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Summary

1. The advent of spatially explicit capture–recapture models is changing the way ecologists analyse capture–

recapture data. However, the advantages offered by these newmodels are not fully exploited because they can be

difficult to implement.

2. To address this need, we developed a user-friendly software package, created within theR programming envi-

ronment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse

spatial capture–recapture data.

3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their

data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture–

recapturemethods in practice.

Key-words: abundance estimation, camera traps, carnivore conservation, carnivore monitoring,

density estimation, faecal DNA sampling, hair snares, mark-recapture, marked animals, spatial

models

Introduction

Capture–recapture (CR) sampling (Otis et al. 1978; Williams

et al. 2002) has emerged as a powerful tool for estimating ani-

mal abundance by overcoming the key problem of imperfect

detection. In such studies ‘capture histories’ of individually

identifiable animals (tagged or naturally marked) obtained

from repeated sampling across several occasions, typically pre-

sented in the ‘1’ (capture) or ‘0’ (no capture) format, comprise

the basic data for analysis. As demographic closure is a critical

model assumption (Otis et al. 1978; Williams et al. 2002), the

survey period is kept short. Data are often analysed using

several closed CR models (Amstrup et al. 2005) that incorpo-

rate heterogeneity in capture probabilities among individuals,

trap response behaviour and time-varying capture probabili-

ties. These analyses are performed using popular user-friendly

software programs like CAPTURE (White et al. 1978) and

MARK (White &Burnham 1999).

Such analyses incorporate statistical tests to select the best

capture–recapture model for the data on hand, estimate cap-

ture probabilities, and the population size is estimated based

on the assumption that the population is ‘closed’. While these

traditional methods provide reliable estimates of abundance,

density estimation requires that one also estimates the sampled

area. Typically, a buffer area is added around the trap array,

based on some empirical, but ad hoc, approaches developed by

Wilson&Anderson (1985) and Parmenter et al. (2003). Disad-

vantages of such approaches to sampled area estimation have

been well-recognized statistically (Efford 2004; Efford et al.

2009) and empirically (Soisalo & Cavalcanti 2006; Sharma

et al. 2010). Conventional CR analyses suffer from some other

key disadvantages and deficiencies in estimating animal den-

sity. Foremost among them is the fact that although spatial

information in the form of location of capture is available in

field studies, the full potential of such critical information

related to the animal’s home range andmovement (and thus to

abundance and density) is not meaningfully exploited in con-

ventional CR analyses. Logistical problems, such as inability

to adequately cover the entire array with traps without leaving

any ‘holes’ (Karanth & Nichols 1998), the frequent need to

sample the area in successive ‘blocks’ rather than in a single

sweep, irregularly shaped trap arrays that are subsequently

treated as circles while estimating variance of density or inclu-

sion of habitats not used by the target species, may all combine

andweaken inference under conventional CR analyses.*Correspondence author. E-mail: arjungswamy@gmail.com
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The recent development of spatially explicit capture–

recapture (SECR) models (Efford 2004; Borchers & Efford

2008; Royle et al. 2009a) has addressed several of these prob-

lems. Such models have been developed both under a maxi-

mum likelihood-based estimation framework (Borchers &

Efford 2008) and under a Bayesian framework (Royle &

Young 2008; Royle et al. 2009a, b; Gardner et al. 2009).

Efford et al. (2009) provide a general review and describe vari-

ous types of animal ‘captures’ or ‘detections’ that can generate

data for such analyses.

In this study, we describe a free software program

SPACECAP (Gopalaswamy et al. 2012), implementing a

Bayesian SECR analysis of Royle et al. (2009a). Another soft-

ware program called DENSITY (Efford et al. 2004) is already

available and implements the maximum likelihood-based

SECR analysis (Borchers & Efford 2008). The ‘SECR’ and the

‘SCRbayes’ in R (R Development Core Team 2009)

implement more sophisticated maximum likelihood-based and

Bayesian estimators, respectively. However, these R packages

do not haveGraphical User Interfaces (GUIs).

The reader is referred to the original article by Royle et al.

(2009a) for technical details of the models implemented

in SPACECAP. Although the models implemented in

SPACECAPmay suit spatial CR data originating from differ-

ent types of non-invasive sources of data, such as from camera

traps, hair snares or faecal DNA samples, they do not apply to

some situations such as kill trapping (Efford et al. 2009).

Our primary motivation here is to enable practising biolo-

gists to reliably estimate animal densities using the flexible and

powerful Bayesian SECR modelling approach of Royle et al.

(2009a) without having to decipher the underlying complexity

of the original R code (Royle et al. 2009a, described below),

thus meeting a key need of many species conservation initia-

tives involving rare and elusive animals that can only be stud-

ied using non-invasive surveymethods (Hatler et al. 2009).

Materials andmethods

PACKAGE DEVELOPMENT

SPACECAP was developed within programming environment R (R

Development Core Team 2009), and is available within the library of R

packages in the Comprehensive R Archive Network (CRAN; http://

cran.r-project.org). We used the Tool Command Language (Tcl) with

the Tk graphical user interface toolkit (http://www.tcl.tk/) to develop

itsGUI (Fig. 1). The software package includes a detailedHelp file that

is automatically downloaded with SPACECAP. The software can also

be downloaded from the website of US Geological Survey, Patuxent

Wildlife Research Center (PWRC) software archive (at http://www.

mbr-pwrc.usgs.gov/software/spacecap.html).

MODEL DESCRIPTION

SPACECAP implements a hierarchical model whereby a state and an

observation process are clearly defined.Here, the animal population size

and their respective locations constitute the state process. Accordingly,

the location of an animal i is defined by si � UniformðSÞ. Here

si; i ¼ 1; 2; . . .;N, are the individual animal activity centres distributed

randomly over some regionS.
In well-designed CR experiments, investigators maintain a careful

record of the individual animal i caught at a specific trap location j on a

Fig. 1. TheGraphicUser Interface (GUI) of SPACECAP.
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specific sampling occasion (e.g. a night, or a week) k. Thus, in SPACE-

CAP, binary observations (i.e. 1 s and 0 s) yijk are recorded for an indi-

vidual animal i caught at trap location j on sample occasion k.

The model is a type of binary regression model, similar to logistic

regression, in which, yijk �BernoulliðpijkÞ. Here pijk is the probability of

detecting an individual i, at trap jon sample occasion k. The probability

pijk may be related to covariates of interest by applying a suitable

transformation. In SPACECAP, we make use of the complementary

log–log link transformation. Thus, the simplest possible model is

expressed as

cloglogðpijkÞ ¼ b0

where b0 is a parameter to be estimated. By taking the inverse of the

cloglog transformation:

pijk ¼ 1� e�e
b0

This particular function arises by considering the binary observa-

tions to be formally reduced fromaPoisson encounter frequencymodel

(see Royle et al. 2009a, for details). That is, pijk is the Pr (that animal i

makes at least one encounter with trap j on occasion k) under the

Poisson model. The most general model that SPACECAP presently

allows is a model in which cloglogðpijkÞ ¼ b0ð1� xijkÞ þ b1xijkþ
b2f½distðsi; ujÞ�. In this expression xijk is an indicator of previous cap-

ture of individual i in trap j and f is the function that describes themech-

anism of decline of detection probability as the distance between trap j

and location of individual i increases, that is, a function to make pijk

have a half-normal or negative exponential form in SPACECAP. Thus,

b0 and b1 are measures of capture probabilities (refer to Royle et al.

2009a, for details) until and after the first capture, respectively. The

parameter b2 is a regression coefficient on the effect of distance between

individual activity centre si and the location of trap j, uj. b2 is

constrained to be <0 implying that the probability of encountering an

individual in a trap decreases as the distance between the individual

and the trap increases. However, there may be situations where this is

not true, for example, when animals spend a lot of time patrolling terri-

tory borders (Borchers &Efford 2008).

MODELS IMPLEMENTED

SPACECAP draws data for analysis in the form of spreadsheet files

(such as fromMicrosoft Excel or OpenOffice) created by the user. The

user also defines the specific type of spatial capture–recapture model to

be run. Currently, SPACECAP can analyse the Bernoulli encounter

process model with the following options (see Royle et al. 2009a, for a

discussion):

1 Spatially explicit ORNon-spatially explicit model.

2 Behavioural ORNon-behavioural responsemodel.

3 Half-normal ORNegative exponential detection functionmodel.

The detection function model specifies the mechanism by which the

regression coefficient b2, in the complementary log–log link function,

decreases as distance between an animal and a trap increases. Further

detail on how the detection function is linked to the observation process

is described elsewhere (Borchers &Efford 2008; Royle et al. 2009a).

PARAMETERS REPORTED

In SPACECAP, the parameter NðSÞ or Nsuper is the population size

of individuals – the estimated number of activity centres located in

S and density is calculated as D ¼ Nsuper

kSk ; where kSk is the area of

the state-space. Note that NðSÞ is the population size for the pre-

scribed state-space (see Royle et al. 2009a, for a description of the

Bayesian estimation procedure) and should not be interpreted as

the population size in some sampled area. k0 is the intercept, which

is the expected encounter rate of an individual i in trap location j

at sampling occasion k, whose activity centre is exactly at the trap

location. For a non-behavioural response model, whereby b0 ¼ b1,
k0 ¼ eb0 .

The rate of decline in detection probability as the distance between

the animal centre and the trap increases is indicated by the parameter

b2 in the complementary log–log link function. SPACECAP reports

the parameter r ¼ ð1=b2Þ. This may also be viewed as a ‘range

parameter’ of an animal if the animal movement about its activity

centre has a distribution similar to the detection function used. Thus,

for a highly mobile animal, this value will tend to be large (e.g. tigers

will have a higher r value compared to civets). We note here that the

r estimated in SPACECAP is scaled according to the standard detec-

tion function implemented in the study by Borchers & Efford (2008)

and not according to the alternative scaling used in the study by Ro-

yle et al. (2009a).

When the ‘behavioural response’ option is chosen, SPACECAP esti-

mates twomore derived parameters:

p1 ¼ 1� e�b0 is the encounter probability of an individual before

initial encounter.

p2 ¼ 1� e�b1 is the encounter probability of an individual after

initial encounter.

All parameters are estimated using the Markov chain Monte Carlo

(MCMC) estimation process using the Metropolis algorithm (Gelman

et al. 1996). The current version of SPACECAP only runs oneMCMC

chain and multiple chains can be analysed by running SPACECAP

sequentially. The user is provided with the option of setting the basic

MCMCparameters before analysis. These include the number of itera-

tions to be run, the number of iterations to be discarded (called the

‘burn-in period’), thinning rate of the MCMC samples and the data

augmentation value (themaximum allowable number of animals possi-

ble within the state-space S). Precautions must be taken when setting

the data augmentation value. If a very low value is set, then there may

be a possibility of underestimating the population size by truncating

the posterior distribution of the population size estimate. Similarly, if a

very high value is set, itmay result in high computational time. SPACE-

CAP reports the parameter w, which is the fraction of the maximum

allowable number (set by the user during data augmentation), that

actually represents the true population. We recommend users to set the

data augmentation value at about 5–10 times the expected population

size in the larger state-space.

ASSESSMENT OF MODEL ADEQUACY

SPACECAP implements an assessment ofmodel adequacy by comput-

ing the Bayesian P-value based on individual encounter frequencies

Table 1. Posterior density estimates of parameters estimated on tiger

data set (Royle et al. 2009a)

Parameter

Posterior

mean

Posterior

SD

95%Lower

HPD level

95%Upper

HPD level

r 1�975 0�2166 1� 5801 2�412
k0 0�016 0�0034 0�0096 0 �023
w 0�4307 0�0822 0�2799 0�5936
Nsuper 210�60 38�915 137 284

DensityD 13�03 2�4079 8�5388 17�6344

See Methods and Materials – Parameters reported for definitions of

parameters. D is measured per 100 sq km.
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(see Royle et al. 2011, for details on the implementation). In this

approach, a fit-statistic, D, is constructed based on individual encoun-

ter frequencies, ni, by using a Freeman-Tukey type statistic (Freeman

&Tukey 1950).

Dðdata; hÞ ¼
XN

i¼1

ffiffiffiffi
ni

p � ffiffiffiffi
ei

pð Þ2

where we define ni to be the encounter frequency for individual i condi-

tional on si, ei is the expected value under the model and h are the

model parameters. A Bayesian P-value estimate close to 0 or 1 would

imply model inadequacy. We note that DENSITY utilizes the Akaike’s

InformationCriteria as ameans to facilitatemodel selection.

SUMMARY STATIST ICS AND OUTPUT

The approach for parameter estimation in SPACECAP is Bayesian.

Therefore, the package produces a summary of parameter estimates

comprising of the posterior mean, posterior standard deviation and the

95% highest posterior density intervals (for examples, see Table 1).

Thus, for a basic user, SPACECAPprovides only all the details relating

to the parameter estimates. In addition, SPACECAP also outputs files

Fig. 2. A pixellated density map produced in SPACECAP showing relative animal densities. This map reports estimated tiger densities per pixel of

size 0�336 km2.White regions represent unsuitable habitat.

Table 2. Comparison of parameter estimates (posterior means and

standard deviations) in SPACECAP,DENSITYandMh-jackknife

Parameter SPACECAP DENSITY Mh-jackknife

r 1�975 (0�217) 1�977 (0�226) NA

k0=g0 0�016 (0�00) 0�015 (0�00) NA

w 0�43 (0�08) NA NA

Nsuper 210�60 (38�92) NA NA

Nhat NA 99�69 (19�19) 100 (18�15)
Densityð=100 km2Þ 13�03 (2�41) 13�23 (2�62) 20�3(3�80)

See Methods and Materials – Parameters reported for definitions of

parameters. The parameter g0 is estimated in DENSITY and is analo-

gous to k0
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to allow the user to generate a pixellated map showing fine-scale varia-

tion in density (Fig. 2).

All the prior distributions of parameters defined in SPACECAP are

improper uniform priors. So, for all positive parameters, the prior dis-

tribution would be Uniform(0,∞) and for all other parameters, the

prior distributionwould beUniform(�∞,∞).
Additionally, SPACECAP evaluates the Geweke’s diagnostic (Gew-

eke 1992) on theMCMCanalysis and provides the user with the z-score

of the diagnostic. Values of the z-score statistic of |z�score| > 1�6
implies lack of convergence. Future versions of SPACECAPwill permit

users to define their own priors and incorporatemoremodel variants.

Results

We report results of a re-analyses of a tiger camera trap data

set, originally used in the study by Royle et al. (2009a), using

SPACECAP (see Table 1). In Table 2, we compare density

estimates using software packages SPACECAP and DEN-

SITY (Efford 2004). We also estimate density using conven-

tional CR approaches implementing the general heterogeneity

CRmodel,Mh-jackknife (Otis et al. 1978), in conjunctionwith

the 1/2 MMDM approach (Wilson & Anderson 1985) for

abundance and area estimation, respectively.

These comparisons show that:

1 Densities estimated from both the SECR approaches

(Bayesian and maximum likelihood) were less than those

obtained from conventional CR approaches.

2 Both Bayesian and maximum likelihood-based inferences

from packages SPACECAP andDENSITY, respectively, pro-

duced similar estimates of animal density.

The overall conclusion is that as the sample size increases

(a combination of number of individuals caught, and their

recaptures over multiple locations), there does not appear to

be any major difference in density estimates derived using pro-

grams SPACECAP or DENSITY. Conventional CR model

Mh-jackknife estimates derived from program CAPTURE

appear to over-estimate tiger densities if the sampled area is

defined using the ad hoc Wilson & Anderson (1985) approach

using 1/2 MMDM as buffer. It results in underestimates of

densities if the buffer is defined using the Parmenter et al.

(2003) fullMMDMapproach.

Discussion

In ecological inquiries, the use of Bayesian inference methods

(Gelman et al. 1996; Bolker 2008; Royle & Young 2008) is

becoming popular because of their inherent capacity to solve

complex problems with powerful MCMC algorithms (Tierney

1994), computational power (Venables & Ripley 2002) and

flexibility to tailor the modelling to account for particular eco-

logical and sampling situations (e.g. Gardner et al. 2010; Soll-

mann et al. 2011). We visualize the present and future

advantages of the SECR models presented by Royle et al.

(2009a) implemented in SPACECAP within this context.

Although a typical analysis using SPACECAP now takes

much longer than a comparable analysis using DENSITY, we

do not view this as a serious practical disadvantage because

such analyses are typically performed only once in a season or

a year following 45–65 days of field work and several weeks of

organizing and checking the data prior to analysis.

We envisage that the modelling framework of Royle et al.

(2009a) used in SPACECAP for analysing animal detection

data, especially from camera trap surveys, provides the

opportunity to incorporate auxiliary information in the form

of ‘capture’ data on the same individuals in the form of pho-

tographs taken by tourists, animals killed in conflicts or by

poachers and even live tracking of animals tagged by radio-

frequency identification tags, radio-collars or satellite-collars

to improve accuracy and precision of density estimates. The

explicit recognition of the fact that most animals have biolog-

ically defined home ranges in the statistical modelling allows

for a more realistic characterization of the spatial ecology of

the constituent individuals within a population. This realistic

biological treatment, in turn, is likely to provide more reliable

estimates of animal abundance and density. Further,

SPACECAP also permits for inference about the locations of

uncaught animals of a study, which is not possible with

DENSITY, and therefore can be easily extended to modelling

demographically open populations. Currently such open

model analysis is available with program MARK (White &

Burnham 1999) using modelling approaches developed by

Jolly (1965); Seber (1965); Pollock et al. (1990); Lebreton

et al. (1992); Kendall & Pollock (1992) to derive estimates of

critical vital rates such as apparent survival, temporary immi-

gration, transience, recruitment, in addition to the changes in

population size and density (see Karanth et al. 2006, for an

example of such an analyses with tiger photo-capture data

collected over a decade). Recent work by Gardner et al.

(2010) has demonstrated the use of SECR approaches to ana-

lyse open population models. We hope to incorporate several

such developments in SPACECAP during future releases,

keeping in view our fundamental goal of making these mod-

ern statistical tools available to practitioners. For users, there

is a SPACECAP user group email forum where frequently

asked questions are answered. Emails to this group can be

sent to spacecapforum@googlegroups.com.

Acknowledgements

We thankWildlife Conservation Society, NY,Government of India (Department

of Science & Technology) and Government of Karnataka (VGST) for funding

support. Patuxent Wildlife Research Center, USGS, and Centre for Wildlife

Studies provided administrative support. We thank the Clarendon, Jason

Hu, WWF-Kathryn Fuller, WCS-Clive Marsh scholarships for supporting the

lead author (AMG). Vishal Gokhale, Shreya Dasgupta, Rashmi Bhat, Sumanta

Mukherjee, andDeepthi Bharadwaj provided programmingassistance.We thank

Mohan Delampady for statistical advice. We thank Raghavendra Mogaroy for

testing the software on many capture–recapture data sets. We thank Krithi

Karanth, two anonymous reviewers and the associate editor for their suggestions

to significantly improve thismanuscript and the software application.

Disclaimer: Any use of trade, product, or firm names is for descriptive pur-

poses only and does not imply endorsement by theUSGovernment.

References

Amstrup, S.C., McDonald, T.L. & Manly, B.F.J. (eds) (2005) Handbook of

Capture–Recapture Analysis. PrincetonUniversity Press, USA.

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society,Methods in Ecology and Evolution, 3, 1067–1072

SPACECAP: Program to estimate animal density 1071



Bolker, B.M. (2008)EcologicalModels andData in R. PrincetonUniversity Press,

Princeton, New Jersey,USA.

Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood

methods for capture–recapture studies.Biometrics, 64, 377–385.
Efford, M. (2004) Density estimation in live-trapping studies. Oikos, 106, 598–

610.

Efford, M.G., Dawson, D.K. & Borchers, D.L. (2009) Population density

estimated from locations of individuals on a passive detector array. Ecology,

90, 2676–2682.
Efford, M.G., Dawson, D.K. & Robbins, C.S. (2004) DENSITY: software for

analysing capture–recapture data from passive detector arrays. Animal

Biodiversity andConservation, 27, 217–228.
Freeman,M.F. & Tukey, J.W. (1950) Transformations related to the angular and

the square root.TheAnnals ofMathematical Statistics, 21, 607–611.
Gardner, B., Reppucci, J., Lucherini, M. & Royle, J.A. (2010) Spatially explicit

inference for open populations: estimating demographic parameters from

camera-trap studies.Ecology, 91, 3376–3383.
Gardner, B., Royle, J.A. &Wegan,M.T. (2009) Hierarchical models for estimat-

ing density fromDNAmark-recapture studies.Ecology, 90, 1106–1115.
Gelman, A., Roberts, G. & Gilks, W. (1996) Efficient metropolis jumping rules.

Bayesian Statistics, 5, 599–608.
Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to the

calculation of posterior moments. Bayesian Statistics, Vol. 4. (eds J.M.

Bernardo, J.O. Berger, A.P. Dawid & A.F.M. Smith), pp. 169–193. Oxford
University Press, Oxford,UK.

Gopalaswamy, A.M., Royle, A.J., Hines, J.E., Singh, P., Jathanna, D., Kumar,

N.S. & Karanth, K.U. (2012) SPACECAP: A Program to Estimate Animal

Abundance and Density Using Bayesian Spatially-Explicit Capture–Recapture
Models, Version 1.0.6. Wildlife Conservation Society, India Program, Centre

forWildlife Studies, Bangalore, India.

Hatler, D.F., Nagorsen, D.W.&Beal, A.M. (2009)Non-invasive surveymethods

for carnivores.Mammalia, 73, 273–280.
Jolly, G.M. (1965) Explicit estimates from capture–recapture data with both

death and immigration-stochastic model.Biometrika, 52, 225–247.
Karanth, K.U. &Nichols, J.D. (1998) Estimation of tiger densities in India using

photographic captures and recaptures.Ecology, 79, 2852–2862.
Karanth, K.U., Nichols, J.D., Kumar, N.S. & Hines, J.E. (2006) Assessing tiger

population dynamics using photographic capture–recapture sampling. Ecol-

ogy, 87, 2925–2937.
Kendall, W.L. & Pollock, K.H. (2001) The robust design in capture–recapture

studies: a review and evaluation by Monte Carlo simulation. Wildlife 2001:

Populations (eds D. R. McCullough & R. H. Barrett), pp 31–43. Elsevier,
London

Lebreton, J.D., Burnham, K.P., Clobert, J. & Anderson, D.R. (1992) Modeling

survival and testing biological hypotheses using marked animals: a unified

approachwith case studies.EcologicalMonographs, 62, 67–118.
Otis, D.L., Burnham, K.P., White, G.C. & Anderson, D.R. (1978) Statistical

inference from capture data on closed animal populations. Wildlife

Monographs, 62, 3–135.

Parmenter, R.R., Yates, T.L., Anderson, D.R., Burnham, K.P., Dunnum, J.L.,

Franklin, A.B., Friggens, M.T., Lubow, B.C., Miller, M., Olson, G.S., et al.

(2003) Small-mammal density estimation: a field comparison of grid-based vs.

web-based density estimators.EcologicalMonographs, 73, 1–26.
Pollock, K.H., Nichols, J.D., Brownie, C. & Hines, J.E. (1990) Statistical

inference for capture–recapture experiments.WildlifeMonographs, 107, 3–97.
RDevelopmentCore Team (2009)R:ALanguage and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria,

[WWWdocument]. URLhttp://www.r-project.org/

Royle, J.A., Karanth, K.U., Gopalaswamy, A.M. & Kumar, N.S. (2009a)

Bayesian inference in camera trapping studies for a class of spatial capture–
recapturemodels.Ecology, 90, 3233–3244.
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