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Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB6) coated

carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material

as a potential candidate for future generation electron sources. The film was synthesized by a

combination of chemical and physical deposition processes. A remarkable increase in maximum

current density, field enhancement factor, and a reduction in turn-on field and threshold field with

comparable temporal current stability are observed in CeB6-coated CNT film when compared to

pristine CeB6 film. The elemental composition and surface morphology of the films, as examined

by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray

measurements, show decoration of CeB6 nanoparticles on top and walls of CNTs. Chemical

functionalization of CNTs by the incorporation of CeB6 nanoparticles is evident by a remarkable

increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine

CeB6 films. The enhanced FE properties of the CeB6 coated CNT films are correlated to the

microstructure of the films. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866990]

I. INTRODUCTION

Field electron emission (FE) from various nanostruc-

tured materials is a promising research area, because of its

potential applications in electron microscopes, field emission

displays, microwave devices, X-ray sources, etc. FE is a

quantum mechanical process where electrons near the Fermi

level can tunnel through an energy barrier and escape to the

vacuum level upon application of a high electric field.1,2

With the advancement of research in growth and synthesis of

carbon nanotubes (CNTs) the importance of FE has signifi-

cantly enhanced in both fundamental physics and technol-

ogy.3 For high spatial, temporal, and energy resolutions,

present day transmission electron microscopes (TEM) and

scanning electron microscopes (SEM) require a point elec-

tron source that ensures high brightness and good temporal

coherence. A cold field emitter (CFE) offers the highest

brightness and temporal coherence over other types of elec-

tron sources, such as the Schottky emitter and the thermionic

emitter. Because of their high melting point, mechanical

strength, chemical stability, low work function, and stable

specific resistance,4,5 rare earth hexaborides like lanthanum

hexaboride (LaB6) and cerium hexaboride (CeB6) were iden-

tified as the most promising electron source materials6–11 for

many small spot size applications such as surface analysis

and metrology as well as high current applications such as

microwave tubes, electron beam lithography, electron beam

welders, X-ray sources, and free electron lasers. In addition,

rare earth hexaborides can work at low operational tempera-

ture and have a long service life when used as a cathode ma-

terial. For CFE sources, the brightness is associated with the

emission current density (J), which can be described by the

Fowler-Nordheim (FN) Eq. (1), as given below

J ¼ ab2E2

u
exp � bu3=2

bE

 !
; (1)

where a¼ e3/8phP¼ 1.54434� 10�6 A eV V�2 and b¼ 8p
3

� 2með Þ1=2

ehP
¼ 6.83089� 109 eV�3/2 V m�1, E is the applied field

strength (in V/lm), u is the work function of the emitting ma-

terial, and b is the field enhancement factor. Geometrically,

this factor is defined as b¼ h/r, where h is the height and r is

the radius of curvature of the emitting center. Therefore, the

morphology of the emitter surface plays an important role in

FE enhancement. Apart from the b factor, the turn-on field,

the maximum current density, and the stability of FE current

also determine the quality of a field emitter.

Recently, it has been reported that a turn-on electric field

of � 7.6 V/lm with a field enhancement factor of �320 can

be achieved in single crystalline CeB6 nanowires.5 In our

recent work12 further improvement in field enhancement
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factor with the same turn-on field was demonstrated for

CeB6 nanorods. However, for making an efficient CFE

source, further reduction in turn-on field and enhancement of

current stability, retaining a large b value are important.

Particularly, temporal stability of field emission current is a

crucial issue before using this material for any practical

application. The inherent current fluctuation from pristine

CNT can be reduced by coating CeB6 nanoparticles on CNT.

This work is motivated to portray CeB6 coated CNT

film as prospective replacement of hexaboride filament for

future electron source in electron microscopes. FE properties

of CNT and CeB6 can independently be found in the litera-

ture though, to the best of our knowledge, there is no report

so far on composite of CeB6 with CNT as FE source. An

attempt has been made to correlate the FE results with the

microstructure of the films by Raman spectroscopy and elec-

tron microscopy.

II. EXPERIMENTAL

A. Sample preparation

Multiwalled CNT (MWCNT) film was grown on iron

coated p-Si (100) substrate by microwave plasma enhanced

chemical vapor deposition (MPECVD) technique, as

described in our previous reports.13,14 0.05 g of the as-

obtained pure polycrystalline CeB6, dispersed in 2.0 ml of

ethanol: ethylene glycol mixture (1:1 volume ratio), was de-

posited on the MWCNT films by spin coating at 3000 rpm for

60 s followed by a slow drying process (200 �C at the rate of

20 �C/h). The process of CeB6 spin coating was repeated

twice. The film was further dried in Ar atmosphere at 200 �C
for 6 h with slow heating and cooling rates (20 �C/min). The

synthesis of CeB6 was carried out by a low temperature boro-

thermal reduction using a cerium precursor (cerium oxalate)

(synthesized by reverse micellar route where cetyl trimethyl

ammonium bromide (CTAB) was used as surfactant) and bo-

ron as the starting materials. The borothermal reduction of the

cerium precursors was performed at 1300 �C in an inert (ar-

gon) atmosphere following a similar procedure reported

previously.12

B. Characterization

Field emission scanning electron microscopy (FESEM)

(FEI, Quanta 3D FEG, operated at 10 kV) and energy disper-

sive X-ray (EDX) analysis (Manufacturer: FEI, Model: Nano

SEM 200, operated at 5 kV) were used to examine the mor-

phology and composition. TEM (Philips, CM 20 FFG) with

200 kV electron beam was performed to examine the micro-

structure. Micro-Raman spectroscopy was performed using a

single stage monochromator (Horiba JY, LabRam HR800)

and a laser excitation of k¼ 514.5 nm with a laser power

below 1.0 mW in order to reduce sample heating. The laser

beam was focused onto the sample surface with a 100� objec-

tive (N.A.¼ 0.9).

The FE properties were investigated using a very high

vacuum (VHV) compatible FE set up in diode geometry.

The distance between the anode (a stainless steel plate) and

the cathode was kept constant at 200 lm. The electric field

was varied from 1.75 to 15.0 V/lm at constant pressure of

7.5� 10�7 Torr. Direct current (DC) voltage and current

were measured using a high voltage DC power supply

(Stanford Power Supply, PS 350) and an amperemeter

(Keithley, 2000 Multimeter). Furthermore, the FE stability

of the samples was checked for 7 h by monitoring the fluctu-

ations of the current density at a sampling interval of 10 s at

a constant electric field of 12.0 V/lm.

III. RESULT AND DISCUSSION

FESEM (Figure 1(a)) and TEM (Figure 1(b)) images of

the film revealed the growth of CeB6 nanoparticles (i) at the

tips and sides of CNT walls and (ii) on the Si substrate.

In situ EDX (Figure 2(a)) with SEM, employed for ele-

mental identification, confirmed the presence of boron, ce-

rium, carbon along with iron (as catalyst), oxygen, silicon

(as substrate). The signature of Al came from the SEM sam-

ple holder. The quantity of coated material was too small to

get an intense line for Ce and B like other elements as indi-

cated in Figure 2(a). However, existence of Ce and B along

with C were clearly seen by SEM-EDX element mapping

(Figures 2(b)–2(e)).

Raman spectroscopy is the method of choice to analyze

carbon nanomaterials in electronic devices and to evidence

modifications due to the CNT interaction with its environ-

ment such as metallic contacts.15 Here, we aim at the impact

of CeB6 nanoparticles on the vibrational and electronic prop-

erties of CNT. Comparative normalized Raman spectra of

pristine CNT and CeB6-coated CNT samples are shown in

Figure 3 (normalized with respect to the G band).

Both spectra revealed the typical signature of graphitic

and disordered-induced vibrational modes16 of carbon nano-

materials with sp2 hybridization. The most prominent features

in the spectral region from 1200 to 2800 cm�1 correspond to

the D, G, and 2D (G0) bands, around 1350 cm�1, 1578 cm�1,

and 2700 cm�1, respectively.17 Contrary to the D band, the 2D

band, involving the creation of an electron and a hole near the

K point and their recombination mediated by the inelastic scat-

tering by two phonons, does not require the presence of defects

on sp2 carbon in order to be active (momentum is conserved

by the creation of two phonons with opposite wavevectors).18

The Raman bands in Figure 3 were fitted with Lorentzian func-

tions; the parameters deduced from the fitting are shown in

Table I. Other two-phonon features with lower intensity were

FIG. 1. (a) FESEM images of CeB6-coated CNT film (b) TEM image of

CeB6-coated CNT film where the CeB6 nanoparticles on CNT walls are

marked by arrows.
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also observed around 1620 cm�1 and 2450 cm�1 correspond-

ing to the defect-induced D0 and DþD00 bands, respectively.

The most remarkable effect of CeB6 on the Raman spectra of

CNT is the pronounced enhancement of the 2D band. In addi-

tion, a decrease of the full width at half maximum (FWHM) of

all peaks and a blue shift in their positions are observed.

There are two possible explanations for the spectral

changes observed in the Raman spectra. The 2D band in gra-

phene is highly sensitive to external perturbations and to

changes in the electronic structure caused by defects, electric

field, and doping.17 However, there are very few reports on

the intensity change of the 2D band in CNTs. Due to dielec-

tric screening, it was predicted that any material covering the

CNT will modify the exciton transition energies and equiva-

lently, the electronic structure of single walled nanotubes

(SWNTs) as a function of dielectric constant of the covering

material.19 The effect of surrounding material on the

transition energies was experimentally confirmed by photo-

luminescence (PL) results of SWCNTs immersed in organic

solvents with dielectric constants up to 37,20 and SWCNTs

non-covalently functionalized by porphyrins.21,22 On the

other hand, it was proposed that doping and charge transfer

may play the main role in the changes of electronic structure

of SWCNTs. According to Sa�far et al.23 the G band position

is indicative of charge transfer but the intensity of the 2D

band in SWCNTs is more sensitive to the slope of the elec-

tronic energy dispersion than the G band. In other words, the

2D band enhancement can occur due to the changes in elec-

tronic structure of CNTs, which can be caused either by

dielectric screening due to the surrounding material (in this

case CeB6, with dielectric constant about 8.4 at 2.4 eV,24) or

by the charge transfer that modifies the electronic transition

energies. Although a detailed theoretical study is still needed

to achieve a comprehensive understanding of the phonon

FIG. 2. EDX spectra of (a)

CeB6-coated CNT film indicating the

presence of C, O, Fe, Al, Si, B, and Ce.

(b-e) SEM and EDX mapping of

CeB6-coated CNT showing presence of

C, Ce and B.

FIG. 3. Raman spectra of pristine (blue)

and CeB6-coated (red) CNTs under green

laser excitation (k¼ 514.5 nm) normal-

ized to the G band of the CNTs. Each

peak was individually fitted using a

Lorentzian peak.

TABLE I. Parameters of the Raman peaks deduced from Lorentzian fits. The error values have been deduced from the fitting. The parameters obtained for the

pristine CNT sample are shown in black letters while those for the CeB6-coated CNT sample are shown in bold letters.

Pristine CNT

CeB6-coated CNT D G D0 DþD00 2D

FWHM (cm�1) 38.7 6 0.10 28.88 6 0.08 26.8 6 0.8 61.0 6 2.0 60.4 6 0.5

25.6 6 0.01 20.7 6 0.10 10.0 6 1.0 49.0 6 3.0 38.4 6 0.2

Position (cm�1) 1346.9 6 0.03 1571.86 6 0.02 1610.4 6 0.2 2443.5 6 0.4 2692.8 6 0.10

1351.5 6 0.01 1578.23 6 0.03 1620.4 6 0.3 2454.0 6 0.7 2702.11 6 0.04

Area 24.3 6 0.10 45.1 6 0.1 4.1 6 0.1 4.3 6 0.2 78.3 6 0.7

18.9 6 0.01 32.9 6 0.1 0.9 6 0.1 5.6 6 0.4 110.7 6 0.4

Normalized intensity 0.40 1.0 0.10 0.04 0.83

0.47 1.0 0.06 0.07 1.84

094302-3 Patra et al. J. Appl. Phys. 115, 094302 (2014)
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scattering process in MWCNT, the scenarios described

above can explain the 2D band enhancement here observed.

The other possible reason for the 2D band enhancement is

the healing effect of CeB6 nanoparticles on CNTs. As demon-

strated by Venezuela et al.25 in graphene the area of the 2D

peak and other two-phonon processes increases with a decrease

in electronic linewidth or with increase in the electron lifetime

due to a lower contribution from electron-phonon scattering

and/or defect concentration. This is an indirect way in which

defects can contribute to the intensity of the 2D band. This

conclusion can be extrapolated to the CNTs26 since the 2D

band nature is the same for both cases. The intensity ratio ID/IG

which is commonly used as the indication of defect concentra-

tion in CNTs is slightly increasing, implies a slight growth of

defect density, while the D0 mode requiring defects for its acti-

vation decreases in area by almost four times, which again

brings us to the opposite conclusion of a healing effect due to

the CeB6 coating17 similar to the one reported for TiO2 nano-

particles (NPs).18 Following F. Inoue et al.,18 we propose that

the attachment of the CeB6 nanoparticles to the CNT walls

screens defects of the outer CNT shells from the Raman scat-

tering process, assuming that the inner tubes have higher crys-

tallinity than the outermost layers. It would also result in the

increase of the sharpness of the Raman bands.

Since the same laser power was used in the spectra

shown in Figure 3, the blue shift in the Raman spectra could

be explained as a difference in sample temperature due to

better thermal conductivity of the CeB6-coated films.27–30

This thermal effect would also contribute to the sharpness of

the Raman bands (as represented by FWHM of the corre-

sponding peak).27 These results show that the chemical func-

tionalization of CNTs by CeB6 nanoparticles is clearly

evidenced by Raman spectroscopy and in particular that the

2D band is highly sensitive to this functionalization.

The average current density (J) versus applied electric

field (E) for pristine CeB6 and for CeB6-coated CNT are

plotted and shown in Figure 4(a). The turn on field, i.e., the

field required to achieve an emission current density of

10.0 lA/cm2, was calculated from this graph and amounts to

ECeB6
to ¼ (10.70 6 0.2) V/lm for pristine CeB6

12 and

ECeB6�CNT
to ¼ (6.35 6 0.2) V/lm for CeB6-coated CNT. The

threshold field (field required to achieve emission current den-

sity of 100.0 lA/cm2), amounts to ECeB6�CNT
th ¼ (10.09 6 0.2)

V/lm for CeB6-coated CNT. The threshold field for CeB6

ECeB6

th is not defined as it does not attend a maximum current

density of 100.0 lA/cm2 within the applied field limit.

The field enhancement factor of each sample was calcu-

lated from their respective FN plots as shown in Figure 4(b).

The enhancement factor for the CeB6-CNT composite is

4790 at the high field region which is 4.5 times of the maxi-

mum enhancement factor reported (1035) for CeB6.12

Comparative results of maximum current density, turn-

on field, threshold field, and enhancement factor for pure

CeB6,12 and CeB6-coated CNT films are given in Table II.

The fluctuation of the current density (cf) with respect to

the mean value was calculated for CeB6-coated CNT film at

constant electric field using the formula

cf ¼ j x� �xð Þj
�x

� 100%; (2)

where x is the maximum deviation from the mean value �x.

The variation of current density with time in CeB6-coated

CNT is shown in Figure 5. The cf for CeB6-coated CNT film

was found to be �3.0% at an electric field of 12.0 V/lm with

mean current density 182.17 lA/cm2. The FE stability in

CeB6-coated CNT films decreased marginally compared to

pristine CeB6 (cf� 1.5%).12 Introduction of defects and

increase of maximum current (15-fold) might have caused an

increase in joule heating resulting into small increment in cf in

the coated sample. But due to a greater dielectric constant of

CeB6 (with respect to air), the drifting distance of the electron

decreases causing less joule heating for the coated sample.31,32

These two combined effects lead to a small increment in

FIG. 4. (a) Average current density (J)

versus applied electric field (E), (b) FN

plot pristine CeB6
12 and CeB6-coated

CNT films.

TABLE II. Turn-on field, threshold field, enhancement factor, and maximum current density for pristine CeB6 nanorods,12 and CeB6-coated CNT films.

Sample

Turn-on field (V/lm)

(@10 lA/cm2)

Threshold field

(V/lm) (@100 lA/cm2)

Enhancement factor

(high field region)

Maximum

current density

(lA/cm2) (@12 V/lm)

Pristine CeB6
12 10.70 6 0.2 … 1035 �12

CeB6-coated CNT 6.35 6 0.2 10.09 6 0.2 4790 182.17

094302-4 Patra et al. J. Appl. Phys. 115, 094302 (2014)
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current fluctuation in the coated sample. Also in case of

coated CNT sample, the fluctuation contribution from both

CNT and CeB6 are added up to give the resulting total current

fluctuation. Since the coated sample is less in quantity than

CNT, so the fluctuation contribution from CNT will be more

in total current contribution. As reported by Dean et al.,33 the

fluctuation in CNT increased roughly by an order of magni-

tude at room temperature (up to 225 �C named as peak fluctu-

ation temperature). This emission current heated up the

nanotubes which in turn increased the current fluctuation.35

The effective annulus (reff) of the emitter tip from which

electron emission takes place can be calculated using the fol-

lowing equation,34

ref f ¼
mey0=2ffiffiffiffiffiffi
pa
p

bu
; (3)

where m is the slope and y0 is the Y-axis intercept of the FN

plot, u is the work function of the material, a and b are the

constants as given in Eq. (1). For the pristine CeB6 film on

Si,12 the effective annulus comes out to be 0.056 nm in the

high field region and 0.003 nm in the low field region,

whereas for the CeB6-coated CNT, it is 8.0 nm in the high

field region (16 times more) and 0.034 nm in the low field

region (10 times more). This is in accordance with the

enhancement of b factor in the case of CeB6-coated CNT

film compared to pristine CeB6. This fact, along with intro-

duction of defects (as confirmed by Raman spectroscopy

result) within CNT explains the significant rise (�16 times)

in emission current density of the CeB6-coated CNT films

compared to that of pristine CeB6. It is also observed that the

structural stability of CeB6-coated CNTs increases due to the

CeB6 coating (results not shown).

Comparing overall results of these films, it is clear that

CeB6-coated films have higher emission current, higher

enhancement factor and lower turn-on and threshold fields

than pristine CeB6. The decrease in temporal stability is mar-

ginal. Therefore, CeB6-coated CNT film comes up a better

replacement for hexaborides as electron emitting material for

applications like electron source in FE microscopes.

IV. CONCLUSION

A detailed FE analysis was carried out on CeB6-coated

CNT films grown by combining MPECVD and hydrothermal

synthesis routes. Significant increment in the FE current

density, stability and enhancement factor in CeB6-coated

CNT film with an appreciable decrement in turn on and

threshold field as compared to pristine CeB6
12 was observed.

Chemical functionalization of CNT by CeB6 nanoparticles

was evident from Raman spectroscopy. The results are

understood on the basis of (i) introduction of defects within

CNT, (ii) increase in number of electron emission sites and

(iii) increase in effective annulus. The improvement in FE

properties in CeB6-coated CNT indicates it is possible appli-

cation as electron emitter for FE microscopes in future.

To the best of our knowledge, FE properties of CeB6

coated CNT and its comparison with pristine CeB6 is being

reported for the first time which might lead to a new technol-

ogy of electron source based device fabrication.
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