Ever since Kendall (1) described that the liver holds a relatively large amount of thyroid hormones, considerable interest has been shown in the functional relationship between the thyroid and the liver. The nature of this interrelationship is not clear, but it is conceivable that the thyroid function may be abnormal in some liver disorders.

An occurrence of an epidemic of infectious hepatitis in Bombay, India, during the year 1967 afforded an opportunity to make a study of thyroid function in patients with severe liver damage. Our observations in these patients showed abnormalities in thyroid function which correlated to some extent with the degree of liver damage.

PATIENTS AND METHODS

Forty-three adult males with varying degrees of jaundice were selected for the investigations. Some were in the acute phase of the disease while others were recovering and their jaundice was waning. The degree of liver damage was estimated by serum bilirubin levels determined by the method of Malloy and Evelyn (2). None of the patients had any apparent thyroid disorder at the time of the investigations or a history of liver disease in the past.

Thyroid-function studies included (A) measurement of radiiodine uptake by the thyroid at 2, 24, and 48 hr and (B) serum PB131I at 48 hr. It was not possible to carry out many other more sophisticated thyroid-function investigations because facilities for doing them were not available in Bombay at the time of the study. Because these studies were carried out in a field infectious disease hospital, followup studies after the patients recovered completely were also not possible.

RESULTS

The serum bilirubin values in the 43 patients with infectious hepatitis at the time of the study varied from 0.62 to 35.72 mg% with an average of 8.1 mg%. Those having more than 8.0 mg% were considered as having severe liver damage, while those having less than 8.0 mg% were considered as having only a moderate degree of liver damage.

By this criterion, 15 were in the group with a severe degree of liver damage. They had an average serum bilirubin of 15.7 mg% with a range of 8.17–35.72 mg%. The other group with mild or moderate damage consisted of 28 patients who had an average serum bilirubin value of 4.0 mg% and a range from 0.62 to 7.0 mg% (Table 1).

Thyroid 131I uptake measurements done in our laboratory on 109 adult euthyroid individuals with no liver disorders had an average value of 13.6 ± 6.5 at 2 hr, 38.7 ± 13.8 at 24 hr, and 41.1 ± 13.2 at 48 hr. In patients with infectious hepatitis who had bilirubin values of more than 8.0 mg%, the mean thyroid uptake values at all periods of measurements were found to be lower than those in normal subjects. The uptake in this group averaged

Table 1. Serum Bilirubin Levels in Infectious Hepatitis

<table>
<thead>
<tr>
<th>Degree of Liver Damage</th>
<th>No. of Patients</th>
<th>Mean Bilirubin Values (mg%)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>43</td>
<td>8.1</td>
<td>0.62–35.72</td>
</tr>
<tr>
<td>High degree of liver damage (bilirubin > 8.0 mg%)</td>
<td>15</td>
<td>15.7</td>
<td>8.17–35.72</td>
</tr>
<tr>
<td>Mild or moderate degree (bilirubin < 8.0 mg%)</td>
<td>28</td>
<td>4.0</td>
<td>0.62– 7.0</td>
</tr>
</tbody>
</table>

Received April 29, 1970; revision accepted June 22, 1971.

For reprints contact: R. Ganatra, Radiation Medicine Centre, Medical Div., Bhabha Atomic Research Centre, Tata Memorial Hospital, Parel, Bombay 12, India.
Patients with a moderate or low degree of liver damage with bilirubin less than 8.0 mg% had a normal pattern of radioiodine uptakes. The average values of thyroid uptake in these patients were 18.8 ± 7.8 at 2 hr, 43.8 ± 19.4 at 24 hr, and 44.2 ± 10.2 at 48 hr (Fig. 1).

The differences between the mean values of thyroid uptake of radioiodine in the two groups with infectious hepatitis were statistically significant at all periods of measurements (p < 0.001 at 2 hr, p < 0.001 at 24 hr, and p < 0.001 at 48 hr).

Uptake values at 24 hr for the 43 patients were also compared with their respective serum bilirubin values. A good degree of correlation was found between these two parameters (coefficient of correlation = −0.69). Serum PB131I levels in patients with infectious hepatitis were not significantly altered in comparison to a normal mean value of 0.19 ± 0.17% of the administered dose per liter of plasma in our laboratory. Mean PB131I in patients of Group I was 0.11 ± 0.064 mg%, while in Group II, the mean was 0.23% ± 0.24 per liter of plasma. While the PB131I in the latter group seemed slightly elevated, there was no statistically significant difference between this value and that of the normal group. Similarly there was no difference in average PB131I values between the two groups of patients with infectious hepatitis.

DISCUSSION

Several clinical and experimental reports have suggested an interrelationship between the thyroid and liver. Hypothyroidism after neonatal jaundice was described by several workers (3–6). Gross liver damage has been observed on postmortem of patients with severe thyrotoxicosis (7). Animals with liver damage from carbon tetrachloride administration show changes suggestive of thyroiditis on histological examination (8). Levey (9) reported inhibition of radioiodine uptake by the thyroid in vitro in the presence of liver extract, and Overby (10) has reported a protective action by liver extract against the effects of excess thyroxine in rats.

There are several reports of abnormal thyroid function tests in association with liver disorders. In cirrhosis of the liver serum PBI was found to be low or normal (11,12). Radioiodine uptake in some of these patients (13) was reported to be high. In infectious hepatitis, the PBI was found to be elevated (11,14,15) while thyroid uptake was reported to be diminished (14) or high (15) in a small series of patients.

The discrepancies in these observations may be attributed to the fact that in cirrhosis involvement of the liver is variable and processes of destruction and repair are at work simultaneously. Since in infectious hepatitis the damage to the liver is acute and severe, it is likely that biochemical abnormalities may be more marked in this disease than in cirrhosis.

Our patients were divided into two groups, those with serum bilirubin levels above 8.0 mg% and those with less than 8.0 mg%. This dividing line was chosen arbitrarily and served the useful purpose of dividing the patients into those with mild and those with severe liver damage. The thyroid uptake of radioiodine was significantly suppressed in those with severe damage to the liver. The uptake values at 24 hr in the 43 patients showed a good degree of correlation when plotted against the respective serum bilirubin values (coefficient of correlation = −0.69).

A possible explanation can be offered for the changes observed in these studies. A damaged liver could be limited in its ability to store and conjugate thyroxine. As a result of this, a high amount of thyroxine might be retained in the circulation. This would suppress pituitary function, and the thyroid might become underactive with diminished values of thyroid radioiodine uptake. This possibility is supported by the observations of high stable PBI in infectious hepatitis by various workers (11,14) and by the findings of the chromatographic studies of Vannotti (14) that in normal subjects the serum contains thyroxine and the bile contains thyroxine and glucuroconjugates of thyroxine while in infectious hepatitis serum and bile contain only thyroxine but no glucuroconjugates.
SUMMARY

Thyroid-function studies were done in 43 cases of infectious hepatitis with varying degree of liver damage as judged by serum bilirubin levels. A different pattern of thyroid uptakes was seen in patients with moderate liver damage and those with severe liver damage. A good correlation was observed between thyroid uptake and degree of liver damage.

ACKNOWLEDGMENT

We wish to thank the Superintendent, Kasturba Hospital of Infectious Diseases, for providing excellent facilities to carry out this work. The authors also wish to thank John B. Stanbury, Professor, Unit of Experimental Medicine, Massachusetts Institute of Technology, Cambridge, Mass., for his valuable criticism, suggestions, and help in writing of this paper.

REFERENCES