Pomeron pole plus grey disk model: Real parts, inelastic cross sections and LHC data

S.M. Roy

HBCSE, Tata Institute of Fundamental Research, Mumbai, India

ARTICLE INFO

Article history:
Received 18 June 2016
Received in revised form 2 November 2016
Accepted 15 November 2016
Available online 18 November 2016
Editor: J.-P. Blaizot

ABSTRACT

I propose a two component analytic formula $F(s, t) = F^{(1)}(s, t) + F^{(2)}(s, t)$ for $(ab \to ab) + (ab \to ab)$ scattering at energies ≥ 100 GeV, where s, t denote squares of c.m. energy and momentum transfer. It saturates the Froissart–Martin bound and obeys Auberson–Kinoshita–Martin (AKM) [1,2] scaling. I choose $Im F^{(1)}(s, 0) + Im F^{(2)}(s, 0)$ as given by Particle Data Group (PDG) fits [3,4] to total cross sections, corresponding to simple and triple poles in angular momentum plane. The PDG formula is extended to non-zero momentum transfers using partial waves of $Im F^{(1)}$ and $Im F^{(2)}$ motivated by Pomeron pole and ‘grey disk’ amplitudes and constrained by inelastic unitarity. $Re F(s, t)$ is deduced from real analyticity: I prove that $Re F(s, t)/Im F(s, 0) \to (\pi / \text{ln} s)/d\tau (s \text{Im} F(s, t)/\text{Im} F(s, 0))$ for $s \to \infty$ with $\tau = (\text{ln} s)^2$ fixed, and apply it to $F^{(2)}$. Using also the forward slope fit by Schegelsky–Ryskin [5], the model gives real parts, differential cross sections for $|t| < 0.3$ GeV2, and inelastic cross sections in good agreement with data at 546 GeV, 1.8 TeV, 7 TeV and 8 TeV. It predicts for inelastic cross sections for pp or $\bar{p}p$, $\sigma_{\text{inel}} = 72.7 \pm 1.0$ mb at 7 TeV and 74.2 ± 1.0 mb at 8 TeV in agreement with pp Totem [7–10] experimental values 73.1 ± 1.3 mb and 74.7 ± 1.7 mb respectively, and with Atlas [12–15] values 71.3 ± 0.9 mb and 71.7 ± 0.7 mb respectively. The predictions $\sigma_{\text{inel}} = 48.1 \pm 0.7$ mb at 546 GeV and 58.5 ± 0.8 mb at 1800 GeV also agree with $\bar{p}p$ experimental results of Abe et al. [47] 48.4 ± 0.9 mb at 546 GeV and 60.3 ± 2.4 mb at 1800 GeV. The model yields for $\sqrt{s} > 0.5$ TeV, with PDG2013 [4] total cross sections, and Schegelsky–Ryskin slopes [5] as input, $\sigma_{\text{inel}}(s) = 22.6 + 0.34\text{ln}s + 0.158(\text{ln}s)^2$ mb, and $\sigma_{\text{inel}}/\sigma_{\text{tot}} \to 0.56$, $s \to \infty$, where s is in GeV2 units. Continuation to positive t indicates an ‘effective’ t-channel singularity at $\sim (1.5$ GeV$)^2$, and suggests that usual Froissart–Martin bounds are quantitatively weak as they only assume absence of singularities up to $4m^2$.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Precision measurements of pp cross sections at LHC [7–11], and in cosmic rays [17] motivate me to present a model for $ab \to ab$ scattering amplitude at c.m. energies $\sqrt{s} \geq 100$ GeV described by an analytic formula containing very few parameters. Neglecting terms with a power decrease at high s, the Particle Data Group (PDG) fits to total cross sections [3,4] are the sum of one constant component and another rising as $(\text{ln}s)^2$, corresponding to a simple pole and a triple pole at $J = 1$ in the angular momentum plane,

$$
\sigma_{\text{tot}}^{ab} = \sigma_{\text{tot}}^{(1), ab} + \sigma_{\text{tot}}^{(2), ab},
$$

$$
\sigma_{\text{tot}}^{(1), ab} = P_{ab}, \quad \sigma_{\text{tot}}^{(2), ab} = H(\text{ln}s/\sqrt{m}^2).
$$

(1)

I propose that, analogously, the full amplitude $F(s, t) = F^{(1)}(s, t) + F^{(2)}(s, t)$, where, $F^{(1)}$ is a Pomeron simple pole amplitude, $Im F^{(2)}$ has partial waves with a smooth cut-off at impact parameter $b = R(s)$ corresponding to a grey disk and $Re F^{(2)}(s, t)$ is calculated from a theorem I prove using real analyticity and Auberon–Kinoshita–Martin (AKM) [1,2] scaling for $s \to \infty$ with fixed $t(\text{ln}s)^2$. Inelastic unitarity is tested using inputs of total cross sections, forward slopes and Pomeron parameters. Only inputs leading to unitary amplitudes are accepted. Model predictions for inelastic cross sections, near forward real parts and differential cross sections agree with existing data and can be tested against future LHC experiments.

2. Froissart–Martin bound basics

Froissart [18], from the Mandelstam representation, and Martin [19], from axiomatic field theory, proved that the total cross-
section \(\sigma_{\text{tot}}(s)\) for two particles \(a, b\) to go to anything must obey the bound,
\[
\sigma_{\text{tot}}(s) \leq s \rightarrow \infty C \left[\ln(s/s_0)\right]^2,
\]
where \(C, s_0\) are unknown constants. It was proved later [20] that \(C = 4\pi/(f_0)\), where \(f_0\) is the lowest singularity in the \(t\)-channel. This bound has been extremely useful in theoretical investigations [21,22] and high energy models [23–32]. Analogous bounds on the inelastic cross section have been obtained by Martin [33] and Wu et al. [34]; for pion–pion case, Martin and Roy obtained bounds on energy averaged total [35] and inelastic cross sections [36] which also fix the scale factor \(s_0\) in these bounds.

3. Normalization

For the \(ab \rightarrow ab\) scattering amplitude \(F(s, t)\), \(a \neq b\), with \(k\) = c.m. momentum, and \(z = 1 + t/(2k^2),
\[
F(s, t) = \sqrt{s}/(4k) \sum_{l=0} (2l + 1) P_l(z) a_l(s),
\]
\[
\sigma_{\text{tot}}(s) = 4\pi/(k^2) \sum_{l=0} (2l + 1) |a_l(s)|^2
\]
with the inelastic unitarity constraint \(ima_l(s) \geq |a_l(s)|^2\). For identical particles \(a = b\), the partial waves \(a_l(s) \rightarrow 2a_l(s)\) in the above partial wave expansions for \(F(s, t)\), and \(\sigma_{\text{tot}}(s)\), but the odd partial waves are zero. We have the same formulae for the unitarity constraint, and the differential cross section as given above.

At high energy, using \(a_l(s) \equiv a_l(b, s)\), \(l =bk\), where \(b\) is the impact parameter, and \(P_l(\cos \theta) \sim J_l((2l + 1) \sin(\theta/2)) + O(\sin^2(\theta/2)),\) we have the impact parameter representation,
\[
F(s, t) = k \sqrt{s}/2 \int_0^\infty bd\sigma(b, s) J_0(b \sqrt{-t})
\]
\[
\sigma_{\text{tot}} = 8\pi \int_0^\infty bdb |a(b, s)|^2
\]
\[
d\sigma/dt = 4\pi \int_0^\infty bd\sigma(b, s) J_0(b \sqrt{-t})^2
\]

There exist very good fits to high energy data [37,38] with a very large number of free parameters. There are also very eikonal based models involving several free parameters [23–32]. The recent eikonal based model of Block and Halzen (BH) [39,40] uses high energy data to guess the glue-ball mass and to probe whether the proton is a black disk.

4. A two component partial wave model

I present a two component model with very few parameters and with analytic formulae for the total amplitude incorporating unitarity-analyticity constraints, PDG total cross sections and the AKM scaling theorem.

4.1. Imaginary parts

I use the two component PDG total cross section fit. I propose that in the impact parameter picture, the Imaginary part of the partial waves at fixed \(s\) is also a sum of two components, one part \(ImF_0^I(b, s)\) a Gaussian corresponding to a Pomeron pole, and the other \(ImF^2(b, s)\) a polynomial of degree 2n in \(b^2\) with a smooth cut-off at \(b = R(s), n\) being a positive integer, so that \(ImF^2(b, s)\) is continuous and has continuous derivative at \(b = R(s).\) The second component corresponds to a “grey” disk with cross section rising as \((lns)^n\).

\[
ImF(b, s) = ImF_0^I(b, s) + ImF^2(b, s),
\]
\[
ImF_0^I(b, s) = C(s) \exp(-2b^2/D^2(s)),
\]
\[
ImF^2(b, s) = E(s)(1 - b^2/R^2(s))^{2n} \delta(R(s) - b),
\]
where \(\delta(x) = 1, \text{ for } x \geq 0, \text{ and 0 otherwise.} \) The unitarity constraints are,
\[
C(s) \geq 0, E(s) \geq 0, 0 \leq C(s) + E(s) \leq 1.
\]
In Eq. (5) we take the simplest choice \(n = 1\) in this paper. Using the ansatz for \(ImF_0^I(b, s)\), integrating over \(b,\) and matching the result for \(ImF_0^I(s, t)\) with the standard small \(t\) Pomeron amplitude,
\[
F_0^I(s, t) = \frac{k \sqrt{s}}{16\pi} \sigma_{\text{tot}}^I \exp(t b^p + t\alpha' \ln(s)) \left[1 + \frac{t^2}{2} \alpha'^2\right],
\]
we obtain,
\[
D^2(s) = 8(b^p + \alpha' \ln s), \quad C(s) = \sigma_{\text{tot}}^I/(2\pi D^2(s)).
\]
Since \(\sigma_{\text{tot}}^I\) is a constant, \(C(s) \rightarrow \text{const.}(\ln s), s \rightarrow \infty \text{ for } \alpha' \neq 0.\) Similarly, the ansatz for \(ImF^2(b, s)\) with \(n = 1\) yields,
\[
ImF^2(s, t) = E(s) \frac{k \sqrt{s}}{q^2 R(s)} \hat{j}_3(qR(s)), \quad q \equiv \sqrt{-t},
\]
where \(j_m(x)\) denotes the Bessel function of order \(m.\) Hence,
\[
\sigma_{\text{tot}}^2 = \frac{16\pi}{k \sqrt{s}} ImF^2(0, s) = \frac{4\pi}{3} E(s) R^2(s).
\]
Thus, \(C(s) D^2(s) \text{ and } E(s) R^2(s) \text{ are determined from the PDF total cross section fits using Eqs. (8) and (10) respectively.} \) A nice feature of the model is that the above unitarity constraints (6) as well as a stronger version including real parts can be readily tested, and provide acceptability criteria for extrapolations of experimental data for pp scattering.

4.2. Theorem on real parts

Let \(F(s, t) = F(y; t), y = ((s - u)/2)^2\) be an \(s - u\) symmetric amplitude, with asymptotic behaviour \(s[\ln(s)]^\gamma \phi(\tau), \tau \equiv (t[\ln(s/s_0)]^\beta, \text{ where } \phi(\gamma)\) is a real analytic function of it’s argument and \(\phi(0) = 1.\) For fixed physical \(t, F\) is real analytic in the cut-y plane with only a right-hand cut from \((2m_b t/2)^2\) to \(\infty. F\) must be real for \(y = y(\exp(it\tau), i.e. s \rightarrow s \exp(it\tau), \text{ and hence replacing } s \rightarrow s \exp(-it\tau), we have for } s \rightarrow \infty, \tau \text{ fixed,}
\]
\[
F(s, t) \sim C(s) \exp(-it\tau(\lns)) \left[\exp(-it\tau)\right] \gamma \times \phi(t(\lns))\]
\[
\times \phi(t(\lns)^{\beta})
\]
Expanding in powers of \(1/\ln s\) at fixed \(\tau\) we get,
\[
\frac{ImF(s, t)}{ImF(s, 0)} \rightarrow \phi(\tau);
\]
\[
\frac{ReF(s, t)}{ReF(s, 0)} \rightarrow \frac{\pi}{2 \ln(s/s_0)} \left(\gamma \phi(\tau) + \beta \tau \phi'(\tau)\right);
\]
\[
\frac{ImF(s, 0)}{s} \rightarrow (\pi/2) \left(\frac{\partial(ImF(s, t)/s)}{\partial \ln(s/s_0)}\right);
\]
\[
Rea(b, s) \rightarrow (\pi/2) \left(\frac{\partial(Ima(b, s))}{\partial \ln(s/s_0)}\right).
\]
where, due to linearity, the last two equations also hold for a superposition of terms of the form (11), e.g. \(F^{(1)} + F^{(2)} \). Note that, (i) \(\Re F(s,0)/\Im F(s,0) \) agrees with the Khuri–Kinosita theorem [41], (ii) the case \(\beta = \gamma = 1 \) agrees with Martin’s geometrical scaling formula [42,43]. (iii) When \(\sigma_{\text{tot}} \sim (\ln s)^2 \), \(\gamma = \beta = 2 \), the AKM theorem and Auberson–Roy theorem [1,2] guarantee the scaling of \(\Im F(s,t)/\Im F(s,0) \) with \(\phi(t) \) being an entire function of order half. The crucial new result is the formula (13) for \(\Re F(s,t) \). In turn, this yields for the partial waves of \(F^{(2)} \), if \(b^2 \Im a^{(2)}(b,s) \to 0 \) for \(b \to \infty \),

\[
\Re a^{(2)}(b,s) \to -\frac{\pi}{2 \ln(s/s_0)} b \frac{\partial}{\partial b} \Im a^{(2)}(b,s), \ s \to \infty.
\]

(16)

However, in view of the slow approach to asymptotics, the formula (15) for \(\Re a(b,s) \) involving derivative over \(\ln s \) is preferable for computations, as it holds also for \(F^{(1)} + F^{(2)} \).

4.3. The total amplitude

Consistent with (13) for \(\gamma = \beta = 2 \), i.e. \(\tau = t(\ln(s/s_0))^2 \), I adopt the ansatz,

\[
\frac{\Re F^{(2)}(s,t)}{\Im F^{(2)}(s,0)} = \frac{\pi}{\ln(s/s_0)} \frac{d}{d\tau} \left(\frac{\Im F^{(2)}(s,t)}{\Im F^{(2)}(s,0)} \right).
\]

(17)

For simplicity, I choose the scale factor \(s_0 \) to be the same as in the PDG (2005) [3] fit for \(pp \) total cross section, \(\sqrt{s_0} = 5.38 \) GeV. Substituting the expression for \(\Im F^{(2)}(s,t) \) I obtain,

\[
16\pi K \sqrt{s} F^{(2)}(s,t) = \sigma_{\text{tot}}^{(2)}(s) \left[\frac{\pi}{\ln(s/s_0)} \times 8 J_2(q R(s)) - 16 J_1(q R(s)) \right] \frac{q^2 R^2(s)}{(q R(s))^2} + \frac{1}{48} J_1(q R(s)).
\]

(18)

The total amplitude \(F(s,t) = F^{(1)}(s,t) + F^{(2)}(s,t) \) is now completely specified (analytically) by adding \(F^{(1)}(s,t) \) given by (7). The important parameter \(R^2(s) \) is determined from the experimental slope parameter \(B(s) = (d/dt)(\ln \sigma_{\text{tot}})/t = 0 \), if the Pomeron parameters \(b_p, \alpha' \) are known.

\[
R^2(s)(e(s))\sigma_{\text{tot}}^{(2)}(s)^2 + \frac{1}{2} \sigma_{\text{tot}}^{(2)}(s)^2 \sigma_{\text{tot}}(s)
\]

\[
= 4B(s)(e(s))\sigma_{\text{tot}}^{(2)}(s)^2 + \sigma_{\text{tot}}(s)^2
\]

\[= \sigma_{\text{tot}}^{(1)}(s)D(s) - 4\pi\alpha' \sqrt{e(s)}(e(s))^{(1)}(s),
\]

(19)

where, we denote \(\sqrt{e(s)} \equiv \pi/\ln(s/s_0) \). For the experimental slope parameter I shall use the fits \(B(M,s) \) to all \(pp \) data, with \(M = 1, 2 \), \(B(1,s) \) by Okorokov [6] and \(B(2,s) \) by Schegelsky–Ryskin [5].

\[
B(1,s) = 8.81 + 0.396 \ln s + 0.013(\ln s)^2 \ GeV^{-2},
\]

\[
B(2,s) = 11.03 + 0.0286(\ln s)^2 GeV^{-2},
\]

(20)

where \(\sqrt{s} \) is in GeV units. For \(pp \), \(pp \) total cross sections I use the PDG fits of (2005) and (2013),

\[
\sigma_{\text{tot}}^{(2005)}(s) = 35.63 + 0.308(\ln(s/28.94))^2 \ mb
\]

\[
\sigma_{\text{tot}}^{(2013)}(s) = 33.73 + 0.2838(\ln(s/15.618))^2 \ mb.
\]

(21)

4.4. Elastic and inelastic cross sections

The integrals over impact parameter needed to calculate \(\sigma_{\text{el}} \) can be done exactly. We obtain, for \(\sigma_{\text{el}}(s) = (\pi/2)C^2(s)D^2(s)(2 + (\beta')^2) \)

\[+ 4\pi R^2(s)E^2(s)(3 + 2\epsilon(s))/15 + 2\pi R^2(s)C(s)E(s)\delta^3(s) \exp(-2\delta(s)) \times (-1 + 2\beta'(s)\sqrt{e(s)}(2\delta(s)^2 + 3\delta(s) + 2)) + (2\beta'(s)\sqrt{e(s)}\delta(s) - 2 + 2\delta^2(s) - \delta(s) + 1).)
\]

\[
\delta(s) = R^2(s)/D^2(s), \quad \beta'(s) = 4\pi\alpha'/D^2(s).
\]

(22)

5. Predictions of the model versus experimental data for \(pp \) and \(\bar{p}p \) scattering

5.1. Differential cross sections

Remarkably, a single pair of values of the Pomeron parameters \(b_p, \alpha' \)

\[b_p = 3.8 \ GeV^{-2}, \quad \alpha' = 0.07 \ GeV^{-2}.
\]

(23)

gives very good agreement of model predictions in the entire range \(|t| < 0.3 \) GeV\(^2\) with the experimental Totem [7–10] and Atlas [12–15] \(pp \) differential cross sections at 7 TeV and 8 TeV, experimental \(pp \) differential cross sections at 546 GeV from UA4 collaborations, D. Bernard et al. [44] and M. Rozzo et al. [45], and at 1800 GeV from Amos et al. [46] and Abe et al. [47]. (See also the compilation in [48].) This agreement is independent of the choice between PDG (2005) and PDG (2013) total cross sections, and the choice between slopes \(B(1,s) \) and \(B(2,s) \). We exhibit this in Figs. 1, 2, 3, 4 for forward slope choice \(B = B(2,s) \) [5] and the two choices of total cross sections PDG (2005) [3] (dashed curve), and PDG (2013) [4] (solid curve). (Differential cross sections for \(-t > 0.3 \) GeV\(^2\) are not used in determination of Pomeron parameters \(b_p, \alpha' \) as they make negligible contributions to \(\sigma_{\text{el}} \) in this energy range; e.g. in this model, about 0.2 mb at 7 TeV and 8 TeV.)

For the choice \(B = B(2,s) \) [5] and PDG (2013) [4] total cross sections, we give below three parameter fits to predicted differential cross sections in this range of \(t \) at c.m. energies up to 14 TeV,

\[\ln((d\sigma/dt)/(d\sigma/dt))_{t=0} = 19.5t - 11.9t^2 + 43.5(-t)^3, \quad 7 TeV
\]

\[= 19.7t - 13.2t^2 + 47.3(-t)^3, \quad 8 TeV
\]

\[= 20.5t - 19.2t^2 + 64.2(-t)^3, \quad 13 TeV
\]

\[= 20.6t - 20.3t^2 + 67.2(-t)^3, \quad 14 TeV
\]

(24)

for ready comparisons with existing and future data.

5.2. Inelastic cross sections

Fig. 5 depicts the predicted inelastic cross sections up to 100 TeV and their asymptotic fits. Tables 1 and 2 give model parameters and detailed predictions from 546 GeV to 14 TeV, with input total cross sections PDG2013 and PDG2005 respectively. The predicted \(\rho = \Re F(s,t)/\Im F(s,t) \) and the predicted inelastic cross sections (e.g. for input total cross section PDG2013, \(\rho = 0.136, \sigma_{\text{inel}} = 74.2 \) mb, at 8 TeV) are very close to available experimental values [49,50,7–10,12–15]. The predicted inelastic cross sections are fairly robust, changing by less than 0.5 mb in the range (7 TeV, 14 TeV) when the slope parameter is changed from \(B(1,s) \) to \(B(2,s) \) and by less than 1 mb when the input \(\sigma_{\text{tot}} \) is changed from PDG (2005) to PDG (2013). Model results give \(\sigma_{\text{inel}}/\sigma_{\text{tot}} \approx 0.46 \), and using input errors of PDG2013 fits, and \(\delta B \approx 0.3 \) GeV\(^2\) upto 100 TeV [5], I have the error estimate, \(\delta \sigma_{\text{inel}} \approx 0.0021(\ln(s/15.618))^2 \) mb.
Fig. 1. Model predictions for pp elastic differential cross sections $d\sigma/dt$ at 7 TeV, with parameters $b_p = 3.8$ GeV$^{-2}$, $\alpha' = 0.07$ GeV$^{-2}$, forward slope from Schegelsky-Ryskin fit [5], input σ_{tot} from PDG (2005) [3] (dashed curve), and input σ_{tot} from PDG (2013) [4] (solid curve), show excellent agreement with experimental values from the Totem [7–10] and Atlas [12–15] collaborations for $|t| < 0.3$ GeV2.

Fig. 2. Model predictions for pp elastic differential cross sections $d\sigma/dt$ at 8 TeV, with parameters $b_p = 3.8$ GeV$^{-2}$, $\alpha' = 0.07$ GeV$^{-2}$, forward slope from Schegelsky-Ryskin fit [5], input σ_{tot} from PDG (2005) [3] (dashed curve), and input σ_{tot} from PDG (2013) [4] (solid curve), show excellent agreement with experimental values from the Totem [7–10] and Atlas [12–15] collaborations for $|t| < 0.3$ GeV2.

Fig. 3. Model predictions for pp elastic differential cross sections $d\sigma/dt$ at 546 GeV, with parameters $b_p = 3.8$ GeV$^{-2}$, $\alpha' = 0.07$ GeV$^{-2}$, forward slope from Schegelsky-Ryskin fit [5], input σ_{tot} from PDG (2005) [3] (dashed curve), and input σ_{tot} from PDG (2013) [4] (solid curve), show good agreement with experimental values from UA4 collaborations, D. Bernad et al. [44] and M. Bozzo et al. [45] for $|t| < 0.3$ GeV2.

Fig. 4. Model predictions for pp elastic differential cross sections $d\sigma/dt$ at 1800 GeV, with parameters $b_p = 3.8$ GeV$^{-2}$, $\alpha' = 0.07$ GeV$^{-2}$, forward slope from Schegelsky-Ryskin fit [5], input σ_{tot} from PDG (2005) [3] (dashed curve), and input σ_{tot} from PDG (2013) [4] (solid curve), show excellent agreement with experimental values from Totem [7–10] and Atlas [12–15] collaborations for $|t| < 0.3$ GeV2.

In the c.m. energy range from 0.5 TeV to 100 TeV, the model parameters are very well approximated by the following fits.

Input $\sigma_{tot}^{(2005)} (s)$:

\begin{align}
M = 1 & : E(s) = 0.987849 - 20.3797/x + 113.797/x^2 \\
M = 2 & : R^2(s) = 241.078 - 9.20435x + 0.375387x^2 \\
M = 2 & : E(s) = 0.861023 - 16.7296/x + 88.3041/x^2 \\
M = 2 & : R^2(s) = 245.408 - 11.3716x + 0.487702x^2
\end{align}

Input $\sigma_{tot}^{(2013)} (s)$:

\begin{align}
M = 1 & : E(s) = 0.936736 - 18.91/x + 104.505/x^2 \\
M = 1 & : R^2(s) = 214.735 - 6.85598x + 0.320973x^2 \\
M = 2 & : E(s) = 0.812299 - 15.3352/x + 79.6064/x^2 \\
M = 2 & : R^2(s) = 220.921 - 9.20272x + 0.437436x^2
\end{align}

where, $x = \ln s$.

Remarkably, fits for input $\sigma_{tot}^{(2005)} (s)$ show that the choice $M = 1$ gives $E(s)$ which is barely below the unitarity limit for $s \rightarrow \infty$. The inelastic cross section fits in Fig. 5 yield,
Table 1
Detailed results at 546 GeV, 1.8 TeV, 7 TeV, 8 TeV, 13 TeV and 14 TeV from the model using inputs \(b_F = 3.8, \alpha' = 07 \text{ GeV}^{-2} \), PDG 2013 values of \(\sigma_{\text{tot}}(pp) \) [4], and Schegelsky-Ryskin extrapolations \((M = 2, i.e. B(B, s)) - 5\) for forward slopes. The output parameters \(C \) and \(E \) show explicitly that inelastic unitarity is obeyed. The output values of \(R^2 \) show a slowly expanding size of the proton with increasing energy. The output results for \(\sigma_{\text{inel}}/\sigma_{\text{tot}} \), \(16\pi\sigma_{\text{el}}/\sigma_{\text{tot}}^2 \), and \(\rho = ReF(s, t = 0)/ImF(s, t = 0) \) would be 1/2, 1 and 0 respectively in the black disk limit, give quantitative measures for deviations from that limit. The output \(\rho \) agrees with available experiments [49,50]. The output values of \(\sigma_{\text{tot}} \) agree within errors with Totem results [7–10] and Atlas results [12–15] for pp scattering at 7 TeV and 8 TeV, and with the results of [47] for pp scattering at 546 GeV and 1800 GeV. Model predictions at higher energies can be tested in future experiments.

<table>
<thead>
<tr>
<th>(s) (GeV)</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2013</td>
<td>251.303</td>
<td>76.2666</td>
<td>97.2354</td>
<td>99.5232</td>
<td>108.1831</td>
</tr>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2005</td>
<td>200.5454</td>
<td>45.3456</td>
<td>50.3465</td>
<td>51.0924</td>
<td>51.2789</td>
</tr>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2005</td>
<td>15.3763</td>
<td>17.4574</td>
<td>19.9979</td>
<td>20.2701</td>
<td>21.3254</td>
</tr>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2005</td>
<td>0.396032</td>
<td>0.356557</td>
<td>0.341949</td>
<td>0.340046</td>
<td>0.336168</td>
</tr>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2005</td>
<td>17.7777</td>
<td>18.0545</td>
<td>19.353</td>
<td>19.7448</td>
<td>20.2412</td>
</tr>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2005</td>
<td>0.784689</td>
<td>0.76759</td>
<td>0.74523</td>
<td>0.745582</td>
<td>0.738651</td>
</tr>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2005</td>
<td>0.143356</td>
<td>0.143312</td>
<td>0.137162</td>
<td>0.136402</td>
<td>0.133841</td>
</tr>
<tr>
<td>(\sigma_{\text{tot}}) (mb) PDG2005</td>
<td>58.4515</td>
<td>72.685</td>
<td>74.207</td>
<td>79.053</td>
<td>80.8015</td>
</tr>
</tbody>
</table>

Input \(\sigma_{\text{tot}}^{(2013)}(\sqrt{s}) \):
\[M = 1 : \frac{\sigma_{\text{inel}}}{\sigma_{\text{tot}}} \rightarrow 0.449 ; M = 2 : \frac{\sigma_{\text{inel}}}{\sigma_{\text{tot}}} \rightarrow 0.556 \]

Input \(\sigma_{\text{tot}}^{(2005)}(\sqrt{s}) \):
\[M = 1 : \frac{\sigma_{\text{inel}}}{\sigma_{\text{tot}}} \rightarrow 0.431 ; M = 2 : \frac{\sigma_{\text{inel}}}{\sigma_{\text{tot}}} \rightarrow 0.536 \]

These results are close to the black disk value of 1/2 favoured by BH [39,40]. Recent detailed analysis of high energy data [51] concluded that, although consistent with experimental data, the black disk does not represent an unique solution.

5.3. Phenomenological lowest \(t \)-channel singularity

If continued to complex \(t \), \(|F(s, t)|\) given by this model is bounded by \(\text{Const.}s^2 \) for \(s \rightarrow \infty \) and

\[\left| t \right| < t_1 = \min (1/|\alpha'|, \lim_{s \rightarrow \infty} (\ln s/R(s)^2)) \].

Jin and Martin [52] proved that for \(|t| < t_0\), where \(t_0 \) is the lowest \(t \)-channel singularity, twice subtracted dispersion relations in \(s \) hold. Hence \(t_1 \) may be thought of as a phenomenological lowest \(t \)-channel singularity. Using the formulæ for \(R^2(s) \) given above,

Input \(\sigma_{\text{tot}}^{(2013)}(\sqrt{s}) \):
\[M = 1 : \sqrt{t_1} = 1.765 \text{ GeV} ; M = 2 : \sqrt{t_1} = 1.512 \text{ GeV} ; \]

Input \(\sigma_{\text{tot}}^{(2005)}(\sqrt{s}) \):
\[M = 1 : \sqrt{t_1} = 1.632 \text{ GeV} ; M = 2 : \sqrt{t_1} = 1.432 \text{ GeV} . \]

Our \(\sqrt{t_1} \sim 1.4−1.8 \text{ GeV} \) is reminiscent of, but different from the glue-ball mass of BH [39,40]. Given the instability of analytic continuations, its main function is to suggest that the usual Lukaszuk-Martin bound [20] is quantitatively poor as it assumes lack of \(t \)-channel singularities only up to \(4m^2 \), which is much smaller than \(t_1 \).

6. Conclusion

I presented an analytic formula for the high energy elastic amplitude \(F(s, t) = F^{(1)}(s, t) + F^{(2)}(s, t) \) given by Eqs. (7), (18) for \(\sqrt{s} \) \sim\ 100 \text{ GeV}, exhibiting Froissart bound saturation, AKM scaling [1,2], inelastic unitarity, predicting differential cross sections for \(t < 0.3 \text{ GeV}^2 \), and total inelastic cross sections, at 546 GeV, 1800 GeV, 7 TeV and 8 TeV in agreement with experimental results, as well as the real parts and inelastic cross sections up to 100 TeV. An ‘effective’ \(t \)-channel singularity at \(\sqrt{s} \sim 1.4−1.8 \text{ GeV} \) is suggested by analytic continuation to positive \(t \). Detailed tables and graphs of model parameters, real parts and cross sections up to 100 TeV will be published separately. The ‘grey disk’ component could be generalized using a smoother impact parameter cut-off, i.e. \(n > 1 \) in Eq. (5).
Acknowledgements

I presented an earlier version with a black disk second component in 2015 to André Martin and T.T. Wu at CERN; their insistence that a sharp impact parameter cut-off is too ‘brutal’ led to the black disk being replaced by the grey disk. I thank G. Auberson for remarks concerning instability of analytic continuation, D. Atkinson, G. Mahoux and V. Singh for helpful comments on the manuscript; I also thank Gilberto Colangelo and Heiri Leutwyler for very helpful discussions, and a seminar invitation at Univ. of Bern, and Irinel Caprini and Juerg Gasser for discussions on a very stimulating ansatz for high energy pion–pion scattering [53]. I thank the referees for the crucial suggestion of comparison with the latest differential cross section data and the Indian National Science Academy for an INSA senior scientist grant.

References