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Abstract

In this paper we are concerned with the construction of a general principle that will allow us to produce
regular spectral triples with finite and simple dimension spectrum. We introduce the notion of weak heat
kernel asymptotic expansion (WHKAE) property of a spectral triple and show that the weak heat kernel
asymptotic expansion allows one to conclude that the spectral triple is regular with finite simple dimension
spectrum. The usual heat kernel expansion implies this property. The notion of quantum double suspension
of a C∗-algebra was introduced by Hong and Szymanski. Here we introduce the quantum double suspen-
sion of a spectral triple and show that the WHKAE is stable under quantum double suspension. Therefore
quantum double suspending compact Riemannian spin manifolds iteratively we get many examples of reg-
ular spectral triples with finite simple dimension spectrum. This covers all the odd-dimensional quantum
spheres. Our methods also apply to the case of noncommutative torus.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Since its inception index theorems play a central role in noncommutative geometry. Here
spaces are replaced by explicit K-cycles or finitely summable Fredholm modules. Through index
pairing they pair naturally with K-theory. In the foundational paper [6] Alain Connes introduced
cyclic cohomology as a natural recipient of a Chern character homomorphism assigning cyclic
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cocycles to finitely summable Fredholm modules. Then the index pairing is computed by the
pairing of cyclic cohomology with K-theory. But finitely summable Fredholm modules occur as
those associated with spectral triples and it was desirable to have cyclic cocycles given directly
in terms of spectral data, that will compute the index pairing. This was achieved by Connes and
Moscovici in [8]. Let us briefly recall their local index formula henceforth to be abbreviated
as LIF. One begins with a spectral triple, i.e., a Hilbert space H, an involutive subalgebra A
of the algebra of bounded operators on H and a self adjoint operator D with compact resol-
vent. It is further assumed that the commutators [D, A] give rise to bounded operators. Such
a triple is finitely summable if |D|−p is trace class for some positive p. The spectral triple
is said to be regular if both A and [D, A] are in the domains of δn for all n � 0, where δ

is the derivation [|D|, .]. One says that the spectral triple has dimension spectrum Σ , if for
every element b in the smallest algebra B containing A, [D, A] and closed under the deriva-
tion δ, the associated zeta function ζb(z) = Tr b|D|−z a priori defined on the right half plane
�(z) > p admits a meromorphic extension to whole of complex plane with poles contained
in Σ . If a spectral triple is regular and has discrete dimension spectrum then given any n-tuple
of non-negative integers k1, k2, . . . , kn one can consider multilinear functionals φk,n defined by
φk,n(a0, a1, . . . , an) = Resz=0 Tr a0[D,a1](k1)[D,a2](k2) · · · [D,an](kn)|D|−n−2|k|−z, where T (r)

stands for the r-fold commutator [D2, [D2, [· · · [D2, T ] · · ·]]] and |k| = k1 +· · ·+kn. In the local
index formula the components of the local Chern character in the (b,B)-bicomplex is expressed
as a sum

∑
k ck,nφk,n, where the summation is over all n-tuples of non-negative integers and

ck,n’s are some universal constants independent of the particular spectral triple under considera-
tion. Note that Remark II.1 in p. 63 of [8] says that if we consider the Dirac operator associated
with a closed Riemannian spin manifold then φk,n’s are zero for |k| �= 0. Therefore most of the
terms in the local Chern character are visible in truely noncommutative cases and hence should
be interpreted as a signature of noncommutativity. To have a better understanding of the contri-
bution of these terms it is desirable to have examples where these terms survive. In the foliations
example the contribution of these terms becomes overwhelming and tackling them lead to new
organizational principles of cyclic theory [9]. So the task of illustrating the LIF in simpler exam-
ples remained open. The first simple illustration was given by Connes in [7]. This was extended
to odd-dimensional quantum spheres by Pal and Sundar in [14]. But to have a good grasp of the
formula it is essential to have a systematic family of examples where one can verify the hypoth-
esis of regularity and discreteness of the dimension spectrum. To our knowledge only Higson
[10] made an attempt to this effect and gave a general scheme for verifying the meromorphic
continuation. Here in this article we are also primarily concerned with the goal of developing
a general procedure that will allow us to construct regular spectral triples with finite dimension
spectrum from known examples. As in [10] we also draw inspiration from the classical situa-
tion. We show that a hypothesis similar to, but weaker than the heat kernel expansion which we
call weak heat kernel asymptotic expansion implies regularity and discreteness of the dimension
spectrum. The usual heat kernel expansion implies the weak heat kernel expansion. More impor-
tantly we show that the weak heat kernel expansion is stable under quantum double suspension,
a notion introduced in [12]. Therefore by iteratively quantum double suspending compact Rie-
mannian manifolds we get examples of noncommutative geometries which are regular with finite
dimension spectrum. We show noncommutative torus satisfies the weak heat kernel expansion
and there by satisfies regularity and discreteness of it’s dimension spectrum.

Organization of the paper is as follows. In Section 2 we recall the basics of Mellin transform
and asymptotic expansions. In the next section we introduce the weak heat kernel expansion
property and show that this implies regularity and finiteness of the dimension spectrum. We also
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show that the usual heat kernel expansion implies the weak heat kernel expansion. In the next
section we recall the notion of quantum double suspension and show that weak kernel expansion
is stable under quantum double suspension. The weak heat kernel expansion of noncommutative
torus is also established. In the final section we do a topological version of the theory relevant
for applications in quantum homogeneous spaces. In particular we obtain the regularity and di-
mension spectrum of the odd-dimensional quantum spheres. This gives a conceptual explanation
of the results obtained in [14].

2. Asymptotic expansions and the Mellin transform

In this section for reader’s convenience we have recalled some well-known facts about
Mellin transforms [16]. We begin with a few basic facts about asymptotic expansions. Let
φ : (0,∞) → C be a continuous function. We say that φ has an asymptotic power series ex-
pansion near 0 if there exists a sequence (ar )

∞
r=0 of complex numbers such that given N there

exist ε,M > 0 such that if t ∈ (0, ε)∣∣∣∣∣φ(t) −
N∑

r=0

ar t
r

∣∣∣∣∣� MtN+1.

We write φ(t) ∼∑∞
0 ar t

r as t → 0+. Note that the coefficients (ar ) are unique. For,

aN = lim
t→0+

φ(t) −∑N−1
r=0 ar t

r

tN
. (2.1)

If φ(t) ∼∑∞
r=0 ar t

r as t → 0+ then φ can be extended continuously to [0,∞) simply by letting
φ(0) := a0.

Let X be a topological space and F : [0,∞)×X → C be a continuous function. Suppose that
for every x ∈ X, the function t → F(t, x) has an asymptotic expansion near 0

F(t, x) ∼
∞∑

r=0

ar(x)tr . (2.2)

Let x0 ∈ X. We say that expansion (2.2) is uniform at x0 if given N there exist an open set
U ⊂ [0,∞) × X containing (0, x0) and an M > 0 such that for (t, x) ∈ U one has∣∣∣∣∣F(t, x) −

N∑
r=0

ar(x)tr

∣∣∣∣∣� MtN+1.

We say that expansion (2.2) is uniform if it is uniform at every point of X.

Proposition 2.1. Let X be a topological space and F : [0,∞)×X → C be a continuous function.
Suppose that F has a uniform asymptotic power series expansion

F(t, x) ∼
∞∑

r=0

ar(x)tr .

Then for every r � 0, the function ar is continuous.
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Proof. It is enough to show that the function a0 is continuous. Let x0 ∈ X be given. Since the
expansion of F is uniform at x0, it follows that there exist an open set U containing x0 and
δ,M > 0 such that

∣∣F(t, x) − a0(x)
∣∣� Mt for t < δ and x ∈ U. (2.3)

Let Fn(x) := F( 1
n
, x). Then Eq. (2.3) says that Fn converges uniformly to a0 on U . Hence a0 is

continuous on U and hence at x0. This completes the proof. �
The following two lemmas are easy to prove and we leave the proof to the reader.

Lemma 2.2. Let X,Y be topological spaces. Let F : [0,∞) × X → C and G : [0,∞) × Y → C

be continuous. Suppose that F and G has uniform asymptotic power series expansion. Then the
function H : [0,∞) × X × Y → C defined by H(t, x, y) := F(t, x)G(t, y) has uniform asymp-
totic power series expansion.

Moreover if

F(t, x) ∼
∞∑

r=0

ar(x)tr and G(t, y) ∼
∞∑

r=0

br(y)tr ,

then

H(t, x, y) ∼
∞∑

r=0

cr(x, y)tr ,

where

cr(x, y) :=
∑

m+n=r

am(x)bn(y).

Lemma 2.3. Let φ : [1,∞) → C be a continuous function. Suppose that for every N ,

sup
t∈[1,∞)

∣∣tNφ(t)
∣∣< ∞.

Then the function s 
→ ∫∞
1 φ(t)ts−1 dt is entire.

2.1. The Mellin transform

In this section we recall the definition of the Mellin transform of a function defined on (0,∞)

and analyse the relationship between the asymptotic expansion of a function and the meromor-
phic continuation of its Mellin transform. Let us introduce some notations. We say that a function
φ : (0,∞) → C is of rapid decay near infinity if for every N > 0, supt∈[1,∞) |tNφ(t)| is finite.
We let M∞ to be the set of continuous complex valued functions on (0,∞) which has rapid
decay near infinity. For p ∈ R, we let
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Mp

(
(0,1]) :=

{
φ : (0,1] → C: φ is continuous and sup

t∈(0,1]
tp
∣∣φ(t)

∣∣< ∞
}
,

Mp := {
φ ∈ M∞: φ|(0,1] ∈ Mp

(
(0,1])}.

Note that if p � q then Mp ⊂ Mq and Mp((0,1]) ⊂ Mq((0,1]).

Definition 2.4. Let φ : (0,∞) → C be a continuous function. Suppose that φ ∈ Mp for some p.
Then the Mellin transform of φ, denoted Mφ, is defined as follows: For Re(s) > p,

Mφ(s) :=
∞∫

0

φ(t)ts−1 dt.

One can show that if φ ∈ Mp then Mφ is analytic on the right half plane Re(s) > p + 2. Also

if φ ∈ Mp((0,1]) then s 
→ ∫ 1
0 φ(t)ts−1 is analytic on Re(s) > p + 2.

For a < b and K > 0, let Ha,b,K := {σ + it: a � σ � b, |t | > K}.

Definition 2.5. Let F be a meromorphic function on the entire complex plane with simple poles
lying inside the set of integers. We say that F has decay of order r ∈ N along the vertical strips
if the function s 
→ srF (s) is bounded on Ha,b,K for every a < b and K > 0. We say that F is
of rapid decay along the vertical strips if F has decay of order r for every r ∈ N.

Proposition 2.6. Let φ : (0,∞) → C be a continuous function of rapid decay. Assume that
φ(t) ∼∑∞

0 ar t
r as t → 0+. Then we have the following.

(1) The function φ ∈ M0.
(2) The Mellin transform Mφ of φ extends to a meromorphic function to the whole of complex

plane with simple poles in the set of negative integers {0,−1,−2,−3, . . .}.
(3) The residue of Mφ at s = −r is given by Ress=−rMφ(s) = ar .
(4) The meromorphic continuation of the Mellin transform Mφ has decay of order 0 along the

vertical strips.

Proof. By definition it follows that φ ∈ M0. Since φ has rapid decay at infinity, by Lemma 2.3,
it follows that the function s 
→ ∫∞

1 φ(t)ts−1 dt is entire. Thus modulo a holomorphic function

Mφ(s) ≡ ∫ 1
0 φ(t)ts−1. For N ∈ N, let RN(t) := φ(t) −∑N

r=0 ar t
r . Thus modulo a holomorphic

function, we have

Mφ(s) ≡
∑
r=0

ar

s + r
+

1∫
0

RN(t)ts−1 dt.

As RN ∈ M−(N+1)((0,1]) the function s 
→ ∫ 1
0 RN(t)ts−1 dt is holomorphic on Re(s) >

−N + 1. Thus on Re(s) > −N + 1, modulo a holomorphic function, one has

Mφ(s) ≡
N∑ ar

s + r
. (2.4)
r=0
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This shows that Mφ admits a meromorphic continuation to the whole of complex plane and
has simple poles lying in the set of negative integers {0,−1,−2, . . .}. Also (3) follows from
Eq. (2.4).

Let a < b and K > 0 be given. Choose N ∈ N such that N + a > 0. Then one has

Mφ(s) =
N∑

r=0

ar

s + r
+

1∫
0

RN(t)ts−1 dt +
∞∫

1

φ(t)ts−1 dt.

As the function s 
→ 1
s+r

is bounded for every r � 0 on Ha,b,K , it is enough to show that the

functions ψ(s) := ∫ 1
0 RN(t)ts−1 dt and χ(s) := ∫∞

1 φ(t)ts−1 dt are bounded on Ha,b,K .
By definition of the asymptotic expansion, it follows that there exists an M > 0 such that

|RN(t)| � MtN+1. Hence for s := σ + it ∈ Ha,b,K ,

∣∣ψ(s)
∣∣� M

σ + N + 1
� M

a + N + 1
� M.

Thus ψ is bounded on Ha,b,K .
Now for s := σ + it ∈ Ha,b,K , we have

∣∣χ(s)
∣∣� ∞∫

1

∣∣φ(t)
∣∣tσ−1 dt �

∞∫
1

∣∣φ(t)
∣∣tb−1 dt.

Since φ is of rapid decay, the integral
∫∞

1 |φ(t)|ta−1 dt is finite. Hence χ is bounded on Ha,b,K .
This completes the proof. �
Corollary 2.7. Let φ : (0,∞) 
→ C be a smooth function. Assume that for every n, the n-th
derivative φ(n) has rapid decay at infinity and admits an asymptotic power series expansion
near 0.

(1) For every n, the Mellin transform Mφ(n) of φ(n) extends to a meromorphic function to the
whole of complex plane with simple poles in the set of negative integers {0,−1,−2,−3, . . .}.

(2) The meromorphic continuation of the Mellin transform Mφ is of rapid decay along the
vertical strips.

Proof. (1) follows from Proposition 2.6. To prove (2), observe that Mφ′(s + 1) = −sMφ(s).
For Re(s)  0,

Mφ′(s + 1) :=
∞∫

0

φ′(t)ts dt

= −
∞∫

0

sφ(t)ts−1 dt (follows from integration by parts)

= −sMφ(s).
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As Mφ′ and Mφ are meromorphic, it follows that Mφ′(s + 1) = −sMφ(s). Now a repeated
application of this equation gives

Mφ(s) := (−1)n
Mφ(n)(s + n)

s(s + 1) · · · (s + n − 1)
. (2.5)

Now let a < b,K > 0 and r ∈ N be given. Now (3) of Proposition 2.6 applied to φ(r), together
with Eq. (2.5), implies that the function s 
→ srMφ(s) is bounded on Ha,b,K . This completes the
proof. �

The following proposition shows how to pass from the decay properties of the Mellin trans-
form of a function to the asymptotic expansion property of the function.

Proposition 2.8. Let φ ∈ Mp for some p. Assume that the Mellin transform Mφ is meromorphic
on the entire complex plane with poles lying in the set of negative integers {0,−1,−2, . . .}.
Suppose that the meromorphic continuation of the Mellin transform Mφ is of rapid decay along
the vertical strips. Then the function φ has an asymptotic expansion near 0.

Moreover if ar := Ress=−rMφ(s) then φ(t) ∼∑∞
r=0 ar t

r near 0.

Proof. The proof is a simple application of the inverse Mellin transform. Let M  0. Then one
has the following inversion formula.

φ(t) =
M+∞∫

M−i∞
Mφ(s)t−s ds.

Define Ft(s) := Mφ(s)t−s . Suppose N ∈ N be given. Let σ ∈ (−N −1,−N) be given. For every
A > 0, by Cauchy’s integral formula, we have

M+iA∫
M−iA

Ft (s) ds +
σ+iA∫

M+iA

Ft (s) ds +
σ−iA∫

σ+iA

Ft (s) ds +
M−iA∫

σ−iA

Ft (s) ds

=
N∑

r=0

Ress=−rFt (s). (2.6)

For a fixed t , Ft has rapid decay along the vertical strips. Thus when A → ∞ the second and
fourth integrals in Eq. (2.6) vanishes and we obtain the following equation

φ(t) −
N∑

r=0

ar t
r =

σ+i∞∫
σ−i∞

Mφ(s)t−s ds. (2.7)

But Mφ(σ + it) has rapid decay in t . Let Mσ := ∫∞ |Mφ(σ + it)|dt . Then Eq. (2.7) implies
−∞
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that

∣∣∣∣∣φ(t) −
N∑

r=0

ar t
r

∣∣∣∣∣� Mσ t−σ � Mσ tN for t � 1.

Thus we have shown that for every N , RN(t) := φ(t)−∑N
r=0 ar t

r = O(tN) as t → 0 and hence
RN−1(t) = RN(t) + aN tN = O(tN) as t → 0. This completes the proof. �
3. The weak heat kernel asymptotic expansion property and the dimension spectrum of
spectral triples

In this section we consider a property of spectral triples which we call the weak heat ker-
nel asymptotic expansion property. We show that a spectral triple having the weak heat kernel
asymptotic expansion property is regular and has finite dimension spectrum lying in the set of
positive integers.

Definition 3.1. Let (A, H,D) be a p+ summable spectral triple for a C∗-algebra A where A is
a dense ∗-subalgebra of A. We say that the spectral triple (A, H,D) has the weak heat kernel
asymptotic expansion property if there exists a ∗-subalgebra B ⊂ B(H) such that:

(1) The algebra B contains A.
(2) The unbounded derivation δ := [|D|, .] leaves B invariant. Also the unbounded derivation

d := [D, .] maps A into B.
(3) The algebra B is invariant under the left multiplication by F where F := sign(D).
(4) For every b ∈ B, the function τp,b : (0,∞) 
→ C defined by τp,b(t) = tp Tr(be−t |D|) has an

asymptotic power series expansion.

If the algebra A is unital and the representation of A on H is unital then (3) can be replaced
by the condition F ∈ B. The next proposition proves that an odd spectral triple that has the heat
kernel asymptotic expansion property is regular and has simple dimension spectrum.

Theorem 3.2. Let (A, H,D) be a p+ summable spectral triple which has the weak heat kernel
asymptotic expansion property. Then the spectral triple (A, H,D) is regular and has finite simple
dimension spectrum. Moreover the dimension spectrum is contained in {1,2, . . . , p}.

Proof. Let B ⊂ B(H) be a ∗-algebra for which (1)–(4) of Definition 3.1 is satisfied. The fact
that B satisfies (1) and (2) implies that the spectral triple (A, H,D) is regular. First we assume
that D is invertible. Let b ∈ B be given.

Since |D|−q is trace class for q > p, it follows that for every N > p there exists an M > 0
such that Tr(e−t |D|) � Mt−N Tr(|D|−N). Now for 1 � t < ∞ and N � p one has

∣∣Tr
(
be−t |D|)∣∣� ‖b‖Tr

(
e−t |D|)

� ‖b‖Mt−N Tr
(|D|−N

)
.
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Thus the function t 
→ Tr(be−t |D|) is of rapid decay near infinity. Now observe that for Re(s)  0

Tr
(
b|D|−s

)= 1

Γ (s)

∞∫
0

Tr
(
be−t |D|)t s−1 dt. (3.8)

By assumption the function φ(t) := tp Tr(be−t |D|) has an asymptotic power series expansion
near 0. By Eq. (3.8), it follows that Mφ(s) = Γ (s + p)Tr(b|D|−s−p). Now Proposition 2.6
implies that the function s 
→ Γ (s)Tr(b|D|−s) is meromorphic with simple poles lying inside
{n ∈ Z: n � p}. As 1

Γ (s)
is entire and has simple zeros at {k: k � 0}, it follows that the function

s → Tr(b|D|−s) is meromorphic and has simple poles with poles lying in {1,2, . . . , p}.
Suppose D is not invertible. Let P denote the projection onto the kernel of D which is finite

dimensional. Let D′ := D + P and b be an element in B∞. Now note that

Tr
(
be−t |D′|)= Tr(PbP )e−t + Tr

(
be−t |D|).

Hence the function t → tp Tr(be−t |D′|) has an asymptotic power series expansion. Thus the
function s → Tr(b|D′|−s) is meromorphic with simple poles lying in {1,2, . . . , p}. Observe that
for Re(s)  0, Tr(b|D′|−s) = Tr(b|D|−s). Hence the function s → Tr(b|D|−s) is meromorphic
with simple poles lying in {1,2, . . . , p}. This completes the proof. �
Remark 3.3. If Tr(be−t |D|) ∼∑∞

r=−p ar(b)tr then (3) of Proposition 2.6 implies that

Resz=k Tr
(
b|D|−z

)= 1

k!a−k(b) for 1 � k � p,

Tr
(
b|D|−z

)
z=0 = a0(b).

Remark 3.4. Let (A, H,D) be a spectral triple which has the weak heat kernel asymptotic ex-
pansion property. Then the dimension spectrum Σ is finite and lies in the set of positive integers.
We call the greatest element in the dimension spectrum as the dimension of the spectral triple
(A, H,D). If Σ is empty we set the dimension to be 0.

Now in the next proposition we show that the usual heat kernel asymptotic expansion implies
the weak heat kernel asymptotic expansion.

Theorem 3.5. Let (A, H,D) be a p+ summable spectral triple for a C∗-algebra A. Suppose
that B is a ∗-subalgebra of B(H) satisfying (1)–(4) of Definition 3.1. Assume that for every
b ∈ B, the function σp,b : (0,∞) → C defined by σp,b(t) := tp Tr(be−t2D2

) has an asymptotic
power series expansion.

Then for every b ∈ B, the function τp,b : t 
→ tp Tr(be−t |D|) has an asymptotic power series
expansion.

Proof. It is enough to consider the case where D is invertible. Let b ∈ B be given. Let
ψ denote the Mellin transform of the function t 
→ Tr(be−t2D2

) and χ denote the Mellin
transform of the function t 
→ Tr(be−t |D|). Then a simple change of variables shows that
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ψ(s) = Γ ( s
2 )

2 Tr(b|D|−s). But then χ(s) = Γ (s)Tr(b|D|−s). Thus we obtain the equation

χ(s) = 2Γ (s)

Γ ( s
2 )

ψ(s).

But we have following duplication formula for the gamma function

Γ (s)Γ

(
s + 1

2

)
= 21−2s

√
πΓ (2s).

Hence one has

χ(s) = 1√
π

2sΓ

(
s + 1

2

)
ψ(s).

Now Proposition 2.6 implies that ψ has decay of order 0 along the vertical strips and has sim-
ple poles lying inside {n ∈ Z: n � p}. Since the gamma function has rapid decay along the
vertical strips, it follows that χ has rapid decay along the vertical strips and has poles lying
in {n ∈ Z: n � p}. If χ̃ denotes the Mellin transform of τp(., b) then χ̃ (s) = χ(s + p). Hence
χ̃ has rapid decay along the vertical strips and has poles lying in the set of negative integers.
Now Proposition 2.8 implies that the map t → tp Tr(be−t |D|) has an asymptotic power series
expansion near 0. This completes the proof. �
4. Stability of the weak heat kernel expansion property and the quantum double
suspension

Let us recall the definition of the quantum double suspension of a unital C∗-algebra. The quan-
tum double suspension is first defined in [12] and our equivalent definition is as in [13]. Let us
fix some notations. We denote the left shift on 2(N) by S which is defined on the standard or-
thonormal basis (en) as Sen = en−1 and p denote the projection |e0〉〈e0|. The number operator
on 2(N) is denoted by N and defined as Nen := nen. We denote the C∗-algebra generated by
S in B(2(N)) by T which is the Toeplitz algebra. Note that SS∗ = 1 and p = 1 − S∗S. Let
σ : T → C(T) be the symbol map which sends S to the generating unitary z. Then one has the
following exact sequence

0 → K → T σ−→ C(T) → 0.

Definition 4.1. Let A be a unital C∗-algebra. Then the quantum double suspension of A denoted
Σ2(A) is the C∗-algebra generated by A ⊗ p and 1 ⊗ S in A ⊗ T .

Let A be a unital C∗-algebra. One has the following exact sequence.

0 → A ⊗ K
(
2(N)

)→ Σ2(A)
ρ−→ C(T) → 0

where ρ is just the restriction of 1 ⊗ σ to Σ2(A).
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Remark 4.2. It can be easily shown that Σ2(C(T)) = C(SUq(2)) and more generally one can
show that Σ2(C(S2n−1

q )) = C(S2n+1
q ). We refer to [12] or Lemma 3.2 of [14] for the proof. Thus

the odd-dimensional quantum spheres can be obtained from the circle T by applying the quantum
double suspension recursively.

Let A be a dense ∗-subalgebra of a C∗-algebra A. Define

Σ2
alg(A) := span

{
a ⊗ k,1 ⊗ Sn,1 ⊗ S∗m: a ∈ A, k ∈ S

(
2(N)

)
, n,m � 0

}
where S(2(N)) := {(amn):

∑
m,n(1 + m + n)p|amn| < ∞ for every p}.

Then Σ2
alg(A) is just the ∗-algebra generated by A ⊗alg S(2(N)) and 1 ⊗S. Clearly Σ2

alg(A)

is a dense subalgebra of Σ2(A).

Definition 4.3. Let (A, H,D) be a spectral triple and denote the sign of the operator D by F .
Then the spectral triple (Σ2

alg(A), H ⊗ 2(N),Σ2(D) := (F ⊗ 1)(|D| ⊗ 1 + 1 ⊗ N)) is called
the quantum double suspension of the spectral triple (A, H,D).

4.1. Stability of the weak heat kernel expansion

We consider the stability of the weak heat kernel expansion under quantum double suspension.
First observe that the following are easily verifiable.

(1) The spectral triple (S(2(N)), 2(N),N) has the weak heat kernel asymptotic expansion with
dimension 0.

(2) Let (Ai , Hi ,Di) be a spectral triple with the weak heat kernel asymptotic expansion property
with dimension pi for 1 � i � n. Then the spectral triple (

⊕n
i=1 Ai ,

⊕n
i=1 Hi ,

⊕n
i=1 Di )

has the weak heat kernel expansion property with dimension p := max{pi : 1 � i � n}.
(3) If (A, H,D) is a spectral triple with the weak heat kernel asymptotic expansion property

and has dimension p then (A, H, |D|) also has the weak heat kernel asymptotic expansion
with the same dimension p.

(4) Let (A, H,D) be a spectral triple with the weak heat kernel asymptotic expansion property
with dimension p. Then the amplification (A ⊗ 1, H ⊗ 2(N), |D|⊗ 1 + 1 ⊗N) also has the
asymptotic expansion property with dimension p + 1.

We start by proving the stability of the weak heat kernel expansion under tensoring by com-
pacts.

Proposition 4.4. Let (A, H,D) be a spectral triple with the weak heat kernel asymptotic expan-
sion property of dimension p. Then (A ⊗alg S(2(N)), H ⊗ 2(N),D0 := (F ⊗ 1)(|D| ⊗ 1 +
1 ⊗ N)) also has the weak heat kernel asymptotic expansion property with dimension p.

Proof. Let B ⊂ B(H) be a ∗-subalgebra for which (1)–(4) of Definition 3.1 are satisfied. We
denote B ⊗alg S(2(N)) by B0. We show that B0 satisfies (1)–(4) of Definition 3.1. Clearly (1)

holds.
We denote the unbounded derivation [|D0|, .], [|D|, .] and [N, .] by δD0, δD and δN respec-

tively. By assumption δD leaves B invariant. Clearly B ⊗alg S(2(N)) is contained in the domain
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of δD0 and δD0 = δD ⊗ 1 + 1 ⊗ δN on B ⊗alg S(2(N)). Similarly one can show that the un-
bounded derivation [D0, .] maps A ⊗alg S(2(N)) into B0 invariant.

As F0 := sign(D0) = F ⊗ 1, (3) is clear. Now (4) follows from Lemma 2.2 and the equality
tp Tr(b ⊗ k)e−t |D0| = tp Tr(be−t |D|)Tr(ke−tN ). This completes the proof. �

Now we consider the stability of the heat kernel asymptotic expansion under the double sus-
pension.

Theorem 4.5. Let (A, H,D) be a spectral triple with the weak heat kernel asymptotic expan-
sion property of dimension p. Assume that the algebra A is unital and the representation on H
is unital. Then the spectral triple (Σ2(A), H ⊗ 2(N),Σ2(D)) also has the weak heat kernel
asymptotic expansion property with dimension p + 1.

Proof. We denote Σ2(D) by D0. Let B be a ∗-subalgebra of B(H) for which (1)–(4) of Defini-
tion 3.1 are satisfied. For f =∑

n λnz
n ∈ C∞(T), we let σ(f ) :=∑

n�0 λnS
n +∑

n>0 λ−nS
∗n.

We denote the projection 1+F
2 by P . We let B0 to denote the algebra B ⊗alg S(2(N)) as in

Proposition 4.4. As in Proposition 4.4, we let δD0, δD, δN to denote the unbounded derivations
[|D0|, .], [|D|, .] and [N, .] respectively. Define

B̃ := {
b + P ⊗ σ(f ) + (1 − P) ⊗ σ(g): b ∈ B0, f, g ∈ C∞(T)

}
.

Now it is clear that B̃ satisfies (1) of Definition 3.1.
We have already shown in Proposition 4.4 that B0 is closed under δD0 and d0 := [D0, .] maps

A ⊗ S(2(N)) into B0. Now note that

δD0

(
P ⊗ σ(f )

)= P ⊗ σ
(
if ′),

δD0

(
(1 − P) ⊗ σ(g)

)= (1 − P) ⊗ σ
(
ig′),[

D0,P ⊗ σ(f )
]= P ⊗ σ

(
if ′),[

D0, (1 − P) ⊗ σ(g)
]= −(1 − P) ⊗ σ

(
ig′).

Thus it follows that δD0 leaves B̃ invariant and d0 := [D0, .] maps Σ2(A) into B̃.
Since F0 := sign(D0) = F ⊗ 1, it follows from definition that F0 ∈ B̃. Now we show that B̃

satisfies (4).
We have already shown in Proposition 4.4 that given b ∈ B0, the function τp,b(t) =

tp Tr(be−t |D0|) has an asymptotic expansion. Hence the function τp+1,b has an asymptotic ex-
pansion for every b ∈ B0. Now note that

τp+1,P⊗σ(f )(t) =
( ∫

f (θ) dθ

)
tp Tr

(
Pe−t |D|)t Tr

(
e−tN

)
, (4.9)

τp+1,(1−P)⊗σ(g)(t) =
( ∫

g(θ) dθ

)
tp Tr

(
(1 − P)e−t |D|)t Tr

(
e−tN

)
. (4.10)

Now recall that we have assumed that A is unital and hence P ∈ B. Hence tp Tr(xe−t |D|) has
an asymptotic power series expansion for x ∈ {P,1 − P }. Thus t Tr(e−tN ) has an asymptotic
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power series expansion. From Eqs. (4.9), (4.10) and from the earlier observation that τp+1,b has
an asymptotic power series expansion for b ∈ B0, it follows that for every b ∈ B̃, the function
τp+1,b has an asymptotic power series expansion. This completes the proof. �
4.2. Higson’s differential pair and the heat kernel expansion

Now we discuss some examples of spectral triples which satisfy the weak heat kernel asymp-
totic expansion property. In particular we discuss the spectral triple associated to noncommuta-
tive torus and the classical spectral triple associated to a spin manifold. Let us recall Higson’s
notion of a differential pair as defined in [11].

Consider a Hilbert space H and a positive, selfadjoint and an unbounded � on H. We assume

that � has compact resolvent. For k ∈ N, we let Hk be the domain of the operator �
k
2 . The vector

space Hk is given a Hilbert space structure by identifying Hk with the graph of the operator �
k
2 .

Denote the intersection
⋂

k Hk by H∞. An operator T : H∞ → H∞ is said to be of analytic
order � m where m ∈ Z if T extends to a bounded operator from Hk+m → Hk for every k. We
say an operator T on H∞ has analytic order −∞ if T has analytic order less than −m for every
m > 0. The following definition is due to Higson [11].

Definition 4.6. Let � be a positive, unbounded, selfadjoint operator on a Hilbert space H
with compact resolvent. Suppose that D :=⋃

p�0 Dq is a filtered algebra of operators on H∞.
The pair (D,�) is called a differential pair if the following conditions hold.

1. The algebra D is invariant under the derivation T → [�,T ].
2. If X ∈ Dq , then [�,X] ∈ Dq+1.
3. If X ∈ Dq , then the analytic order of X � q .

Now let us recall Higson’s definition of pseudodifferential operators.

Definition 4.7. Let (D,�) be a differential pair. We denote the orthogonal projection onto the
kernel of � by P . Then P is of finite rank as � has compact resolvent. Let �1 := � + P . Then
�1 is invertible.

A linear operator T on H∞ is called a basic pseudodifferential operator of order � k is for
every  there exist m and X ∈ Dm+k such that

T = X�
− m

2
1 + R

where R has analytic order less than or equal to .
A finite linear combinations of basic pseudodifferential operator of order � k is called a pseu-

dodifferential operator of order � k.

We denote the set of pseudodifferential operators of order � 0 by Ψ0(D,�). It is proved in
[11] that the pseudodifferential operators of order � 0 form an algebra. We need the following

proposition due to Higson. Denote the derivation T 
→ [� 1
2 , T ] by δ.

Proposition 4.8. Let (D,�) be a differential pair. The derivation δ leaves the algebra Ψ0(D,�)

invariant.
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Let (D,�) be a differential pair. Assume that �− r
2 is trace class for some r > 0. We say that

the analytic dimension of (D,�) is p if

p := inf
{
q > 0: �

−r
2 is trace class for every r > q

}
.

Let us make the following definition of the heat kernel expansion for a differential pair.

Definition 4.9. Let (D,�) be a differential pair of analytic dimension p. We say that (D,�)

has a heat kernel expansion if for X ∈ Dm, the function t 
→ tp+m Tr(Xe−t2�) has an asymptotic
expansion near 0.

Now we show that if (D,�) has the heat kernel expansion then the algebra Ψ0(D,�) has the
weak heat kernel expansion.

Proposition 4.10. Let (D,�) be a differential pair of analytic dimension p having the heat

kernel expansion. Denote the operator �
1
2 by |D|. Then for every b ∈ Ψ0(D,�), the function

t 
→ tp Tr(be−t |D|) has an asymptotic power series expansion.

Proof. First observe that if R : H∞ → H∞ is an operator of analytic order < −p − n − 1 then
R|D|n+1 is trace class and hence by Taylor’s series

Tr
(
Re−t |D|)=

n∑
k=0

(−1)k Tr(R|D|k)
k! tk + O

(
tn+1)

for t near 0. Thus it is enough to show the result when b = X�
− m

2
1 . For an operator T on H∞,

let ζT (s) := Tr(T |D|−s). Then ζb(s) := ζX(s + m). As in Proposition 3.5 one can show that
Γ (s)ζX(s) has rapid decay along the vertical strips. Now

Γ (s)ζb(s) = Γ (s)

Γ (s + m)
Γ (s + m)ζX(s + m).

Hence Γ (s)ζb(s) has rapid decay along the vertical strips. But Γ (s)ζb(s) is the Mellin transform
of Tr(be−t |D|). Hence by Proposition 2.8, it follows that tp Tr(be−t |D|) has an asymptotic power
series expansion. This completes the proof. �

We make use of the following proposition to prove that spectral triple associated to the NC
torus and that of a spin manifold posses the weak heat kernel expansion property.

Proposition 4.11. Let (A, H,D) be a finitely summable spectral triple and � := D2. Suppose
that there exists an algebra of operators D :=⋃

p�0 Dp such that (D,�) is a differential pair
of analytic dimension p. Assume that (D,�) satisfies the following:

1. the algebra D0 contains A and [D, A],
2. the differential pair (D,�) has the heat kernel expansion property,
3. the operator D ∈ D1.

Then the spectral triple (A, H,D) has the weak heat kernel asymptotic expansion property.
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Proof. Without loss of generality, we can assume that D is invertible. We let B be the algebra of
pseudodifferential operators of order 0 associated to (D,�). Now Proposition 4.8 together with
the fact that D0 ⊂ B shows that B contains A and [D, A] and is invariant under δ := [|D|, .].
Since D ∈ D1, it follows that F := D�

−1
2 ∈ B. Now (4) of Definition 3.1 follows from Proposi-

tion 4.10. This completes the proof. �
4.3. Examples

Now we discuss some examples of spectral triples which satisfy the weak heat kernel asymp-
totic expansion. We start with the classical example.

Let M be a Riemannian spin manifold and S → M be a spinor bundle. We denote the
Hilbert space of square integrable sections on L2(M,S) by H. We represent C∞(M) on H
by multiplication operators. Let D be the Dirac operator associated with Levi–Civita connection.
Then the triple (C∞(M), H,D) is a spectral triple. Then the operator D2 is then a generalised
Laplacian [1]. Let D denote the usual algebra of differential operators on S. Then (D,�) is a
differential pair. Moreover Proposition 2.4.6 in [1] implies that (D,�) has the heat kernel ex-
pansion. Also D ∈ D1. Now Proposition 4.11 implies that the spectral triple (C∞(M), H,D) has
the weak heat kernel asymptotic expansion.

4.3.1. The spectral triple associated to the NC torus
Let us recall the definition of the noncommutative torus which we abbreviate as NC torus.

Throughout we assume that θ ∈ [0,2π).

Definition 4.12. The C∗-algebra Aθ is defined as the universal C∗-algebra generated by two
unitaries u and v such that uv = eiθ vu.

Define the operators U and V on 2(Z2) as follows

Uem,n := em+1,n,

V em,n := e−inθ em,n+1

where {em,n} denotes the standard orthonormal basis on 2(Z2). Then it is well known that
u → U and v → V give a faithful representation of the C∗-algebra Aθ .

Consider the positive selfadjoint operator � on H := 2(Z2) defined on the orthonormal basis
{em,n} by �(em,n) = (m2 + n2)em,n. For a polynomial P = p(m,n), define the operator TP on
H∞ by TP (em,n) := p(m,n)em,n. The group Z

2 acts on the algebra of polynomials as follows.
For x := (a, b) ∈ Z

2 and P := p(m,n), define x.P := p(m − a,n − b). We denote (1,0) by e1
and (0,1) by e2.

Note that if P is a polynomial of degree � k, then TP �− k
2 is bounded on Ker(�)⊥. Thus it

follows that if P is a polynomial of degree � k then TP has analytic order � k.
Also note that

�
k
2
1 U�

−k
2

1 em,n := ((m + 1)2 + n2)
k
2

2 2 k
em+1,n if (m,n) �= 0.
(m + n ) 2
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Thus it follows that U is of analytic order � 0. Similarly one can show that V is of analytic order
� 0. Now note the following commutation relationship

UTP := Te1.P U, (4.11)

V TP := Te1.P V . (4.12)

Thus it follows that [�,UαV β ] = TQUαV β for some degree 1 polynomial Q.
Let us define Dp := span{TPα,β UαV β : deg(Pα,β) � k} and let D :=⋃

p Dp . The above ob-
servations can be rephrased into the following proposition.

Proposition 4.13. The pair (D,�) is a differential pair of analytic dimension 2.

Now we show that the differential pair (D,�) has the heat kernel expansion.

Proposition 4.14. The differential pair (D,�) has the heat kernel expansion property.

Proof. Let X ∈ Dq be given. It is enough to consider the case when X := TP UαV β . First note
that Tr(Xe−t�) = 0 unless (α,β) = 0. Now let X := TP . Again it is enough to consider the case
when P is a monomial. Let P = p(m,n) = mk1nk2 . Now

Tr
(
TP e−t�

)=
( ∑

m∈Z

mk1e−tm2
)(∑

n∈Z

nk2e−tn2
)

.

Now the asymptotic expansion follows from applying Proposition 2.4.6 in [1] to the standard
Laplacian on the circle. This completes the proof. �

Let Aθ be the ∗-algebra generated by U and V . We consider the direct sum representation of
Aθ on H ⊕ H. Define D := [ 0 Tm−in

Tm+in 0

]
. Then D is selfadjoint on H ⊕ H and D2 = [

� 0
0 �

]
. It

is well known that (Aθ , H ⊕ H,D) is a 2+ summable spectral triple.

Proposition 4.15. The spectral triple (Aθ , H ⊕ H,D) has the weak heat kernel asymptotic ex-
pansion property.

Proof. Let (D,�) be the differential pair considered in Proposition 4.13. Then the amplification
(D′ := M2(D),D2) is a differential pair. Note that D ∈ D′

1. Clearly Aθ ∈ D′. Note the commu-
tation relations

[Tm±in,U ] = U,

[Tm±in,V ] = ±iV .

This implies that [D, Aθ ] ⊂ D′
0. Since (D,�) has the heat kernel expansion, it follows that the

differential pair (M2(D),D2) also has the heat kernel expansion. Now Proposition 4.11 implies
that the spectral triple (Aθ , H ⊕ H,D) has the weak heat kernel expansion. This completes the
proof. �
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4.3.2. The torus equivariant spectral triple on the odd-dimensional quantum spheres
In this section we recall the spectral triple for the odd-dimensional quantum spheres given

in [5]. We begin with some known facts about odd-dimensional quantum spheres. Let q ∈ (0,1].
The C∗-algebra C(S2+1

q ) of the quantum sphere S2+1
q is the universal C∗-algebra generated by

elements z1, z2, . . . , z+1 satisfying the following relations (see [12]):

zizj = qzj zi, 1 � j < i �  + 1,

z∗
i zj = qzj z

∗
i , 1 � i �= j �  + 1,

ziz
∗
i − z∗

i zi + (
1 − q2)∑

k>i

zkz
∗
k = 0, 1 � i �  + 1,

+1∑
i=1

ziz
∗
i = 1.

We will denote by A(S2+1
q ) the ∗-subalgebra of A generated by the zj ’s. Note that for  = 0,

the C∗-algebra C(S2+1
q ) is the algebra of continuous functions C(T) on the torus and for  = 1,

it is C(SUq(2)).
There is a natural torus group T

+1 action τ on C(S2+1
q ) as follows. For w = (w1, . . . ,w+1),

define an automorphism τw by τw(zi) = wizi .
Recall that N is the number operator on 2(N) and S is the left shift on 2(N). We also use

the same notation S for the left shift on 2(Z). We let H denote the Hilbert space 2(N × Z).
Let Yk,q be the following operators on H:

Yk,q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
k−1 copies

⊗√
1 − q2NS∗ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

+1−k copies

if 1 � k � ,

qN ⊗ · · · ⊗ qN︸ ︷︷ ︸
 copies

⊗ S∗ if k =  + 1.
(4.13)

Then π : zk 
→ Yk,q gives a faithful representation of C(S2+1
q ) on H for q ∈ (0,1) (see

Lemma 4.1 and Remark 4.5 [12]). We will denote the image π(C(S2+1
q )) by A(q) or by

just A.
Let {eγ : γ ∈ ΓΣ

} be the standard orthonormal basis for H. We recall the following theorem
from [5].

Theorem 4.16. (See [5].) Let D be the operator eγ → d(γ )eγ on H where the dγ ’s are given
by

d(γ ) =
{

γ1 + γ2 + · · · + γ + |γ+1| if γ+1 � 0,

−(γ1 + γ2 + · · · + γ + |γ+1|) if γ+1 < 0.

Then (A(S2+1), H,D) is a non-trivial ( + 1) summable spectral triple.
q
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But to deduce that the spectral triple (A(S2+1
q ), H,D) satisfies the weak heat kernel asymp-

totic expansion, we need a topological version of Definition 3.1 and Proposition 4.5. We do this
in the next section.

5. Smooth subalgebras and the weak heat kernel asymptotic expansion

First we recall the definition of smooth subalgebras of C∗-algebras. For an algebra A (possibly
non-unital), we denote the algebra obtained by adjoining a unit to A by A+.

Definition 5.1. Let A be a unital C∗-algebra. A dense unital ∗-subalgebra A∞ is called smooth
in A if:

1. The algebra A∞ is a Fréchet ∗-algebra.
2. The unital inclusion A∞ ⊂ A is continuous.
3. The algebra A∞ is spectrally invariant in A i.e. if an element a ∈ A∞ is invertible in A then

a−1 ∈ A∞.

Suppose A is a non-unital C∗-algebra. A dense Fréchet ∗-subalgebra A∞ is said to be smooth in
A if (A∞)+ is smooth in A+.

We also assume that our smooth subalgebras satisfy the condition that if A∞ ⊂ A is smooth
then A∞ ⊗̂π S(2(Nk)) ⊂ A ⊗ K(2(Nk)) is smooth.

Let A be a unital C∗-algebra and A∞ be a smooth unital ∗-subalgebra of A. Assume that
the topology on A∞ is given by the countable family of seminorms (‖ · ‖p). Let us denote the
operator 1 ⊗ S by α. Define the smooth quantum double suspension of A∞ as follows

Σ2(A∞) :=
{ ∑

j,k∈N

α∗j (ajk ⊗ p)αk +
∑
k�0

λkα
k +

∑
k>0

λ−kα
∗k: ajk ∈ A∞,

∑
j,k

(1 + j + k)n‖ajk‖p < ∞, (λk) is rapidly decreasing

}
. (5.14)

Now let us topologize Σ2(A∞) by defining a seminorm ‖ ‖n,p for every n,p � 0. For an element

a :=
∑

j,k∈N

α∗j (ajk ⊗ p)αk +
∑
k�0

λkα
k +

∑
k>0

λ−kα
∗k

in Σ2(A∞) we define ‖a‖n,p by

‖a‖n,p :=
∑

j,k∈N

(
1 + |j | + |k|)n‖ajk‖p +

∑
k∈Z

(
1 + |k|)n|λk|.

It is easily verifiable that:

1. The subspace Σ2(A∞) is a dense ∗-subalgebra of Σ2(A).



2734 P.S. Chakraborty, S. Sundar / Journal of Functional Analysis 260 (2011) 2716–2741
2. The topology on Σ2(A∞) induced by the seminorms (‖ ‖n,p) makes Σ2(A∞) a Fréchet
∗-algebra.

3. The unital inclusion Σ2(A∞) ⊂ Σ2(A) is continuous.

The next proposition proves that the Fréchet algebra Σ2(A∞) is infact smooth in Σ2(A).

Proposition 5.2. Let A be a unital C∗-algebra and let A∞ ⊂ A be a unital smooth subalgebra
such that A∞ ⊗̂π S(2(Nk)) ⊂ A ⊗ K(2(Nk)) is smooth for every k ∈ N. Then the algebra
Σ2(A∞) ⊗̂π S(2(Nk)) is smooth in Σ2(A) ⊗ K(2(Nk)) for every k � 0.

Proof. Let us denote the restriction of 1 ⊗ σ to Σ2(A) by ρ. Recall the σ : T → C(T) is the
symbol map sending S to the generating unitary. Then one has the following exact sequence at
the C∗-algebra level

0 → A ⊗ K
(
2(N)

)→ Σ2(A)
ρ−→ C(T) → 0.

At the subalgebra level one has the following “sub” exact sequence

0 → A∞ ⊗̂π S
(
2(N)

)→ Σ2(A∞) ρ−→ C∞(T) → 0.

Since A∞ ⊗̂π S(2(N)) ⊂ A ⊗ K(2(N)) and C∞(T) ⊂ C(T) are smooth, it follows from The-
orem 3.2, part 2 [15] that Σ2(A∞) is smooth in Σ2(A). One can prove that Σ2(A∞) ⊗̂π

S(2(Nk)) is smooth in Σ2(A) ⊗ K(2(Nk)) for every k > 0 along the same lines first by ten-
soring the C∗-algebra exact sequence by K(2(Nk)) and then by tensoring the Fréchet algebra
exact sequence by S(2(Nk)) and appealing to Theorem 3.2, part 2 of [15]. This completes the
proof. �
5.1. The topological weak heat kernel expansion

We need the following version of the weak heat kernel expansion.

Definition 5.3. Let (A∞, H,D) be a p+ summable spectral triple for a C∗-algebra A where A∞
is smooth in A. We say that the spectral triple (A∞, H,D) has the topological weak heat kernel
asymptotic expansion property if there exists a ∗-subalgebra B∞ ⊂ B(H) such that:

(1) The algebra B∞ has a Fréchet space structure and endowed with it, it is a Fréchet ∗-algebra.
(2) The algebra B∞ contains A∞.
(3) The inclusion B∞ ⊂ B(H) is continuous.
(4) The unbounded derivations δ := [|D|, .] leaves B∞ invariant and is continuous. Also the

unbounded derivation d := [D, .] maps A∞ into B∞ in a continuous fashion.
(5) The left multiplication by the operator F := sign(D) denoted LF leaves B∞ invariant and is

continuous.
(6) The function τp : (0,∞) × B∞ → C defined by τp(t, b) = tp Tr(be−t |D|) has a uniform

asymptotic power series expansion.

We need the following analog of Proposition 4.4 and Proposition 4.5. First we need the fol-
lowing two lemmas.
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Lemma 5.4. Let E be a Fréchet space and F ⊂ E be a dense subspace. Let φ : (0,∞) ×
E → C be a continuous function which is linear in the second variable. Suppose that
φ : (0,∞) × F → C has a uniform asymptotic power series expansion then φ : (0,∞) × E → C

has a uniform asymptotic power series expansion.

Proof. Suppose that φ(t, f ) ∼∑∞
r=0 ar(f )tr . Then ar : F → C is linear and is continuous for

every r ∈ N. Since F is dense in E, for every r ∈ N, the function ar admits a continuous ex-
tension to the whole of E which we still denote it by ar . Now fix N ∈ N. Then there exist a
neighbourhood U of E containing 0 and ε,M > 0 such that

∣∣∣∣∣φ(t, f ) −
N∑

r=0

ar(f )tr

∣∣∣∣∣� MtN+1 for 0 < t < ε, f ∈ U ∩ F. (5.15)

Since φ(t, .) and ar(.) are continuous and as F is dense in E, Eq. (5.15) continues to hold for
every f ∈ U . This completes the proof. �
Lemma 5.5. Let E1,E2 be Fréchet spaces and let Fi : (0,∞) × Ei → C be continuous and
linear in the second variable for i = 1,2. Consider the function F : (0,∞) × E1 ⊗̂π E2 → C

be defined by F(t, e1 ⊗ e2) = F1(t, e1)F (t, e2). Assume that F is continuous. If F1 and F2 have
uniform asymptotic expansions then F has a uniform asymptotic power series expansion.

Proof. By Lemma 5.4, it is enough to show that F : (0,∞) × E1 ⊗alg E2 → C has a uni-
form asymptotic power series expansion. Let θ : E1 × E2 → E1 ⊗alg E2 be defined by
θ(e1, e2) = e1 ⊗ e2. Consider the map G : (0,∞) × E1 × E2 → C defined by G(t, e1, e2) :=
F(t, θ((e1, e2))). By Lemma 2.2, it follows that G has a uniform asymptotic power series expan-
sion say

G(t, e) ∼
∞∑

r=0

ar(e)t
r .

The maps ar : E1 × E2 → C are continuous bilinear. We let ãr : E1 ⊗̂π E2 → C be the linear
maps such that ãr ◦ θ := ar . Let N ∈ N be given. Then there exist ε,M > 0 and open sets U1,U2
containing 0 in E1,E2 such that

∣∣∣∣∣G(t, e) −
N∑

r=0

ar(e)t
r

∣∣∣∣∣� MtN+1 for 0 < t < ε, e ∈ U1 × U2. (5.16)

Without loss of generality, we can assume that Ui := {x ∈ Ei : pi(x) < 1} for a seminorm pi

of Ei . Now Eq. (5.16) implies that

∣∣∣∣∣F (t, θ(e)
)−

N∑
ãr

(
θ(e)

)
t r

∣∣∣∣∣� MtN+1 for 0 < t < ε, e ∈ U1 × U2. (5.17)

r=0
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Hence for t ∈ (0, ε) and x ∈ θ(U1 × U2),∣∣∣∣∣F(t, x) −
N∑

r=0

ãr (x)tr

∣∣∣∣∣� MtN+1. (5.18)

Since ãr is linear and F is linear in the second variable, it follows that Eq. (5.18) continues to
hold for x in the convex hull of θ(U1 × U2) which is nothing but the unit ball determined by the
seminorm p1 ⊗ p2 in E1 ⊗alg E2. This completes the proof. �

In the next proposition, we consider the stability of the weak heat kernel asymptotic expansion
property for tensoring by smooth compacts.

Proposition 5.6. Let (A∞, H,D) be a spectral triple where the algebra A∞ is a smooth
subalgebra of C∗-algebra. Assume that (A∞, H,D) has the topological weak heat kernel ex-
pansion property with dimension p. Then the spectral triple (A∞ ⊗̂π S(2(N)), H ⊗ 2(N),
D0 := (F ⊗ 1)(|D| ⊗ 1 + 1 ⊗ N)) also has the weak heat kernel asymptotic expansion property
with dimension p where F := sign(D).

Proof. Let B∞ ⊂ B(H) be a ∗-subalgebra for which (1)–(6) of Definition 5.3 are satisfied. We
denote B∞ ⊗̂π S(2(N)) by B∞

0 . We show that B∞
0 satisfies (1)–(6) of Definition 5.3. First note

that the natural representation of B∞
0 in H ⊗ 2(N) is injective. Thus (3) is clear. Also (1) and

(2) are obvious. Now let us now prove (4).
We denote the unbounded derivation [|D0|, .], [|D|, .] and [N, .] by δD0, δD and δN respec-

tively. By assumption δD leaves B invariant and is continuous. It is also easy to see that δN leaves
S(2(N)) invariant and is continuous. Let δ′ := δD ⊗1+1⊗δN . Then δ′ : B∞

0 → B∞
0 is continu-

ous. Clearly B∞ ⊗alg S(2(N)) is contained in the domain of δ and δ = δ′ on B∞ ⊗alg S(2(N)).
Now let a ∈ B∞

0 be given. Then there exists a sequence (an) in B∞ ⊗π S(2(N)) such that
(an) converges to a in B∞

0 . Since δ′ is continuous on B∞
0 and the inclusion B∞

0 ⊂ B(H) is
continuous, it follows that δD0(an) = δ′(an) converges to δ′(a). As δD0 is a closed derivation,
it follows that a ∈ Dom(δD0) and δD0(a) = δ′(a). Hence we have shown that δD0 leaves B∞

0
invariant and is continuous. Similarly one can show that the unbounded derivation d0 := [D0, .]
maps A ⊗̂π S(2(N)) into B∞

0 invariant in a continuous manner.
As F0 := sign(D0) = F ⊗1, (5) is clear. Consider the function τp : (0,∞)× B∞

0 → C defined
by τp(t, b) := tp Tr(be−t |D0|). Then τp(t, b ⊗ k) = τp(t, b)τ0(t, k). Hence by Lemma 5.5, it
follows that τp has a uniform asymptotic power series expansion. This completes the proof. �

Now we consider the stability of the weak heat kernel asymptotic expansion under the double
suspension.

Theorem 5.7. Let (A∞, H,D) be a spectral triple with the topological weak heat kernel asymp-
totic expansion property of dimension p. Assume that the algebra A∞ is unital and the repre-
sentation on H is unital. Then the spectral triple (Σ2(A∞), H ⊗ 2(N),Σ2(D)) also has the
topological weak heat kernel asymptotic expansion property with dimension p + 1.

Proof. We denote the operator Σ2(D) by D0. Let B∞ be ∗-subalgebra of B(H) for which
(1)–(6) of Definition 5.3 are satisfied. For f = ∑

λnz
n ∈ C(T), we let σ(f ) :=
n∈Z
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∑
n�0 λnS

n +∑n>0 λ−nS
∗n. We denote the projection 1+F

2 by P . We assume here that P �= ±1

as the case P = ±1 is similar. We let B∞
0 to denote the algebra B∞ ⊗̂π S(2(N)) as in Proposi-

tion 5.6. As in Proposition 5.6, we let δD0, δD, δN to denote the unbounded derivations [|D0|, .],
[|D|, .] and [N, .] respectively. Define

B̃∞ := {
b + P ⊗ σ(f ) + (1 − P) ⊗ σ(g): b ∈ B∞

0 , f, g ∈ C∞(T)
}
.

Then B̃∞ is isomorphic to the direct sum B∞
0 ⊕C∞(T)⊕C∞(T). We give B̃∞ the Fréchet space

structure coming from this decomposition. It is easy to see that B̃∞ is a Fréchet ∗-subalgebra of
B(H ⊗ 2(N)). Clearly (π ⊗ 1)(Σ2(A∞)) ⊂ B̃∞. Thus we have shown that (1) and (2) of
Definition 5.3 are satisfied. Since B∞

0 is represented injectively on H ⊗ 2(N), it follows that B̃
satisfies (3).

We have already shown in Proposition 5.6 that B∞
0 is closed under δD0 and is continuous.

Also we have shown that d0 := [D0, .] maps A ⊗̂π S(2(N)) into B∞
0 continuously. Now note

that

δD0

(
P ⊗ σ(f )

)= P ⊗ σ
(
if ′),

δD0

(
(1 − P) ⊗ σ(g)

)= (1 − P) ⊗ σ
(
ig′),[

D0,P ⊗ σ(f )
]= P ⊗ σ

(
if ′),[

D0, (1 − P) ⊗ σ(g)
]= −(1 − P) ⊗ σ

(
ig′).

Thus it follows that δD0 leaves B̃∞ invariant and is continuous. Also, it follows that d0 := [D0, .]
maps Σ2(A∞) into B̃ in a continuous manner.

Since F0 := sign(D0) = F ⊗ 1, it follows from definition that F0 ∈ B̃∞. Now we show that
B̃∞ satisfies (6).

We have already shown in Proposition 5.6 that the function τp : (0,∞) ⊗ B∞
0 → C defined

by τp(t, b) := tp Tr(be−t |D0|) has a uniform asymptotic power series expansion. Hence τp+1
restricted to B∞

0 has a uniform asymptotic power series expansion. Now note that

τp+1
(
P ⊗ σ(f )

)=
( ∫

f (θ) dθ

)
tp Tr

(
Pe−t |D|)t Tr

(
e−tN

)
, (5.19)

τp+1
(
(1 − P) ⊗ σ(g)

)=
( ∫

g(θ) dθ

)
tp Tr

(
(1 − P)e−t |D|)t Tr

(
e−tN

)
. (5.20)

Now recall that we have assumed that A∞ is unital and hence P ∈ B∞. Hence tp Tr(xe−t |D|)
has an asymptotic power series expansion for x ∈ {P,1 −P }. Also t Tr(e−tN ) has an asymptotic
power series expansion. Now Eqs. (5.19) and (5.20), together with the earlier observation that
τp+1 restricted to B∞

0 has a uniform asymptotic power series expansion, imply that the function
τp+1 : (0,∞) × B̃∞ → C has a uniform asymptotic power series expansion. This completes the
proof. �

Let (C∞(T),L2(T), 1
i

d
dθ

) be the canonical spectral triple on the circle. Via Fourier transform
if we identify L2(T) with L2(Z) then 1 d becomes the number operator. Let F be the sign of
i dθ
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the number operator. Then with B∞ = {f0 +Ff1 +R: f0, f1 ∈ C∞(T), R infinitely smoothing}
this spectral triple satisfies topological WHKAE. Hong and Szymanski proved [12] that by iterat-
edly quantum double suspending C(T) we get the odd-dimensional quantum spheres. It follows
that the iterated quantum double suspension C∞(S2+1

q ) := Σ2(C∞(T)) is dense in C(S2+1
q ).

Now if we quantum double suspend the spectral triple (C∞(T),L2(T), 1
i

d
dθ

) we get the torus
equivariant spectral triple on C(S2+1

q ) [5]. Now Theorem 5.7 implies that the torus equivari-

ant spectral triple for the odd-dimensional quantum sphere C(S2+1
q ) satisfies topological weak

heat kernel asymptotic expansion property with dimension  + 1. Hence by Theorem 3.2 this is
regular with finite dimension spectrum. This gives a conceptual proof of Proposition 3.9 in [14].

5.2. The equivariant spectral triple on odd-dimensional quantum spheres

In this section, we show that the equivariant spectral triple on S2+1
q constructed in [4] has the

topological weak heat kernel asymptotic expansion. First let us recall that the odd-dimensional
quantum spheres can be realised as the quantum homogeneous space. Throughout we assume
q ∈ (0,1). The C∗-algebra of the quantum group SUq(n) denoted by C(SUq(n)) is defined as
the universal C∗-algebra generated by {uij : 1 � i, j � } satisfying the following conditions

n∑
k=1

uiku
∗
jk = δij ,

n∑
k=1

u∗
kiukj = δij , (5.21)

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

Ei1i2···inuj1i1 · · ·ujnin = Ej1j2···jn (5.22)

where

Ei1i2···in :=
{

0,

(−q)(i1,i2,...,in)
if i1, i2, . . . , in are not distinct

where for a permutation σ on {1,2, . . . , n}, (σ ) denotes its length. The C∗-algebra has the
quantum group structure with the comultiplication being defined by

�(uij ) :=
∑

k

uik ⊗ ukj .

Call the generators of SUq(n − 1) as vij . The map φ : C(SUq(n)) → C(SUq(n − 1)) defined
by

φ(uij ) :=
{

vi−1,j−1 if 2 � i, j � n,

δij otherwise
(5.23)

is a surjective unital C∗-algebra homomorphism such that � ◦ φ = (φ ⊗ φ)�. In this way the
quantum group SUq(n − 1) is a subgroup of the quantum group SUq(n). The C∗-algebra of the
quotient SUq(n)/SUq(n − 1) is defined as

C
(
SUq(n)/SUq(n − 1)

) := {
a ∈ C

(
SUq(n)

)
: (φ ⊗ 1)�(a) = 1 ⊗ a

}
.
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Also the C∗-algebra C(SUq(n)/SUq(n − 1)) is generated by {u1j : 1 � j � n}. Moreover the
map ψ : C(S2n−1

q ) → C(SUq(n)/SUq(n − 1)) defined by ψ(zi) := q−i+1u1i is an isomor-
phism.

Let h be the Haar state on the quantum group C(SUq( + 1)) and let L2(SUq( + 1)) be the
corresponding GNS space. We denote the closure of C(S2+1

q ) in L2(SUq(+ 1)) by L2(S2+1
q ).

Then L2(S2+1
q ) is invariant under the regular representation of SUq( + 1). Thus we get a

covariant representation for the dynamical system (C(S2+1
q ),SUq( + 1),�). We denote the

representation of C(S2+1
q ) on L2(S2+1

q ) by πeq. In [4] SUq( + 1) equivariant spectral triples
for this covariant representation were studied and a non-trivial one was constructed. It is proved
in [14] that the Hilbert space L2(S2+1

q ) is unitarily equivalent to 2(N ×Z×N
). Then the self-

adjoint operator Deq constructed in [4] is given on the orthonormal basis {eγ : γ ∈ N
 × Z × N

}
by the formula Deq(eγ ) := dγ eγ where dγ is given by

dγ :=
{∑2+1

i=1 |γi | if (γ+1, γ+2, . . . , γ2+1) = 0 and γ+1 � 0,

−∑2+1
i=1 |γi | else.

In [14], a smooth subalgebra C∞(S2+1
q ) ⊂ C(S2+1

q ) is defined and it is shown that the spectral

triple (C∞(S2+1
q ),L2(S2+1

q ),Deq) is a regular spectral triple with simple dimension spectrum

{1,2, . . . ,2 + 1}. Now we show that the spectral triple (C∞(S2+1
q ),L2(S2+1

q ),Deq) has the
topological weak heat kernel expansion.

We use the same notations as in [14]. Let A∞
 := Σ2(C∞(T)). It follows from Corol-

lary 4.2.3 that C∞(S2+1
q ) ⊂ A∞

 . Let (C∞(S2+1
q ),π, H,D) be the torus equivariant spectral

triple. Let N be the number operator on 2(N) defined by

Neγ :=
(

∑
i=1

γi

)
eγ .

Let us denote the Hilbert space 2(S2+1
q ) by H. We identify H := 2(N × Z) with the

subspace 2(N × Z × {0}) and we denote the orthogonal complement in H by H′
. Then

2(S2+1
q ) = H ⊕ H′

. Define the unbounded operator Dtorus on H by the equation

Dtorus :=
[

D 0
0 −|D| ⊗ 1 − 1 ⊗ N

]
.

Then in [14], it is shown that Deq = Dtorus. We denote representation π ⊕(πe�⊗1) of C(S2+1
q )

on H by πtorus.
Let T ∞ := Σ2

smooth(C) and let T ∞
 := T ∞ ⊗̂ T ∞ ⊗̂ · · · ⊗̂ T ∞ denote the Fréchet tensor

product of  copies. The main theorem in [14] is the following.

Theorem 5.8. For every a ∈ C∞(S2+1
q ), the difference πeq(a) − πtorus(a) ∈ OP−∞

D
⊗̂ T.

Let P := 1+F

2 where F := Sign(D). We denote the rank one projection |e0〉〈e0| on 2(N)

by P where e0 := e(0,0,...,0).



2740 P.S. Chakraborty, S. Sundar / Journal of Functional Analysis 260 (2011) 2716–2741
Proposition 5.9. The equivariant spectral triple (C∞(S2+1
q ), H,Deq) has the topological weak

heat kernel expansion.

Proof. Let J := OP−∞
D

⊗̂ T ∞
 . In [14], the following algebra is considered.

B := {
a1P ⊗ P + a2P ⊗ (1 − P) + a3(1 − P) ⊗ P + a4(1 − P) ⊗ (1 − P) + R:

a1, a2, a3, a4 ∈ A∞
 , R ∈ J

}
.

The algebra B is isomorphic to A∞
 ⊕ A∞

 ⊕ A∞
 ⊕ A∞

 ⊕ J . We give B the Fréchet space
structure coming from this decomposition. In [14], it is shown that B contains C∞(S2+1

q ) and
is closed under δ := [|Deq|, .] and d := [D, .]. Moreover it is shown that δ and d are continu-
ous on B. Note that Feq := F ⊗ P − 1 ⊗ (1 − P). Hence by definition Feq ∈ B. Now note that
the torus equivariant spectral triple (A∞

 , H,D) has the topological weak heat kernel asymp-
totic expansion. Thus it is enough to show that the map τ2+1 : (0,∞) × J → C defined by
τ2+1(t, b) := t2+1 Tr(be−t |Deq|) has uniform asymptotic expansion.

But this follows from the fact that (OP−∞
D

, H,D) and (T ∞, 2(N),N) have the topological
weak heat kernel expansion and by using Lemma 5.5. This completes the proof. �
Remark 5.10. The method in [14] can be applied to show that the equivariant spectral triple
on the quantum SU(2) constructed in [2] has the heat kernel asymptotic expansion property
with dimension 3 and hence deducing the dimension spectrum computed in [7]. It has been
shown in [3] that the isospectral triple studied in [17] differs from the equivariant one (with
multiplicity 2) constructed in [2] only be a smooth perturbation. As a result it will follow that
(since the extension B∞ for the equivariant spectral triple satisfying Definition 5.3 contains the
algebra of smoothing operators) the isospectral spectral triple also has the weak heat kernel
expansion with dimension 3.
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