∫

Rn e−H/T dx
, A ∈ B(Rn).

Then as T ↓ 0, XT
d−→ Y where Y is a random vector with distribution

P (Y = xi) =

∫

Rn e
−gi(x)dx

∑m
j=1

∫

Rn e−gj(x)dx
, 1 ≤ i ≤ m.

Further, there exists δ0 > 0 such that for all 0 < δ < δ0, as T ↓ 0,

P

(

aj ≤
(XT )j − xij

T 1/α
≤ bj , 1 ≤ j ≤ n

∣

∣

∣

∣

|XT − xi| < δ

)

→
∫

aj≤uj≤bj ,j=1,2,...,n e
−gi(u1,u2,...,un)du1du2 . . . dun

∫

Rn e−gi(u1,...,un)du1du2 . . . dun
.

Proof. The proof is similar to that of Theorem 5.2. 2

A similar extension of Theorem 6.3 to the multiple well case can be
formulated and proved.
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