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An important question in biology is how the relative
size of different organs is kept nearly constant during
growth of an animal. This property, called propor-
tionate growth, has received increased attention in
recent years. We discuss our recent work on a simple
model where this feature comes out quite naturally
from local rules, without fine-tuning any parameter.
The patterns produced are composed of large distin-
guishable structures with sharp boundaries, all of
which grow at the same rate, keeping their overall
shapes unchanged.
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IT is fascinating to see baby animals grow into adults.
Understanding the development of different organs from
a single egg cell has been the central problem in deve-
lopmental biology for over a hundred years. However,
there is a considerably simpler problem of understanding
how a small baby animal grows to a much larger size. In
the case of humans, the body weight increases by a factor
of 30 or so. In the case of elephants, this factor is about
100. As the baby grows, different parts of the body grow
at the same rate. This is called proportionate growth. Of
course, this is only a good first approximation. For exam-
ple, in humans, it is well known that the head grows less
than the limbs, some changes in body structure occur at
puberty, etc. However, at the simplest level of descrip-
tion, it is useful to ignore such complications.
Understanding how different organs are formed, start-
ing from a single cell is the subject of cell differentiation
and morphogenesis. The basic mechanism underlying this
is believed to be the Turing instability in reaction—
diffusion systems®. In a baby becoming an adult, all the
organs are already formed, and we sidestep this more
difficult question. We would like to emphasize that even
the simpler question is not well-understood. The important
point is that proportionate growth requires regulation and
coordination between the different growing parts. If there
is no regulation, it would be difficult to maintain the
overall left-right symmetry that is seen in many animals.
In a cell, all chemical reaction rates have a fair amount of
fluctuation, because the number of molecules of the
chemical species undergoing change is typically small. If
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the growth in different parts were independent, these
fluctuations would lead to much larger variations in net
growth than what is observed. For example, in mammals,
the bilateral symmetry is maintained quite well during
growth (typically to within a few per cent).

That proportionate growth is special is clear from the
fact that examples of proportionate growth outside the
biological world are difficult to find. Sure, if one takes a
balloon, with some picture drawn on it, and blows it up,
all parts of the picture grow proportionately. But this is
not really ‘growth’; it is just stretching. Or, consider the
growth in a droplet of water suspended in air supersatu-
rated with water vapour. As the droplet collects more
water from the surrounding air, it grows in size and keeps
its roughly spherical shape. But in this case, there are no
internal distinct parts, and hence this also does not qua-
lify as proportionate growth. One can think of crystals
growing from a supersaturated solution. The crystals can
have nontrivial shapes, but all the growth occurs on the
surface and the structure of the internal regions once
formed remains frozen. There are many other examples
of growth studied in physics literature so far, e.g. diffu-
sion limited aggregation®, surface growth by molecular
beam epitaxy®, Eden growth model, invasion percola-
tion®, etc. In all these cases also, the structure of the inner
parts gets frozen, and growth occurs only at the surface,
and not everywhere.

A biologist may object that the general mechanism of
proportionate growth is quite well understood. The
explanation typically only identifies some chemical
agents, variously called hormones, promoters, inhibitors,
growth factors, that regulate the production of different
proteins, and thus control growth. These agents them-
selves are produced or degraded by complicated regula-
tory processes that turn on or off different genes. This
whole process is orchestrated by the genetic programme
encoded in the animal’s DNA.

The role of DNA as the chief controller of all processes
in biological systems cannot be denied. But the DNA is a
complicated molecule, as it has to do many more things
than just ensuring proportionate growth. If we want only
the latter, perhaps we can construct a simpler system that
meets our objective, which does not invoke the full com-
plexity of the DNA. We discuss below one such model
where the formation of complex structures and their pro-
portionate growth is achieved with only a small number
of states per cell and the same set of instructions.
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The model is called the abelian sandpile model, and it
was introduced in 1987 by Bak et al.® as a model of self-
organized criticality. This model has an interesting
mathematical structure that makes it analytically tractable
and it has been studied a lot (see Dhar’, for a review).
However, much of this work is related to studying the
‘criticality’ of the model, reflected in the fact that it
shows burst-like relaxation, with a power-law distribution
of the size of avalanches. We want to emphasize the self-
organization aspect here, which is a much older concept,
and formed the bedrock for Bak et al.’s theory®. In fact,
the idea of self-organization itself came from attempts to
understand biological growth. Thus, applying ideas of
sandpiles back to biological growth, the theory has come
a full circle.

We define the sandpile model on a two-dimensional
square lattice as follows: at each site of the lattice, there
is a non-negative integer called the number of grains at
that site. If the number of grains at a site exceeds 3, the
site is said to be unstable, and it ‘topples’ by transferring
four grains from that site, one to each neighbour. We start
with an initial configuration where all sites are stable, and
the grains form a periodic structure in space. For exam-
ple, all sites could be having precisely two grains at the
beginning.

At each time step, we add a grain to the site at the ori-
gin. If this makes the site unstable, we relax the configu-
ration by toppling at that site. If this results in some other
site becoming unstable, they are also relaxed, until all
sites become stable. This concludes the time step. The name
‘abelian’ refers to the fact that we get the same final con-
figuration irrespective of the order in which different
unstable sites are relaxed. After the stable configuration
is reached, a new grain is added at the origin, and so on.

Our models takes into account the basic phenomeno-
logy that the cell-division process operates under some
threshold conditions: it does not happen until adequate
resources are available. The addition of grains is like pro-
viding food, which is required for growth.

Figure 1 shows the result of this evolution after N par-
ticles have been added. The three patterns correspond to
N = 50,000, 200,000 and 400,000 respectively. Each cell
is given a colour depending on the number of particles in
the cell. The colour code is shown in the figure. We see
that the added particles get distributed over a square
region, with some local rearrangement of grains. This
region forms a coloured pattern over the red background.
This pattern becomes bigger as N is increased, and appears
to show proportionate growth.

It is not necessary to work with the square lattice, or a
particular initial background. One can take other lattices
like the honeycomb or the triangular lattice. Even lattices
in three or higher dimensions show similar result. Also,
by changing the initial periodic background, we can get
any number of different patterns. See refs 8 and 9 for
more such examples. The variety of aesthetically pleasing
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pictures that one can generate this way provided the main
motivation behind our study of these patterns.

There are other studies of patterns in sandpiles, which
we mention briefly here. The first of such was by Liu et
al.!°, drawing attention to the intricate patterns. The peri-
odic pattern inside patches was discussed in ref. 11. For
more recent studies of growing sandpiles, and related
models see refs 12 and 13. The connection to integrable
models in statistical physics is explored in ref. 14.

These pictures look like those of fractals, but in the
simplest cases on a two-dimensional lattice the box
dimension® of the disturbed region is two. For some more
complicated patterns, like in Sadhu and Dhar®, this can be
different and need not be an integer. One can also see
some repeated motifs in the pattern, for example, inside
the petal-like structures in Figure 1. The repeated motifs
are also seen in fractals, but unlike them, these do not
show self-similarity under scale transformations which is
the defining characteristic of fractals.

For the pattern in Figure 1, it is easy to see that the
length of the side of the square toppled region would
grow as +/N : we have added N extra particles, and as in
a stable configuration, each square can accommodate at
most three particles, the area of the region disturbed by
added grains must grow at least linearly with N.

A closer look at the pattern shows many interesting
features. The pattern is made up of a large number of
patches; within each patch the arrangement of grains is
periodic. The relative position, shape and fractional area
of the patch appear to remain constant as N increases. In
Figure 2, we have shown details of the periodic arrange-
ments in some selected patches. The whole pattern then
looks like a quilt made with pieces of cloth with different
periodic patterns, sown together to form the full design.
Alternatively, we may like to think of different patches as
different ‘organs’ of the ‘animal’.

While the periodic arrangement of grains within a
patch is the most striking feature of the patterns, it is
interesting that we do not have a rigorous proof, starting
from the evolution rules of the model, of this property
yet. For the present, we will take it as an observed pro-
perty in the patterns studied so far.

In fact, the pattern in Figure 1 is rather complicated,
and it is difficult to analyse. The pattern shown in Figure 3
is much simpler. It is produced on a lattice that is a vari-
ant of the square lattice called the F-lattice, shown in
Figure 3a. The bonds of the square lattice have direction
attached to them, and each site has two arrows coming
into it, and two going out. The stable heights are only 0
and 1, and whenever the height exceeds 1, two grains are
thrown out in the direction of outgoing arrows from that
site. We start with an initial background where the occu-
pied sites are arranged as the black squares on a checker-
board. The pattern shown in Figure 3b is produced by
adding N = 300,000 grains at a single site on this back-
ground and relaxing.
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N = 50,000

N = 200,000

N = 400,000

Colour code: [(JIIE] 3

Figure 1.

The pattern produced by adding N particles at a single site on a square lattice and relaxing. Initial configura-

tion is with all sites occupied by two particles. All three patterns are on a 1000 x 1000 lattice.

Figure 2. Examples of periodic distribution of grains inside patches
in the pattern in Figure 1. Each coloured square represent a site. The
colour code is the same as used in the full pattern.

This pattern is simpler, as there are only two stable
heights at a site: 0 and 1. We find that there are only two
types of patches in the pattern, those where all sites are
occupied, and those with alternate sites occupied (as in
the background pattern). All patch boundaries are straight
lines, with all patches being three- or four-sided poly-
gons. Also, the angles of the patch boundaries with the
x-axis are only integer multiples of z/4. These facts and
the observed adjacency structure of patches (i.e. which
patches share a boundary) allowed us to obtain a detailed
characterization of the asymptotic pattern for large N (ref.
8). In particular, we find that the boundary of the asymp-
totic pattern is a regular octagon. This is an extra symme-
try that emerges only in the large N limit.

We have studied the patterns produced on different
backgrounds also. An important question is how the
diameter A of the pattern depends on N. If we start with
empty background, or when the mean density of particles
in the background is low enough, on a d-dimensional lat-
tice we get compact growth of the pattern with A ~ N,
On the other hand, if the average density in a background
is too high, one can get infinite avalanches, with A
becoming infinite for finite N. This has been termed
explosive growth™.

Remarkably, we found an infinite class of non-
explosive backgrounds, for which the diameter grows as
N“ with 1/d < a < 1. An example of such a background
on a triangular lattice with directed edges is shown in
Figure 4a. The pattern produced on this background,
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after adding N = 4000 grains is shown in Figure 4b. For
this pattern the growth exponent « =1. It turns out that
this pattern is even easier to characterize than the pattern
in Figure 3. In Figure 5, we have shown another fast-
growing pattern on the F-lattice for which = 0.725. The
details may be found in ref. 9.

An important feature of these sandpile patterns is their
analytical tractability. We briefly indicate how these pat-
terns are characterized quantitatively. We define the
toppling function Ty (x, y) which gives the number of
topplings at site (x, y), when N particles are added at the
origin, and the configuration is relaxed. We introduce the
reduced coordinates &= x/A, and n =y/A. Then for large
N, Tn(x,y) has the scaling behaviour T~ A%g(¢ n),
where the scaling function g specifies the asymptotic pat-
tern. Let the diameter A grows as N“ The fact that the
function T has to be an integer function imposes strong
constraints on the function g(&, 7). It turns out that for
compact patterns with a=1/d, we have S=2, and the
function g is exactly quadratic in each patch. For « > 1/d,
we can only have =1, and g has to be a linear function
within a patch®. Then the continuity properties of g, and
the known adjacency structure of the patches in the pat-
tern give a set of coupled linear equations for the coeffi-
cients of the polynomial. These can be solved exactly to
determine the function g completely and hence character-
ize the pattern.

One important issue is whether such cellular automaton
models, like the sandpile model, with deterministic evo-
lution rules can be considered as good models of biologi-
cal growth, where noise has an important role. During
growth the animal body is influenced by fluctuations of
environmental and local origin. Despite such fluctuations,
the proportionate growth is maintained. It is thus impor-
tant to study the robustness of these patterns to introduc-
tion of noise.

We have studied the effect of randomness in the point
of addition on the patterns produced®®. It turns out that a
small amount of this randomness does not change the
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Figure 3.

a, Checkerboard distribution of particles on the F-lattice. The filled circles denote occupied sites and the

unfilled empty sites. b, The pattern produced on this background. Colour code: red = 0 and white = 1. The background
pattern is a checkerboard pattern of red and white squares. The apparent uniform red colour is an artefact of the re-
duced size of the figure. (Reproduced from Sadhu and Dhar®.)

Figure 4.

Colour code: .

a, A periodic arrangement of particles on a triangular lattice with directed edges. The filled circles repre-

sent sites with one particle and unfilled with two particles. b, The pattern produced by adding N particles at a single
site on the background in (a). (Reproduced from Sadhu and Dhar®.)

large-scale properties of the pattern. If the particles are
added at a site chosen at each time step randomly from a
small square of size b, then for N > b? the large-scale
structure of the pattern is unchanged. Only in a small area
near the origin of width of order b, one can see the effect
of the randomness, but the fractional size of this region
decreases to zero as N increases to infinity. An example
of such a pattern is shown in Figure 6.

We also studied the effect of noise in the initial pattern.
If the background pattern is not exactly periodic, and a
small fraction of sites start with incorrect initial number
of grains, we find that for small noise, the system still
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shows proportionate growth, and the large-scale pattern is
qualitatively unchanged. However, the exact ratios of
sizes of different patches in the asymptotic pattern depend
on the strength of the noise. Also the boundaries between
patches are no longer straight lines. In Figure 7, we have
shown the effect of 1% and 10% noise in the initial
configuration in the F-lattice pattern in Figure 3.

The third type of noise we studied was in the evolution
rules. In this case, we assumed that at each toppling, there
is a small probability that some particles are lost. It seems
like even a small amount of noise of this type can destroy
the pattern, and result in a circular featureless blob™. In
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other cases, some features of pattern persist for a long
time, but other more intricate features are quickly
smeared out and lost (Dandekar and Dhar, unpublished).

Another interesting question is the effect of bounda-
ries, or presence of dead sites on the lattice. We found
that in the presence of boundaries the pattern is modified,
but survives. Importantly, the rate at which diameter
changes with N is also modified"’. For example, for a
compact pattern growing in half space, where any particle
falling on the boundary is lost, the diameter increases not
as \/T\lQ but as N*.

While many examples of simple evolution rules giving
rise to complex structures are known (the Game of Life'®

Figure 5. The pattern produced on the F-lattice with a background
formed by empty sites along the boundary of tilted rectangles and the
rest filled. Only the boundaries of the resolved patches are shown here.
(Reproduced from Sadhu and Dhar®.)

Figure 6. The pattern produced on the F-lattice by adding
N = 100,000 particles at sites randomly chosen from a square region of
width b = 100 lattice units. The initial configuration has a checkerboard
distribution of heights 0 and 1. Colour codes same as in Figure 3.
(Reproduced from Sadhu and Dhar'®.)
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is a well-known example), in most cases these patterns
are not tractable analytically. The patterns we described
in this article are special in that they are of intermediate
complexity and are analytically tractable. In fact, the
exact characterization of the asymptotic pattern involves
some interesting mathematics: discrete analytic functions,
and piece-wise linear functions. In this article, we have
not discussed these. The interested reader is referred to
ref. 9 for a discussion.

There are many interesting open problems. The most
obvious is the already mentioned absence of a proof of
the proportionate growth property. Also, we cannot pre-
dict, at present, which periodic structures within patches
are possible for a given background pattern. The observed
stability of patterns in the presence of noise also needs
explanation, as the scaled toppling function is no longer

Figure 7. The patterns produced on the F-lattice by adding a large
number of particles at a single site on a background of mostly checker-
board distribution, except for height 1 at (a) 1% and (b) 10% of the
sites respectively, being replaced by height 0. Colour code: red =0,
white = 1. (Reproduced from Sadhu and Dhar'®.)
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piece-wise linear, or piece-wise quadratic. For the fast-

growing patterns, the analytical determination of the frac-

tal dimension « is a challenging problem.
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