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Quantum Stiefel manifolds were introduced by Vainerman and Podkolzin,
who classified the irreducible representations of the C∗-algebras underlying
such manifolds. We compute the K -groups of the quantum homogeneous
spaces SUq(n)/SUq(n−2) for n≥ 3. In the case n= 3, we show that K1 is a
free Z-module, and the fundamental unitary for quantum SU(3) is part of a
basis for K1.

1. Introduction

Quantization of mathematical theories is a major theme of research today. The
theories of quantum groups and noncommutative geometry are two prime examples
in this program. Both these programs started in the early 1980s. In the setting of
operator algebras, the theory of quantum groups was initiated independently in
[Woronowicz 1987] and [Vaksman and Soibelman 1988], for the case of quantum
SU(2). Later Woronowicz studied the family of compact quantum groups and ob-
tained Tannaka-type duality theorems [Woronowicz 1988]. The notion of quantum
subgroups and quantum homogeneous spaces soon followed [Podleś 1995].

The noncommutative differential geometry program of Alain Connes [1985]
also started in the 1980s. In his interpretation, geometric data is encoded in elliptic
operators or, more generally, in specific unbounded K-cycles, which he called spec-
tral triples. It is natural to expect that, for compact quantum groups and their homo-
geneous spaces, there should be associated canonical spectral triples. Chakraborty
and Pal [2003] showed that indeed that is the case for quantum SU(2). In fact for
odd-dimensional quantum spheres, one can construct finitely summable spectral
triples that display Poincaré duality [Chakraborty and Pal 2010].

In this connection, a natural question is, are these examples somewhat singu-
lar or can one in general construct finitely summable spectral triples with further
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properties like Poincaré duality, on quantum groups associated with Lie groups or
their homogeneous spaces? Even though there are suggestions to construct such
spectral triples [Neshveyev and Tuset 2010], their nontriviality as a K-cycle is not
known. In fact, there are suggestions that, for quantum groups and their homo-
geneous spaces, one should look for a type-III formulation of noncommutative
geometry. On this formulation also, there are currently two points of view, that
of Alain Connes and Henri Moscovici [2008], and that of Carey–Phillips–Rennie
[2010]. Therefore, to understand the true nature of the interplay between noncom-
mutative geometry and quantum homogeneous spaces, it makes sense to take a
closer look at these algebras.

The underlying C∗-algebras of these compact quantum groups were analyzed
by Soibelman [1990] (also [Levendorskii and Soibelman 1991]) who described
their irreducible representations. Exploiting their findings, Sheu went on to obtain
composition sequences for these algebras. He initially obtained the results for
SUq(3) [Sheu 1991], and later extended them to the general SUq(n) [Sheu 1997].

In this hierarchy of exploration, the next thing to look for would be K-groups;
that is what we are looking for. But, instead of concentrating on quantum groups,
we consider the quantum analogs of the Stiefel manifolds SU(n)/SU(n − m),
introduced by Podkolzin and Vainerman [1999]. Those authors have already de-
scribed the structure of irreducible representations of the quantum Stiefel manifolds
SUq(n)/SUq(n −m). We take up the case of SUq(n)/SUq(n − 2) when n ≥ 3.
We obtain the composition sequences for these algebras and then, utilizing them,
we compute the K-groups. More importantly, as we remarked earlier, applications
towards noncommutative geometry require an explicit understanding of generators
for these K-groups; during our calculation we also achieve that. Specializing to
the case n = 3, we get the K-groups of quantum SU(3).

We should remark that these K-groups can be computed using the variant of
KK-theory introduced by Nagy in [2000]. In fact, it is shown in [Nagy 1998] that
SUq(n) and SU(n) are KK-equivalent, but here we produce explicit generators,
which is essential to test the nontriviality of K-cycles by computing the K-theory–
K-homology pairing. To our knowledge, there are not many instances of K-theory
calculations for compact quantum groups. Other than the paper by Nagy, there
is another related work by McClanahan [1992], where he computes the K-groups
of the universal C∗-algebra generated by the elements of a unitary matrix, and
shows that the associated K1 is generated by the defining unitary itself. This raises
the question whether something similar holds for compact matrix quantum groups,
namely, whether the defining unitary of a compact matrix quantum group is nontriv-
ial in K1. For quantum SU(2), this was remarked by Connes [2004]. Here, we not
only prove that the defining unitary of quantum SU(3) is nontrivial, the K1 is a free
Z-module, and the fundamental unitary for quantum SU(3) is part of a basis for K1.
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2. The quantum Stiefel manifolds and their irreducible representations

The quantum Stiefel manifold Sn,m
q was introduced in [Podkolzin and Vainer-

man 1999]. Throughout, we assume that q ∈ (0, 1). Recall that the C∗-algebra
C(SUq(n)) is the universal unital C∗-algebra generated by n2 elements ui j satis-
fying the conditions

n∑
k=1

uiku∗jk = δi j ,

n∑
k=1

u∗ki uk j = δi j ,

n∑
i1=1

n∑
i2=1

· · ·

n∑
in=1

Ei1i2...in u j1i1 . . . u jn in = E j1 j2... jn ,

where

Ei1i2...in :=

{
0 if i1, i2, . . . in are not distinct,

(−q)`(i1,i2,...,in) otherwise,

and where `(σ ) denotes the length of a permutation σ on {1, 2, . . . , n}. The C∗-
algebra C(SUq(n)) has a compact quantum group structure with comultiplication
given by

1(ui j ) :=
∑

k

uik ⊗ uk j .

Let 1 ≤ m ≤ n − 1. Call vi j the generators of SUq(n − m). The map ϕ :
C(SUq(n))→ C(SUq(n−m)) defined by

ϕ(ui j ) :=

{
vi j if 1≤ i, j ≤ n−m,

δi j otherwise.
(2-1)

is a surjective unital C∗-algebra homomorphism such that1◦ϕ= (ϕ⊗ϕ)1. In this
way, the quantum group SUq(n−m) is a subgroup of the quantum group SUq(n).
The C∗-algebra of the quotient SUq(n)/SUq(n−m) is defined as

C
(
SUq(n)/SUq(n−m)

)
:=
{
a ∈ C(SUq(n)) : (ϕ⊗ 1)1(a)= 1⊗ a

}
.

We refer to [Podkolzin and Vainerman 1999] for the proof of the following:

Proposition 2.1. The C∗-algebra C(SUq(n)/SUq(n−m)) is generated by the last
m rows of the matrix (ui j ), that is, by the set {ui j : n−m+ 1≤ i ≤ n}.

In [Podkolzin and Vainerman 1999], the quotient space SUq(n)/SUq(n − m) is
called a quantum Stiefel manifold and is denoted by Sn,m

q . We will use the same
notation.

Before proceeding further, let us fix some notations. Let N be the set of non-
negative integers. Consider the number operator N and the left shift S on `2(N)
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defined on the standard orthonormal basis {en : n ≥ 0} by

Sen := en−1 and Nen := nen.

Note that N is an unbounded selfadjoint operator. We denote by τ the C∗-algebra
generated by S. The C∗-algebra τ is nothing but the Toeplitz algebra.

The irreducible representations of the C∗-algebra C(Sn,m
q ) was described in

[Podkolzin and Vainerman 1999]. First, we recall the irreducible representations
of C(SUq(n)) as in [Soibelman 1990]. The one-dimensional representations of
C(SUq(n)) are parametrized by the torus Tn−1. We consider Tn−1 as a subset of
Tn under the inclusion (t1, t2, . . . tn−1)→ (t1, t2, . . . , tn−1, tn), where tn :=

∏n−1
i=1 t̄i .

For t := (t1, t2, . . . , tn) ∈ Tn−1, let τt : C(SUq(n))→ C be defined as

τt(ui j ) := tn−i+1δi j .

Then, τt is a ∗-algebra homomorphism. The set {τt : t ∈ Tn−1
} is a complete set of

mutually inequivalent one-dimensional representations of C(SUq(n)).
Denote the transposition (i, i+1) by si . The map πsi :C(SUq(n))→ B(`2(N)),

defined on the generators urs by

πsi (urs) :=



√
1− q2N+2S if r = i, s = i,

−q N+1 if r = i, s = i + 1,

q N if r = i + 1, s = i,

S∗
√

1− q2N+2 if r = i + 1, s = i + 1,

δi j otherwise,

is a ∗-algebra homomorphism. For any two representations ϕ and ξ of C(SUq(n)),
let ϕ ∗ ξ := (ϕ ⊗ ξ)1. For ω ∈ Sn , let ω = si1si2 . . . sik be a reduced expression.
Then, the representation πω :=πsi1

∗πsi2
∗· · ·∗πsik

is an irreducible representation.
Up to unitary equivalence, the representation πω is independent of the reduced
expression. For t ∈ Tn−1 and ω ∈ Sn let πt,ω := τt ∗ πω. We refer to [Soibelman
1990] for the proof of the following:

Theorem 2.2. {πt,ω : t ∈ Tn−1, ω ∈ Sn} is a complete set of mutually inequivalent
irreducible representations of C(SUq(n)).

The irreducible representations of C(Sn,m
q )were studied in [Podkolzin and Vain-

erman 1999]. We recall them here. Embed Tm into Tn−1 via the map

t = (t1, t2, . . . , tm)→ (t1, t2, . . . , tm, 1, 1, . . . , 1, tn),

where tn :=
∏m

i=1 t̄i . For a permutation ω ∈ Sn , let ωs be the permutation in
the coset Sn−mω with the least possible length. We denote the restriction of the
representation πt,ω to the subalgebra C(Sn,m

q ) by πt,ω itself.
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Theorem 2.3 [Podkolzin and Vainerman 1999]. The set {πt,ωs : t ∈ Tm, ω ∈ Sn} is
a complete set of mutually inequivalent irreducible representations of C(Sn,m

q ).

3. Composition sequences

In this section, we derive certain exact sequences analogous to that of [Sheu 1997,
Theorem 4]. We then apply the six-term sequence in K-theory to compute the K-
groups of C(Sn,2

q ).

Lemma 3.1. Let t ∈ Tm and ω := sn−1sn−2 . . . sn−k . The image of C(Sn,m
q ) under

the homomorphism πt,ω contains the algebra of compact operators K(`2(Nk)).

Proof. Since πt,ω(C(Sn,m
q ))=πω(C(Sn,m

q )), it is enough to show that K(`2(Nk))⊂

πω(C(Sn,m
q )). We prove this result by induction on n. Since

πω(unn) := S∗
√

1− q2N+2⊗ 1,

it follows that S⊗ 1 ∈ πω(C(Sn,m
q ). Hence, K(`2(N))⊗ 1⊂ πw(C(Sn,m

q ), and the
result is true when n = 2.

Next, observe that (p ⊗ 1) πω(un,i ) := p ⊗ πω′(vn−1,i ) for 1 ≤ i ≤ n − 1,
where ω′ := sn−2sn−3 . . . sn−k and (vi j ) denotes the generators of C(SUq(n− 1)).
Hence, πω(C(Sn,m

q )) contains the algebra p ⊗ πω′(C(Sn−1,m
q )). Now, by the in-

duction hypothesis, it follows that πω(C(Sn,m
q )) contains p⊗K(`2(Nk−1)). Since

πω(C(Sn,m
q )) contains both K(`2(N)) ⊗ 1 and p ⊗ K(`2(Nk−1)), it follows that

πω(C(Sn,m
q )) contains the algebra of compact operators, which completes the proof.

�

Let w be a word on s1, s2, . . . , sn , say, w := si1si2 . . . sin (not necessarily a re-
duced expression). Define ψw := πsi1

∗ πsi2
∗ . . . πsir

and, for t ∈ Tn , let ψt,w :=

τt ∗ψw. Observe that the image of ψt,w is contained in τ⊗r . We prove that, if w′

is a subword of w, then ψt,w′ factors through ψt,w.

Proposition 3.2. Let w = w1skw2 be a word on s1, s2, . . . , sn . Denote the word
w1w2 by w′ and let t ∈ Tm be given. There exists a ∗-homomorphism

ε : ψt,w(C(Sn,m
q ))→ ψt,w′(C(Sn,m

q ))

such that ψt,w′ = ε ◦ψt,w.

Proof. If `(u) denotes the length of a word u on s1, s2, . . . , sn , then ψt,w(C(Sn,m
q ))

is contained in τ⊗`(w1)⊗ τ ⊗ τ⊗`(w2). Let ε denote the restriction of 1⊗ σ ⊗ 1 to
ψt,w(C(Sn,m

q )), where σ : τ → C is the homomorphism for which σ(S)= 1.

ψt,w(urs)=
∑
j1, j2

ψt,w1(ur j1)⊗πsk (u j1 j2)⊗ψw2(u j2s).
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Since σ(πsk (u j1 j2))= δ j1 j2 , it follows that

ε ◦ψt,w(urs)=
∑

j

ψt,w1(ur j )⊗ψw2(u js)= ψt,w′(urs).

This completes the proof. �

Let w be a word on s1, s2, . . . sn . Then, for n−m+1≤ i ≤ n and 1≤ j ≤ n, the
map Tm

: t → ψt,w(ui j ) ∈ τ
⊗`(w) is continuous. Thus, we get a homomorphism

χw :C(Sn,m
q )→C(Tm)⊗τ⊗`(w) such that χw(a)(t)=ψt,w(a) for all a ∈C(Sn,m

q ).

Remark 3.3. Clearly, for a wordw on s1, s2, . . . sn , the representationsψt,w factors
through χw. One can also prove, as in Proposition 3.2, that if w′ is a subword of
w, then χw′ factors through χw.

Let us introduce some notation. Denote by ω j,i the permutation s j s j−1 . . . si for
j≥ i . If j< i , letω j,i :=1. For 1≤k≤n, letωk :=ωn−m,1ωn−m+1,1 . . . ωn−1,n−k+1.

Theorem 3.4. The homomorphism χωn : C(S
n,m
q )→ C(Tm)⊗ τ⊗`(ωn) is faithful.

Proof. If ω0 ∈ Sn then ωs
0(the representative in Sn−mω0 with the shortest length) is

a subword of ωn . By Remark 3.3, it follows that every irreducible representation of
C(Sn,m

q ) factors through χωn . Hence, χωn is faithful. This completes the proof. �

For 1≤ k ≤ n, let C(Sn,m,k
q ) := χωk (C(S

n,m
q )). Then,

C(Sn,m,k
q )⊂ C(Sn,m,1

q )⊗ τ⊗(k−1).

For 2≤ k ≤ n, let σk denote the restriction of (1⊗ 1⊗(k−2)
⊗σ) to C(Sn,m,k

q ). The
image of σk is C(Sn,m,k−1

q ). We determine the kernel of σk in the next proposition.
We need the following two lemmas.

Lemma 3.5. The algebra χωn−1,n−k (C(S
n,1
q )) contains C∗(t1)⊗K(`2(Nk)), which

is isomorphic to C(T)⊗K(`2(Nk)).

Proof. Note that χωn−1,n−k (unn)= t1⊗ S∗
√

1− q2N+2⊗1. Hence it follows that the
operator

1⊗
√

1− q2N+2⊗ 1= χωn−1,n−k (u
∗
nnunn)

lies in the algebra χωn−1,n−k (C(S
n,1
q )). As

√
1− q2N+2 is invertible, t1⊗ S∗⊗ 1 ∈

χωn−1,n−k (C(S
n,1
q )). Thus, the projection 1⊗ p ⊗ 1 is in the algebra C(Sn,1,k+1

q ).
Observe that, for 1≤ s ≤ n− 1, one has

(3-1) (1⊗ p⊗ 1) χωn−1,n−k (uns)= t1⊗ p⊗πωn−2,n−k (vn−1,s),

where (vi j ) are the generators of C(SUq(n − 1)). If n = 2, then k = 1, and what
we have shown is that C(S2,1,2

q ) contains t1⊗ S∗ and t1⊗ p. Hence, C∗(t1)⊗K is
contained in the algebra C(S2,1,2

q ).
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We can now complete the proof by induction on n. Equation (3-1) shows that
C∗(t1)⊗ p⊗K⊗(k−1) is contained in the algebra C(Sn,1,k+1

q ). Also, t1⊗ S∗⊗ 1 ∈
C(Sn,1,k+1

q ). It follows that C∗(t1)⊗K⊗k is contained in the algebra C(Sn,1,k+1
q ).

This completes the proof. �

Lemma 3.6. Given 1 ≤ s ≤ n, there exist compact operators xs, ys such that
xsπωn−1,n−k (u js) ys = δ js(p⊗ p⊗ · · ·⊗ p), where p := 1− S∗ S.

Proof. Let 1≤ s ≤ n be given. Note that the operator

ωn−1,n−k(uss)= z1⊗ z2⊗ · · ·⊗ zk,

where zi ∈
{
1,
√

1− q2N+2S, S∗
√

1− q2N+2
}
. Define xi , yi by

xi :=


p if zi = 1,

p if zi =
√

1− q2N+2S,

(1− q2)−
1
2 pS if zi = S∗

√
1− q2N+2;

yi :=


p if zi = 1,

(1− q2)−
1
2 S∗ p if zi =

√
1− q2N+2S,

p if zi = S∗
√

1− q2N+2.

Then, xi zi yi = p for 1≤ i ≤ k. Now, let xs := x1⊗ x2⊗ . . . xk and ys := y1⊗ y2⊗

. . . yk . Then,
xsχωn−1,n−k (uss)= p⊗ p⊗ · · ·⊗ p︸ ︷︷ ︸

k times

.

Let j 6= s be given. Then, χωn−1,n−k (u js)= a1⊗ a2⊗ · · ·⊗ ak where

ai ∈
{
1,
√

1− q2N+2 S, S∗
√

1− q2N+2,−q N+1, q N
}
.

Since j 6= s, there exists an i such that ai ∈ {q N ,−q N+1
}. Let r be the largest

integer for which ar ∈ {q N ,−q N+1
}. Then, zr 6= 1 and hence xr ar yr = 0. Thus,

xsχωn−1,n−k (u js) ys = 0, which completes the proof. �

Proposition 3.7. Let 2 ≤ k ≤ n. Then, C(Sn,m,1
q )⊗K(`2(N))⊗(k−1) is contained

in the algebra C(Sn,m,k
q ). Moreover, the kernel of the homomorphism σk is exactly

C(Sn,m,1
q )⊗K(`2(N))⊗(k−1). We have the exact sequence

0−→ C(Sn,m,1
q )⊗K⊗(k−1)

−→ C(Sn,m,k
q )

σk
−→ C(Sn,m,k−1

q )−→ 0.

Proof. First, we prove that C(Sn,m,1
q )⊗ K⊗(k−1) is contained in C(Sn,m,k

q ). For
a ∈ C(Sn,1

q ), one has χωk (a) = 1⊗ χωn−1,n−k+1(a), and it follows from Lemma 3.5
that C(Sn,m,k

q ) contains 1⊗K(`2(Nk−1)). Let n−m+1≤ r ≤m and 1≤ s ≤ n be
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given. Note that

χωk (urs)=

n∑
j=1

χω1(ur j )⊗πωn−1,n−k+1(u js).

By Lemma 3.6, there exist xs, ys ∈ C(Sn,m,k
q ) such that

xsχωk (urs) ys := χω1(urs)⊗ p⊗(k−1),

where p⊗(k−1)
:= p⊗ p⊗· · ·⊗ p. Thus, we have shown that C(Sn,m,k

q ) contains 1⊗
K⊗(k−1) and C(Sn,m,1

q )⊗ p⊗(k−1). Hence, C(Sn,m,k
q ) contains C(Sn,m,1

q )⊗K⊗(k−1).
Clearly, σk vanishes on C(Sn,m,1

q ) ⊗ K⊗(k−1). Let π be an irreducible repre-
sentation of C(Sn,m,k

q ) which vanishes on the ideal C(Sn,m,1
q )⊗ K⊗(k−1). Then,

π ◦ χωk is an irreducible representation of C(Sn,m
q ) and hence π ◦ χωk = πt,ω

for t ∈ Tm and some ω of the form ωn−m,i1ωn−m+1,i2 . . . ωn−1,in−m . Since π ◦
χωk (un,n−k+1)= 0, it follows that πt,w(un,n−k+1)= 0. However, πt,ω(un,n−k+1)=

tn(1⊗ πωn−1,in−m
(un,n−k+1)) and hence in−m > n − k + 1. In other words, ω is a

subword of ωk−1. Therefore, π ◦ χωk factors through χωk−1 and so there exists a
representation ρ of C(Sn,m,k−1

q ) such that π◦χωk =ρ◦χωk−1 . Since χωk−1=σk◦χωk ,
it follows that π = ρ ◦ σk .

We have shown that every irreducible representation of C(Sn,m,k
q ) which van-

ishes on the ideal C(Sn,m,1
q )⊗K⊗(k−1) factors through σk . Hence, the kernel of σk

is exactly the ideal C(Sn,m,1
q )⊗K⊗(k−1). This completes the proof. �

We apply the six-term exact sequence in K-theory to the exact sequence in
Proposition 3.7 to compute the K-groups of C(Sn,2,k

q ) for 1 ≤ k ≤ n. In the next
section, we briefly recall the product operation in K-theory.

4. The operation P

The algebras that we consider will be nuclear. So, no problem arises with regard
to tensor products. Let A and B be C∗-algebras. We have the product maps

K0(A)⊗ K0(B)→ K0(A⊗ B), K1(A)⊗ K0(B)→ K1(A⊗ B),

K0(A)⊗ K1(B)→ K1(A⊗ B), K1(A)⊗ K1(B)→ K0(A⊗ B).

The first map is defined as [p] ⊗ [q] → [p⊗ q]; the second one, as [u] ⊗ [p] →
[u⊗ p+ 1− 1⊗ p]; and the third one likewise. The fourth map is defined using
Bott periodicity and the first product; we describe it briefly, referring the reader to
[Connes 1981, Appendix] for details.

Let h : T2
→ P1(C) := {p ∈ Proj(M2(C)) : trace(p)= 1} be a degree-one map.

Given unitaries u ∈ Mp(A) and v ∈ Mq(B), the product [u] ⊗ [v] is given by
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[h(u, v)] − [e0], where

e0 =

(
1 0
0 0

)
∈ M2(Mpq(A⊗ B))

and h(u, v) is the matrix with entries hi j (u ⊗ 1, 1⊗ v). We denote the image of
[x]⊗ [y] by [x]⊗ [y] itself. Let A be a unital commutative C∗-algebra. Then, the
multiplication m : A⊗ A→ A is a C∗-algebra homomorphism. Hence, we get a
map at the K-theory level from K1(A)⊗ K1(A) to K0(A).

Suppose U and V are two commuting unitaries in a C∗-algebra B. If A :=
C∗(U, V ), then A is commutative. Define

P(U, V ) := K0(m)([U ]⊗ [V ]),

which is an element in K0(A). By composing with the inclusion map, we can
think of it as an element in K0(B). From the formula of [Connes 1981] that we
just recalled, the following properties are clear:

(1) If U and V are commuting unitaries in A, and p is a rank-one projection in
K, then we have P(U ⊗ p+ 1− 1⊗ p, V ⊗ p+ 1− 1⊗ p) := P(U, V )⊗ p.

(2) If U and V are commuting unitaries, and p is a projection that commutes with
U and V , then P(U, V p+ 1− p)= P(U p+ 1− p, V p+ 1− p).

(3) If ϕ : A→ B is a unital homomorphism, and U and V are commuting unitaries
in A, then K0(ϕ)(P(U, V ))= P(ϕ(U ), ϕ(V )).

(4) If U is a unitary in A, then P(U,U )=0. Since P1(C) is simply connected, the
matrix h(U,U ) is path-connected to a rank-one projection in M2(C). Hence,
P(U,U )= 0.

We need the following lemma in the six-term computation. Let z1⊗ 1 and 1⊗ z2

be the generating unitaries of C(T)⊗C(T). Then, K0(C(T2)) is isomorphic to Z2

and is generated by 1 and P(z1⊗ 1, 1⊗ z2).

Lemma 4.1. Consider the exact sequence

0−→ C(T)⊗K−→ C(T)⊗ τ −→ C(T)⊗C(T)−→ 0

and the six-term sequence in K-theory

K0(C(T)⊗K) // K0(C(T)⊗ τ) // K0(C(T)⊗C(T))

δ
��

K1(C(T)⊗C(T))

∂

OO

K1(C(T)⊗ τ)oo K1(C(T)⊗K).oo

The subgroup generated by δ(P(z1⊗1, 1⊗z2)) coincides with the group generated
by z1⊗ p+ 1− 1⊗ p, which is K1(C(T)⊗K)∼= Z.



284 PARTHA SARATHI CHAKRABORTY AND S. SUNDAR

Proof. The Toeplitz map ε : τ → C(T) induces an isomorphism at the K0-level.
Thus, by the Künneth theorem, it follows that the image of K0(1⊗ε) is K0(C(T))⊗
K0(C(T)), which is the subgroup generated by [1]. The inclusion 0→ K→ τ

induces the zero map at the K0 level and hence, again by the Künneth theorem, the
inclusion 0→C(T)⊗K→C(T)⊗ τ induces the zero map at the K1-level. Thus,
the image of δ is K1(C(T)⊗K), which completes the proof. �

Corollary 4.2. Let 0 −→ I −→ A
ϕ
−→ B −→ 0 be a short exact sequence of

C∗-algebras. Consider the six-term sequence in K-theory

K0(I ) // K0(A)
K0(ϕ) // K0(B)

δ
��

K1(B)

∂

OO

K1(A)K1(ϕ)
oo K1(I ).oo

Suppose that U and V are two commuting unitaries in B such that there exists a
unitary X and an isometry Y with ϕ(X)=U and ϕ(Y )= V . If X and Y commute,
then the subgroup generated by δ(P(U, V )) coincides with the subgroup generated
by the unitary X (1− Y Y ∗)+ Y Y ∗ in K1(I ).

Proof. Since C(T) is the universal C∗-algebra generated by a unitary, and τ is
the universal C∗-algebra generated by an isometry, there exists homomorphisms
8 : C(T)⊗ τ → A and 9 : C(T)⊗C(T)→ B such that

8(z1⊗ 1) := X, 8(1⊗ S∗) := Y, 9(z1⊗ 1) :=U, 9(1⊗ z2) := V .

We have the commutative diagram

0 // C(T)⊗K

8
��

// C(T)⊗ τ

8
��

// C(T)⊗C(T)

9
��

// 0

0 // I // A
ϕ // B // 0.

By the functoriality of δ and P , it follows that

δ(P(U, V ))= K1(8)(δ(P(z1⊗ 1, 1⊗ z2))).

By Lemma 4.1, it follows that the subgroup generated by δ(P(U, V )) is the sub-
group generated by8(z1⊗p+1−1⊗p) in K1(I ). Note that8(z1⊗p+1−1⊗p)=
X (1− Y Y ∗)+ Y Y ∗. This completes the proof. �

5. K-groups of C(Sn,2,k
q ) for k < n

In this section, we compute the K-groups of C(Sn,2,k
q ) for 1 ≤ k < n, by applying

the six-term sequence in K-theory to the exact sequence in Proposition 3.7. We
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fix some notation. If q is a projection in `2(N) then qr denotes the projection
q ⊗ q ⊗ · · ·⊗ q (r factors) in `2(Nr ). We define the unitaries Uk, Vk, uk, vk by

Uk := t1⊗ 1n−2⊗ pk−1+ 1− 1⊗ 1n−2⊗ pk−1,

Vk := t2⊗ pn−2⊗ 1k−1+ 1− 1⊗ pn−2⊗ 1k−1,

uk := t1⊗ pn−2⊗ pk−1+ 1− 1⊗ pn−2⊗ pk−1,

vk := t2⊗ pn−2⊗ pk−1+ 1− 1⊗ pn−2⊗ pk−1.

Note that the operators Uk, Vk, uk, vk lies in the algebra C(Sn,2,k
q ). Indeed,

Uk = 1{1} (un,n−k+1u∗n,n−k+1) un,n−k+1+ 1− 1{1} (un,n−k+1u∗n,n−k+1),

Vk = 1{1} (un−1,1u∗n−1,1) un−1,1+ 1− 1{1} (un−1,1u∗n−1,1),

uk = 1{1} (un,n−k+1u∗n,n−k+1un−1,1u∗n−1,1) un,n−k+1+ 1

− 1{1} (un,n−k+1u∗n,n−k+1un−1,1u∗n−1,1),

vk = 1{1}(un,n−k+1u∗n,n−k+1un−1,1u∗n−1,1)un−1,1+ 1

− 1{1} (un,n−k+1u∗n,n−k+1un−1,1u∗n−1,1).

Note that the unitaries Un, un and vn lie in the algebra C(Sn,2,n
q ). We start with the

computation of the K-groups of C(Sn,2,1
q ).

Lemma 5.1. The K-groups K0(C(Sn,2,1
q )) and K1(C(Sn,2,1

q )) are both isomorphic
to Z2. In fact, [U1] and [V1] form a Z-basis for K1(C(Sn,2,1

q )), while [1] and
P(u1, v1) form a Z-basis for K0(C(Sn,2,1

q )).

Proof. First, note that C(Sn,2,1
q ) is generated by t1⊗ 1n−2 and t2⊗πωn−2,1(un−1, j )

for 1≤ j ≤n−1. The C∗-algebra generated by {t2⊗πωn−2,1(un−1, j ) : 1≤ j ≤n−1}
is isomorphic to C(S2n−3

q ). Hence, C(Sn,2,1
q ) is isomorphic to C(T)⊗C(S2n−3

q ).
Also, K0(C(S2n−3

q ) and K1(C(S2n−3
q )) are both isomorphic to Z, with [1] gener-

ating K0(C(S2n−3
q )), and [t2⊗ pn−2+ 1− 1⊗ pn−2] generating K1(C(S2n−3

q )).
Now, by the Künneth theorem for the tensor product of C∗-algebras (see [Black-

adar 1986]), it follows that C(Sn,2,1
q ) has both K1 and K0 isomorphic to Z2, with

[U1] and [V1] generating K1(C(Sn,2,1
q )), and [1] and

P(t1⊗ 1n−2, t2⊗ pn−2+ 1− 1⊗ pn−2)

generating K0(C(Sn,2,1
q )). The projection 1⊗ pn−2= 1{1}(χωn−2,1(un−1,1u∗n−1,1)) is

in C(Sn,2,1
q ) and commutes with the unitaries t1⊗1n−2 and t2⊗ pn−2+1−1⊗ pn−2.

Hence,
P(t1⊗ 1n−2, t2⊗ pn−2+ 1− 1⊗ pn−2)= P(u1, v1).

This completes the proof. �
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Proposition 5.2. Let 1 ≤ k < n. The K-groups K0(C(Sn,2,k
q )) and K1(C(Sn,2,k

q ))

are both isomorphic to Z2 and, in particular, [Uk] and [Vk] form a Z-basis for
K1(C(Sn,2,k

q )), while [1] and P(uk, vk) form a Z-basis for K0(C(Sn,2,k
q )).

Proof. We prove this result by induction on k. The case k = 1 is just Lemma 5.1.
Assume the result to be true for k. From Proposition 3.7, we have the short exact
sequence

0−→ C(Sn,2,1
q )⊗K⊗(k) −→ C(Sn,2,k+1

q )
σk+1
−→ C(Sn,2,k

q )−→ 0,

which gives rise to the following six-term sequence in K-theory:

K0(C(Sn,2,1
q )⊗K⊗k) // K0(C(Sn,2,k+1

q ))
K0(σk+1) // K0(C(Sn,2,k

q ))

δ
��

K1(C(Sn,2,k
q )

∂

OO

K1(C(Sn,2,k+1
q ))

K1(σk+1)
oo K1(C(Sn,2,1

q )⊗K⊗k).oo

To compute the six-term sequence, we determine δ and ∂ . Since σk+1(Vk+1)= Vk ,
it follows that ∂([Vk])=0. Since C(Sn,2,k+1

q ) contains the algebra C(Sn,2,1
q )⊗K⊗k ,

it follows that the operator

X̃ := t1⊗ 1n−2⊗ q N
⊗ q N

⊗ . . . q N︸ ︷︷ ︸
(k−1) times

⊗S∗

is in the algebra C(Sn,2,1
q ); indeed, the difference X − χωk+1(un,n−k+1) lies in the

ideal C(Sn,2,1
q )⊗K⊗k . Let

X := 1{1}(X̃∗ X̃) X̃ + 1− 1{1}(X̃∗ X̃).

Then, X is an isometry such that σk+1(X)=Uk and hence

∂([Uk])= [1− X∗X ] − [1− X X∗].

Thus, ∂([Uk])=−[1⊗1n−2⊗pk]. The image of ∂ is the subgroup of K0(C(Sn,2,1
q )⊗

K⊗k) generated by [1⊗ 1n−2⊗ pk], while its kernel is [Vk].
Next, we compute δ. Since σk+1(1)= 1, it follows that δ([1])= 0. Let

Y := (1⊗ pn−2⊗ 1k)(1⊗ 1n−2⊗ pk−1⊗ 1) X̃ + 1− 1⊗ pn−2⊗ pk−1⊗ 1.

Since 1⊗ pn−2⊗ 1 = 1{1}(χωk (u
∗

n−1,1un−1,1)) and 1⊗ 1n−2⊗ pk−1 = 1{1}(X̃∗ X̃),
it follows that Y ∈ C(Sn,2,k+1

q ). Also,

Y = t1⊗ pn−2⊗ pk−1⊗ S∗+ 1− 1⊗ pn−2⊗ pk−1⊗ 1.
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Note that Y is an isometry such that σk+1(Y ) = uk . One has σk+1(vk+1) = vk .
Observe that Y and vk+1 commute. By Lemma 4.1, it follows that the image of δ
is the subgroup generated by [vk+1(1− Y Y ∗)+ Y Y ∗] = [V1⊗ pk + 1− 1⊗ pk].

This computation with the six-term sequence implies that K0(C(Sn,2,k+1
q )) is

isomorphic to Z2 and is generated by P(u1, v1)⊗ pk = P(uk, vk) and [1]. Also,
the group K1(C(Sn,2,k+1

q )) is isomorphic to Z2 and is generated by [Vk+1] and
[U1⊗ pk + 1− 1⊗ pk] = [Uk+1]. This completes the proof. �

6. K-groups of C(Sn,2
q )

In this section, we compute the K-groups of C(Sn,2
q ). We start with a few obser-

vations.

Lemma 6.1. In the permutation group Sn , one has ωn−2,1ωn−1,1 = ωn−1,1ωn−1,2.

Proof. First, note that si si+1si = si+1si si+1, and si s j = s j si if |i − j | ≥ 2. Hence,
ωn−1,kωn−1,1 = ωn−1,k+1ωn−1,1sk+1. The result follows by induction on k. �

We denote the representation χωn−1,1∗ πωn−1,2 by χ̃ωn . Since ωn−1,1ωn−1,2 is a
reduced expression for ωn , the representations χ̃ωn and χωn are equivalent. Let U
be a unitary such that Uχωn ( · )U∗ = χ̃ωn ( · ). It is clear that

χ̃ωn (C(S
n,2
q ))⊂ C(Tm)⊗ τ ⊗ τ⊗`(ωn−1).

Let σ̃n denote the restriction of 1⊗ σ ⊗ 1⊗(2(n−2) to χ̃ωn (C(S
n,2
q )). Since

σ̃n(χ̃ωn (ui j ))= χωn−1(ui j ),

we have the commutative diagram

χωn (C(S
n,2
q )) χ̃ωn (C(S

n,2
q )).

C(Sn,2,n−1
q )

U ( · )U∗

σn σ̃n

Lemma 6.2. There exists a coisometry X ∈ χωn (C(S
n,2
q )) such that σn(X)= Vn−1

and X∗ X = 1− 1{1}(χωn (u
∗

n1 un1)).

Proof. From the commutative diagram above, it is enough to show that there exists
a coisometry X̃ ∈ χ̃ωn (C(S

n,2
q )) such that

σ̃n(X)= Vn−1 and X∗ X = 1− 1{1}(χ̃ωn (u
∗

n1 un1).

Note that

χ̃ωn (u
∗

n−1,1un−1,1− q2un1un1)= 1⊗ 1⊗ q2N
⊗ q2N

⊗ . . . q2N︸ ︷︷ ︸
(n−2) times

⊗1n−2.
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Hence the projection 1⊗ 1⊗ pn−2 ⊗ 1n−2 = 1{1}(χ̃ωn (u
∗

n−1,1un−1,1 − q2u∗n1un1))

is in the algebra χ̃ωn (C(S
n,2
q )). Now let Y := (1⊗ 1⊗ pn−2 ⊗ 1n−2)χ̃ωn (un−1,1).

Then,
Y := t2⊗

√
1− q2N+2 S⊗ pn−2⊗ 1n−2.

Hence, the operator Z := t2 ⊗ S ⊗ pn−2 ⊗ 1n−2 is in the algebra χ̃ωn (C(S
n,2
q )).

Now, let X̃ := Z +1− Z Z∗. Then, X̃ is a coisometry such that σ̃n(X̃)= Vn−1 and
X̃∗ X̃ = 1− 1⊗ pn−1⊗ 1n−2, which is 1− 1{1}(χ̃ωn (u

∗

n1un1)). This completes the
proof. �

Observe that the operator

Z̃ := t1⊗ 1n−1⊗ q N
⊗ q N

⊗ . . . q N︸ ︷︷ ︸
(n−2) times

⊗S∗

lies in the algebra C(Sn,2,n
q ), since the difference Z̃ − χωn (un,2) lies in the ideal

C(Sn,2,1
q )⊗K⊗(n−1). Let Z := 1{1}(Z̃∗ Z̃) Z̃ and Yn := Z + 1− Z∗Z . Then,

Zn = t1⊗ 1n−2⊗ pn−2⊗ S∗,(6-1)

Yn = t1⊗ 1n−2⊗ pn−2⊗ S∗+ 1− 1⊗ 1n−2⊗ pn−2⊗ 1.(6-2)

Hence, Y is an isometry and Y Y ∗ = 1−1{1}(χωn (u
∗

n1un1)). If X is a coisometry in
C(Sn,2,n

q ) such that σn(X) = vn−1 and X∗X := 1− 1{1}(χωn (u
∗

n1un1)), then XY is
a unitary. (The existence of such an X was shown in Lemma 6.2.)

Proposition 6.3. The K-groups K0(C(Sn,2
q ) and K1(C(Sn,2

q ) are both isomorphic
to Z2. In particular,

(1) the projections [1] and P(un, vn) generate K0(C(Sn,2
q ));

(2) the unitaries Un and X Yn generate K1(C(Sn,2
q )), where X is a coisometry in

C(Sn,2
q ) such that σn(X) = Vn−1 and X∗X = 1− 1{1}(u∗n1un1), while Yn is as

in (6-2)

Proof. By Proposition 3.7, we have the exact sequence

0−→ C(Sn,2,1
q )⊗K⊗(n−1)

−→ C(Sn,2,n
q )

σn
−→ C(Sn,2,n−1

q )−→ 0,

which gives rise to the six-term sequence in K-theory

K0(C(Sn,2,1
q )⊗K⊗n−1) // K0(C(Sn,2,n

q ))
K0(σn) // K0(C(Sn,2,k

q ))

δ
��

K1(C(Sn,2,n−1
q ))

∂

OO

K1(C(Sn,2,n
q ))

K1(σn)

oo K1(C(Sn,2,1
q )⊗K⊗n−1).oo
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Now, we evaluate ∂ and δ to compute the six-term sequence. Since [Un−1] and
[Vn−1] generate K1(C(Sn,2,n−1

q )), it follows that [Un−1] and [Vn−1Un−1] gener-
ate K1(C(Sn,2,n−1

q )). As X Yn is a unitary with σn(X Yn) = Vn−1Un−1, it follows
that ∂([Vn−1Un−1]) = 0. Next, Yn is an isometry with σn(Yn) = Un−1. Hence
∂([Un−1])= [1− Y ∗Y ] − [1− Y Y ∗]. Thus, ∂([Un−1])=−[1⊗ 1n−2⊗ pn−1].

Now, we compute δ. Since σn(1) = 1, it follows that δ([1]) = 0. One observes
that pn−2⊗ S∗πωn−1,1(u j1)= 0 if j > 1. Hence,

Znχωn (un−1,1)= t1t2⊗ pn−2⊗ pn−2⊗
√

1− q2N+2,

where Zn is as defined in (6-1). The operator Rn := t1t2 ⊗ pn−2 ⊗ pn−2 ⊗ 1 lies
in the algebra C(Sn,2,n

q ), since the difference Rn − Znχωn (un−1,1) lies in the ideal
C(T2)⊗K⊗(2n−3). Hence, the projection 1⊗ pn−2⊗ pn−2⊗ 1 lies in the algebra
C(Sn,2,n

q ). Now, define

Sn := Rn + 1− Rn R∗n ,

Tn := (1⊗ pn−2⊗ pn−2⊗ 1)Zn + 1− 1⊗ pn−2⊗ pn−2⊗ 1.

Then, Sn is a unitary and Tn is an isometry such that σn(Sn) = un−1vn−1 and
σn(Tn) = un−1. Moreover, Sn and Tn commute. Note that P(un−1, vn−1) =

P(un−1, un−1vn−1). By Lemma 4.1, the image of δ is the subgroup generated
by Sn(1− Tn T ∗n )+ Tn T ∗n in K1(C(Sn,2,1

q )⊗K⊗(n−1)). Now,

Sn(1− TnT ∗n )+ TnT ∗n = t1t2⊗ pn−2⊗ pn−1+ 1− 1⊗ pn−2⊗ pn−1.

Since 1⊗ pn−2 is trivial in K0(C(S2n−3
q )), the unitary t1⊗ pn−2+ 1− 1⊗ pn−2 is

trivial in K1(C(Sn,2,1
q ))=K1(C(T)⊗C(S2n−3

q )). One has [Sn(1−TnT ∗n )+TnT ∗n ]=
[V1⊗ pn−1+ 1− 1⊗ pn−1] in K1(C(Sn,2,1

q )⊗K⊗(n−1)).
This computation, with the exactness of the six-term sequence, completes the

proof. �

7. K-groups of quantum SU(3)

In this section, we show that when n = 3 the unitary X Yn in Proposition 6.3 can
be replaced by the fundamental 3×3 matrix (ui j ) of C(SUq(3)). First, note that
for n = 3 we have C(Sn,2

q ) = C(SUq(3)), since C(SUq(1)) = C. The embed-
ding SUq(1) ⊆ SUq(3) is given by the counit. The quotient C(SUq(3)/SUq(1))
becomes isomorphic with C(SUq(3)). In [Sheu 1997], the algebra C(S3,2,1

q ) is
denoted C(Uq(2)). Then, C(Uq(2))=C(T)⊗C(SUq(2)). Let ev1 :C(T)→C be
the evaluation at the point 1. Then, ϕ = (ev1⊗1) σ2σ3, where ϕ : C(SUq(3))→
C(SUq(2)) is the subgroup homomorphism defined in (2-1).

Proposition 7.1. The K-group K1(C(SUq(3)) is isomorphic to Z2, generated by
the unitary U3 := t1⊗ p⊗ p+1−1⊗ p⊗ p and the fundamental unitary U = (ui j )
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Proof. By Proposition 6.3, we know that K1(C(SUq(3)) is isomorphic to Z2 and
generated by [U3] and [XY3], where X is a coisometry such that σ3(X) = V2 and
X∗X =1−1{1}(χω3(u

∗

31u31)). Observe that ϕ(X)= t2⊗ p+1−1⊗ p and ϕ(Y3)=1.
Hence, ϕ(XY3)= t2⊗ p+ 1− 1⊗ p. Also note that

ϕ(U3)= 0 and ϕ(U )=
[

u 0
0 1

]
,

where u denote the fundamental unitary of C(SUq(2)). Since K1(C(SUq(2)) is
isomorphic to Z, the proof is complete if we show that t2⊗ p+ 1− 1⊗ p and [u]
represent the same element in K1(C(SUq(2)); we do this in the next lemma. �

Denote by uq the 2×2 fundamental unitary u = (ui j ) of C(SUq(2)). Consider
the representation χs1 : C(SUq(2))→ B(`2(Z)⊗ `2(N)). We let the unitary t act
on `2(Z) as the right shift, that is, ten = en+1. Let {en,m : n ∈ Z,m ∈ N} be the
standard orthonormal basis for the Hilbert space `2(Z)⊗ `2(N). For an integer
k, denote by Pk the orthogonal projection onto the closed subspace spanned by
{en,m : n+m ≤ k}, and set Fk := 2Pk − 1. Note that Fk is a selfadjoint unitary.

Proposition 7.2. For any integer k, the triple (χs1, `
2(Z)⊗ `2(N), Fk) is an odd

Fredholm module for C(SUq(2)), and we have the pairing

(1) 〈[uq ], Fk〉 = −1,

(2) 〈t ⊗ p+ 1− 1⊗ p, Fk〉 = −1, where p = 1− S∗ S.

Proof. It is not difficult to show that C(SUq(2)) is generated by t ⊗ S and t ⊗ p.
Now, one can see that [t⊗S, Pk]=0 and [t⊗p, Pk] is a finite-rank operator. Hence,
the triple (χs1, `

2(Z)⊗`2(N), Fk) is an odd Fredholm module for C(SUq(2)). Since
C(SUq(2)) is generated by t ⊗ S and t ⊗ p, it follows that u p ∈ C(SUq(2)) for
every p > 0. Also, as p→ 0, u p approaches u in norm, where u is given by

u :=
(

t ⊗ S 0
t̄ ⊗ p t̄ ⊗ S∗

)
.

Hence, [uq ] = [u] in K1(C(SUq(2))). It is now easy to check that 〈[u], Fk〉 = −1
and 〈[t ⊗ p+ 1− 1⊗ p], Fk〉 = −1. This completes the proof. �
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