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An important question in biology is how the relative 
size of different organs is kept nearly constant during 
growth of an animal. This property, called propor-
tionate growth, has received increased attention in  
recent years. We discuss our recent work on a simple 
model where this feature comes out quite naturally 
from local rules, without fine-tuning any parameter. 
The patterns produced are composed of large distin-
guishable structures with sharp boundaries, all of 
which grow at the same rate, keeping their overall 
shapes unchanged. 
 
Keywords: Biological growth, pattern formation, pro-
portionate growth, sandpile model. 
 
IT is fascinating to see baby animals grow into adults. 
Understanding the development of different organs from 
a single egg cell has been the central problem in deve-
lopmental biology for over a hundred years. However, 
there is a considerably simpler problem of understanding 
how a small baby animal grows to a much larger size. In 
the case of humans, the body weight increases by a factor 
of 30 or so. In the case of elephants, this factor is about 
100. As the baby grows, different parts of the body grow 
at the same rate. This is called proportionate growth. Of 
course, this is only a good first approximation. For exam-
ple, in humans, it is well known that the head grows less 
than the limbs, some changes in body structure occur at 
puberty, etc. However, at the simplest level of descrip-
tion, it is useful to ignore such complications.  
 Understanding how different organs are formed, start-
ing from a single cell is the subject of cell differentiation 
and morphogenesis. The basic mechanism underlying this 
is believed to be the Turing instability in reaction–
diffusion systems1. In a baby becoming an adult, all the 
organs are already formed, and we sidestep this more  
difficult question. We would like to emphasize that even 
the simpler question is not well-understood. The important 
point is that proportionate growth requires regulation and 
coordination between the different growing parts. If there 
is no regulation, it would be difficult to maintain the 
overall left–right symmetry that is seen in many animals. 
In a cell, all chemical reaction rates have a fair amount of 
fluctuation, because the number of molecules of the 
chemical species undergoing change is typically small. If 

the growth in different parts were independent, these 
fluctuations would lead to much larger variations in net 
growth than what is observed. For example, in mammals, 
the bilateral symmetry is maintained quite well during 
growth (typically to within a few per cent). 
 That proportionate growth is special is clear from the 
fact that examples of proportionate growth outside the 
biological world are difficult to find. Sure, if one takes a 
balloon, with some picture drawn on it, and blows it up, 
all parts of the picture grow proportionately. But this is 
not really ‘growth’; it is just stretching. Or, consider the 
growth in a droplet of water suspended in air supersatu-
rated with water vapour. As the droplet collects more  
water from the surrounding air, it grows in size and keeps 
its roughly spherical shape. But in this case, there are no 
internal distinct parts, and hence this also does not qua-
lify as proportionate growth. One can think of crystals 
growing from a supersaturated solution. The crystals can 
have nontrivial shapes, but all the growth occurs on the 
surface and the structure of the internal regions once 
formed remains frozen. There are many other examples 
of growth studied in physics literature so far, e.g. diffu-
sion limited aggregation2, surface growth by molecular 
beam epitaxy3, Eden growth model4, invasion percola-
tion5, etc. In all these cases also, the structure of the inner 
parts gets frozen, and growth occurs only at the surface, 
and not everywhere.  
 A biologist may object that the general mechanism of 
proportionate growth is quite well understood. The  
explanation typically only identifies some chemical 
agents, variously called hormones, promoters, inhibitors, 
growth factors, that regulate the production of different 
proteins, and thus control growth. These agents them-
selves are produced or degraded by complicated regula-
tory processes that turn on or off different genes. This 
whole process is orchestrated by the genetic programme 
encoded in the animal’s DNA.  
 The role of DNA as the chief controller of all processes 
in biological systems cannot be denied. But the DNA is a 
complicated molecule, as it has to do many more things 
than just ensuring proportionate growth. If we want only 
the latter, perhaps we can construct a simpler system that 
meets our objective, which does not invoke the full com-
plexity of the DNA. We discuss below one such model 
where the formation of complex structures and their pro-
portionate growth is achieved with only a small number 
of states per cell and the same set of instructions. 
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 The model is called the abelian sandpile model, and it 
was introduced in 1987 by Bak et al.6 as a model of self-
organized criticality. This model has an interesting 
mathematical structure that makes it analytically tractable 
and it has been studied a lot (see Dhar7, for a review). 
However, much of this work is related to studying the 
‘criticality’ of the model, reflected in the fact that it 
shows burst-like relaxation, with a power-law distribution 
of the size of avalanches. We want to emphasize the self-
organization aspect here, which is a much older concept, 
and formed the bedrock for Bak et al.’s theory6. In fact, 
the idea of self-organization itself came from attempts to 
understand biological growth. Thus, applying ideas of 
sandpiles back to biological growth, the theory has come 
a full circle.  
 We define the sandpile model on a two-dimensional 
square lattice as follows: at each site of the lattice, there 
is a non-negative integer called the number of grains at 
that site. If the number of grains at a site exceeds 3, the 
site is said to be unstable, and it ‘topples’ by transferring 
four grains from that site, one to each neighbour. We start 
with an initial configuration where all sites are stable, and 
the grains form a periodic structure in space. For exam-
ple, all sites could be having precisely two grains at the 
beginning.  
 At each time step, we add a grain to the site at the ori-
gin. If this makes the site unstable, we relax the configu-
ration by toppling at that site. If this results in some other 
site becoming unstable, they are also relaxed, until all 
sites become stable. This concludes the time step. The name 
‘abelian’ refers to the fact that we get the same final con-
figuration irrespective of the order in which different  
unstable sites are relaxed. After the stable configuration 
is reached, a new grain is added at the origin, and so on.  
 Our models takes into account the basic phenomeno-
logy that the cell-division process operates under some 
threshold conditions: it does not happen until adequate  
resources are available. The addition of grains is like pro-
viding food, which is required for growth.  
 Figure 1 shows the result of this evolution after N par-
ticles have been added. The three patterns correspond to 
N = 50,000, 200,000 and 400,000 respectively. Each cell 
is given a colour depending on the number of particles in 
the cell. The colour code is shown in the figure. We see 
that the added particles get distributed over a square  
region, with some local rearrangement of grains. This  
region forms a coloured pattern over the red background. 
This pattern becomes bigger as N is increased, and appears 
to show proportionate growth.  
 It is not necessary to work with the square lattice, or a 
particular initial background. One can take other lattices 
like the honeycomb or the triangular lattice. Even lattices 
in three or higher dimensions show similar result. Also, 
by changing the initial periodic background, we can get 
any number of different patterns. See refs 8 and 9 for 
more such examples. The variety of aesthetically pleasing 

pictures that one can generate this way provided the main 
motivation behind our study of these patterns. 
 There are other studies of patterns in sandpiles, which 
we mention briefly here. The first of such was by Liu et 
al.10, drawing attention to the intricate patterns. The peri-
odic pattern inside patches was discussed in ref. 11. For 
more recent studies of growing sandpiles, and related 
models see refs 12 and 13. The connection to integrable 
models in statistical physics is explored in ref. 14.  
 These pictures look like those of fractals, but in the 
simplest cases on a two-dimensional lattice the box  
dimension3 of the disturbed region is two. For some more 
complicated patterns, like in Sadhu and Dhar9, this can be 
different and need not be an integer. One can also see 
some repeated motifs in the pattern, for example, inside 
the petal-like structures in Figure 1. The repeated motifs 
are also seen in fractals, but unlike them, these do not 
show self-similarity under scale transformations which is 
the defining characteristic of fractals. 
 For the pattern in Figure 1, it is easy to see that the 
length of the side of the square toppled region would 
grow as :N  we have added N extra particles, and as in 
a stable configuration, each square can accommodate at 
most three particles, the area of the region disturbed by 
added grains must grow at least linearly with N.  
 A closer look at the pattern shows many interesting 
features. The pattern is made up of a large number of 
patches; within each patch the arrangement of grains is 
periodic. The relative position, shape and fractional area 
of the patch appear to remain constant as N increases. In 
Figure 2, we have shown details of the periodic arrange-
ments in some selected patches. The whole pattern then 
looks like a quilt made with pieces of cloth with different 
periodic patterns, sown together to form the full design. 
Alternatively, we may like to think of different patches as 
different ‘organs’ of the ‘animal’.  
 While the periodic arrangement of grains within a 
patch is the most striking feature of the patterns, it is  
interesting that we do not have a rigorous proof, starting 
from the evolution rules of the model, of this property 
yet. For the present, we will take it as an observed pro-
perty in the patterns studied so far.  
 In fact, the pattern in Figure 1 is rather complicated, 
and it is difficult to analyse. The pattern shown in Figure 3 
is much simpler. It is produced on a lattice that is a vari-
ant of the square lattice called the F-lattice, shown in 
Figure 3 a. The bonds of the square lattice have direction 
attached to them, and each site has two arrows coming 
into it, and two going out. The stable heights are only 0 
and 1, and whenever the height exceeds 1, two grains are 
thrown out in the direction of outgoing arrows from that 
site. We start with an initial background where the occu-
pied sites are arranged as the black squares on a checker-
board. The pattern shown in Figure 3 b is produced by 
adding N = 300,000 grains at a single site on this back-
ground and relaxing.  



SPECIAL SECTION: CONDENSED MATTER PHYSICS 
 

CURRENT SCIENCE, VOL. 103, NO. 5, 10 SEPTEMBER 2012 514 

 
 

Figure 1. The pattern produced by adding N particles at a single site on a square lattice and relaxing. Initial configura-
tion is with all sites occupied by two particles. All three patterns are on a 1000 × 1000 lattice.  

 

 
 
Figure 2. Examples of periodic distribution of grains inside patches 
in the pattern in Figure 1. Each coloured square represent a site. The 
colour code is the same as used in the full pattern.  
 
 
 This pattern is simpler, as there are only two stable 
heights at a site: 0 and 1. We find that there are only two 
types of patches in the pattern, those where all sites are 
occupied, and those with alternate sites occupied (as in 
the background pattern). All patch boundaries are straight 
lines, with all patches being three- or four-sided poly-
gons. Also, the angles of the patch boundaries with the  
x-axis are only integer multiples of π /4. These facts and 
the observed adjacency structure of patches (i.e. which 
patches share a boundary) allowed us to obtain a detailed 
characterization of the asymptotic pattern for large N (ref. 
8). In particular, we find that the boundary of the asymp-
totic pattern is a regular octagon. This is an extra symme-
try that emerges only in the large N limit.  
 We have studied the patterns produced on different 
backgrounds also. An important question is how the  
diameter Λ of the pattern depends on N. If we start with 
empty background, or when the mean density of particles 
in the background is low enough, on a d-dimensional lat-
tice we get compact growth of the pattern with Λ ~ N1/d. 
On the other hand, if the average density in a background 
is too high, one can get infinite avalanches, with Λ  
becoming infinite for finite N. This has been termed  
explosive growth15. 
 Remarkably, we found an infinite class of non-
explosive backgrounds, for which the diameter grows as 
Nα with 1/d ≤ α ≤ 1. An example of such a background 
on a triangular lattice with directed edges is shown in 
Figure 4 a. The pattern produced on this background,  

after adding N = 4000 grains is shown in Figure 4 b. For 
this pattern the growth exponent α = 1. It turns out that 
this pattern is even easier to characterize than the pattern 
in Figure 3. In Figure 5, we have shown another fast-
growing pattern on the F-lattice for which α ≈ 0.725. The 
details may be found in ref. 9.  
 An important feature of these sandpile patterns is their 
analytical tractability. We briefly indicate how these pat-
terns are characterized quantitatively. We define the  
toppling function TN (x, y) which gives the number of 
topplings at site (x, y), when N particles are added at the 
origin, and the configuration is relaxed. We introduce the 
reduced coordinates ξ = x/Λ, and η = y/Λ. Then for large 
N, TN (x, y) has the scaling behaviour T ≈ Λβg(ξ, η), 
where the scaling function g specifies the asymptotic pat-
tern. Let the diameter Λ grows as Nα. The fact that the 
function T has to be an integer function imposes strong 
constraints on the function g(ξ, η). It turns out that for 
compact patterns with α = 1/d, we have β = 2, and the 
function g is exactly quadratic in each patch. For α > 1/d, 
we can only have β = 1, and g has to be a linear function 
within a patch9. Then the continuity properties of g, and 
the known adjacency structure of the patches in the pat-
tern give a set of coupled linear equations for the coeffi-
cients of the polynomial. These can be solved exactly to 
determine the function g completely and hence character-
ize the pattern.  
 One important issue is whether such cellular automaton 
models, like the sandpile model, with deterministic evo-
lution rules can be considered as good models of biologi-
cal growth, where noise has an important role. During 
growth the animal body is influenced by fluctuations of 
environmental and local origin. Despite such fluctuations, 
the proportionate growth is maintained. It is thus impor-
tant to study the robustness of these patterns to introduc-
tion of noise.  
 We have studied the effect of randomness in the point 
of addition on the patterns produced16. It turns out that a 
small amount of this randomness does not change the 
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Figure 3. a, Checkerboard distribution of particles on the F-lattice. The filled circles denote occupied sites and the 
unfilled empty sites. b, The pattern produced on this background. Colour code: red = 0 and white = 1. The background 
pattern is a checkerboard pattern of red and white squares. The apparent uniform red colour is an artefact of the re-
duced size of the figure. (Reproduced from Sadhu and Dhar9.) 

 
 

 
 

Figure 4. a, A periodic arrangement of particles on a triangular lattice with directed edges. The filled circles repre-
sent sites with one particle and unfilled with two particles. b, The pattern produced by adding N particles at a single 
site on the background in (a). (Reproduced from Sadhu and Dhar9.) 

 
 
large-scale properties of the pattern. If the particles are 
added at a site chosen at each time step randomly from a 
small square of size b, then for N p b2, the large-scale 
structure of the pattern is unchanged. Only in a small area 
near the origin of width of order b, one can see the effect 
of the randomness, but the fractional size of this region 
decreases to zero as N increases to infinity. An example 
of such a pattern is shown in Figure 6.  
 We also studied the effect of noise in the initial pattern. 
If the background pattern is not exactly periodic, and a 
small fraction of sites start with incorrect initial number 
of grains, we find that for small noise, the system still 

shows proportionate growth, and the large-scale pattern is 
qualitatively unchanged. However, the exact ratios of 
sizes of different patches in the asymptotic pattern depend 
on the strength of the noise. Also the boundaries between 
patches are no longer straight lines. In Figure 7, we have 
shown the effect of 1% and 10% noise in the initial  
configuration in the F-lattice pattern in Figure 3.  
 The third type of noise we studied was in the evolution 
rules. In this case, we assumed that at each toppling, there 
is a small probability that some particles are lost. It seems 
like even a small amount of noise of this type can destroy 
the pattern, and result in a circular featureless blob16. In 
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other cases, some features of pattern persist for a long 
time, but other more intricate features are quickly 
smeared out and lost (Dandekar and Dhar, unpublished).  
 Another interesting question is the effect of bounda-
ries, or presence of dead sites on the lattice. We found 
that in the presence of boundaries the pattern is modified, 
but survives. Importantly, the rate at which diameter 
changes with N is also modified17. For example, for a 
compact pattern growing in half space, where any particle 
falling on the boundary is lost, the diameter increases not 
as ,N  but as N1/3.  
 While many examples of simple evolution rules giving 
rise to complex structures are known (the Game of Life18 

 
 

 
 
Figure 5. The pattern produced on the F-lattice with a background 
formed by empty sites along the boundary of tilted rectangles and the 
rest filled. Only the boundaries of the resolved patches are shown here. 
(Reproduced from Sadhu and Dhar9.) 
 
 

 
 
Figure 6. The pattern produced on the F-lattice by adding 
N = 100,000 particles at sites randomly chosen from a square region of 
width b = 100 lattice units. The initial configuration has a checkerboard 
distribution of heights 0 and 1. Colour codes same as in Figure 3.  
(Reproduced from Sadhu and Dhar16.) 

is a well-known example), in most cases these patterns 
are not tractable analytically. The patterns we described 
in this article are special in that they are of intermediate 
complexity and are analytically tractable. In fact, the  
exact characterization of the asymptotic pattern involves 
some interesting mathematics: discrete analytic functions, 
and piece-wise linear functions. In this article, we have 
not discussed these. The interested reader is referred to 
ref. 9 for a discussion.  
 There are many interesting open problems. The most 
obvious is the already mentioned absence of a proof of 
the proportionate growth property. Also, we cannot pre-
dict, at present, which periodic structures within patches 
are possible for a given background pattern. The observed 
stability of patterns in the presence of noise also needs 
explanation, as the scaled toppling function is no longer 
 
 

 
 
Figure 7. The patterns produced on the F-lattice by adding a large 
number of particles at a single site on a background of mostly checker-
board distribution, except for height 1 at (a) 1% and (b) 10% of the 
sites respectively, being replaced by height 0. Colour code: red = 0, 
white = 1. (Reproduced from Sadhu and Dhar16.) 
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piece-wise linear, or piece-wise quadratic. For the fast-
growing patterns, the analytical determination of the frac-
tal dimension α is a challenging problem.  
 
 

1. Cross, M. C. and Hohenberg, P. C., Pattern formation outside of 
equilibrium. Rev. Mod. Phys., 1993, 65, 851–1112. 

2. Witten, T. A. and Sander, L. M., Diffusion-limited aggregation, a 
kinetic critical phenomenon. Phys. Rev. Lett., 1981, 47, 1400–
1403. 

3. Stanley, H. E. and Barabási, A. L., Fractal Concepts in Surface 
Growth, Cambridge University Press, 1995.  

4. Eden, M., A two-dimensional growth process. In Proceedings of 
the Fourth Berkeley Symposium on Mathematical Statistics and 
Probability, 1961, vol. 4, pp. 223–239. 

5. Wilkinson, D. and Willemsen, J. F., Invasion percolation: a new 
form of percolation theory. J. Phys. A: Math. Gen., 1983, 16, 
3365–3376. 

6. Bak, P., Tang, C. and Wiesenfeld, K., Self-organized criticality: 
an explanation of the 1/f noise. Phys. Rev. Lett., 1987, 59, 381–
384. 

7. Dhar, D., Theoretical studies of self-organized criticality. Physica 
A, 2006, 369, 29–70. 

8. Dhar, D., Sadhu, T. and Chandra, S., Pattern formation in growing 
sandpiles. Europhys. Lett., 2009, 85, 48002-6. 

9. Sadhu, T. and Dhar, D., Pattern formation in fast-growing sand-
piles. Phys. Rev. E, 2012, 85, 021107-16. 

10. Liu, S. H., Kaplan, T. and Gray, L. J., Geometry and dynamics of 
deterministic sandpiles. Phys. Rev. A, 1990, 42, 3207–3212. 

11. Ostojic, S., Patterns formed by addition of grains to only one site 
of an abelian sandpile. Physica A, 2003, 318, 187–199. 

12. Fey, A. and Redig, F., Limiting shapes for deterministic centrally 
seeded growth models. J. Stat. Phys., 2008, 130, 579–597. 

13. Levine, L. and Peres, Y., Strong spherical asymptotics for rotor–
router aggregation and the divisible sandpile. Potential Anal., 
2009, 30, 1–27. 

14. Caracciolo, S., Paoletti, G. and Sportiello, A., Conservation laws 
for strings in the Abelian sandpile model. Europhys. Lett., 2010, 
90, 60003-6. 

15. Fey, A., Levine, L. and Peres, Y., Growth rates and explosions in 
sandpiles. J. Stat. Phys., 2010, 138, 143–159. 

16. Sadhu, T. and Dhar, D., The effect of noise on patterns formed by 
growing sandpiles. J. Stat. Mech., 2011, P03001. 

17. Sadhu, T. and Dhar, D., Pattern formation in growing sandpiles 
with multiple sources or sinks. J. Stat. Phys., 2010, 138, 815–837. 

18. Schulman, L. S. and Seiden, P. E., Statistical mechanics of a  
dynamical system based on Conway’s Game of life. J. Stat. Phys., 
1978, 19, 293–314. 

 
 

ACKNOWLEDGEMENTS. T.S. acknowledges the support of Israel 
Science Foundation. D.D. acknowledges partial financial support from 
the Department of Science and Technology, New Delhi, through a J.C. 
Bose Fellowship.  

 
 
 
 


