Proc. Indian Acad. Sci. (Math. Sci.), Vol. 107, No. 3, August 1997, pp. 283–317. © Printed in India

Failure of Palais–Smale condition and blow-up analysis for the critical exponent problem in $\mathbb{R}^2\,$

ADIMURTHI and S PRASHANTH

T.I.F.R. Centre, P.O. Box No. 1234, Bangalore 560012, India e-mail: aditi@ns.tifrbng.res.in pras@ns.tifrbng.res.in

MS received 17 July 1996; revised 3 February 1997

Abstract. Let Ω be a bounded smooth domain in \mathbb{R}^2 . Let $f: \mathbb{R} \to \mathbb{R}$ be a smooth non-linearity behaving like $\exp\{s^2\}$ as $s \to \infty$. Let F denote the primitive of f. Consider the functional $J: H_0^1(\Omega) \to \mathbb{R}$ given by

$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} F(u) dx.$$

It can be shown that J is the energy functional associated to the following nonlinear problem:

$$-\Delta u = f(u)$$
 in Ω ,
 $u = 0$ on $\partial \Omega$.

In this paper we consider the global compactness properties of J. We prove that J fails to satisfy the Palais-Smale condition at the energy levels $\{k/2\}$, k any positive integer. More interestingly, we show that J fails to satisfy the Palais-Smale condition at these energy levels along two Palais-Smale sequences. These two sequences exhibit different blow-up behaviours. This is in sharp contrast to the situation in higher dimensions where there is essentially one Palais-Smale sequence for the corresponding energy functional.

Keywords. Blow-up analysis; critical exponent problem in \mathbb{R}^2 ; Moser functions; Palais-Smale sequence; Palais-Smale condition.

1. Introduction

1.1 Preliminaries

Let Ω be a smooth bounded domain in \mathbb{R}^n , $n \ge 2$. For $n \ge 3$, let \mathcal{A}_n denote the subset of $C^1(\bar{\mathbb{R}}_+, \bar{\mathbb{R}}_+)$ consisting of functions g(s) which satisfy the following growth conditions:

$$\lim_{s\to\infty}g(s)\,s^{((n+2)/(n-2))}=\infty,$$

$$\lim_{s \to \infty} g(s) s^{-((n+2)/(n-2))} = 0.$$

When n = 2, let \mathcal{B} denote the subset of $C^1(\overline{\mathbb{R}}_+, \overline{\mathbb{R}}_+)$ consisting of functions h(s) which vanish only at s = 0 and which satisfy the following growth conditions: For every $\delta > 0$,

$$\lim_{s\to\infty}h(s)\exp\left\{\delta s^2\right\}=\infty,$$

$$\lim_{s\to\infty}h(s)\exp\{-\delta s^2\}=0.$$