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Abstract

Understanding species distribution patterns has direct ramifications for the conservation of
endangered species, such as the Asian elephant Elephas maximus. However, reliable
assessment of elephant distribution is handicapped by factors such as the large spatial
scales of field studies, survey expertise required, the paucity of analytical approaches that
explicitly account for confounding observation processes such as imperfect and variable
detectability, unequal sampling probability and spatial dependence among animal detec-
tions. We addressed these problems by carrying out ‘detection—non-detection’ surveys

of elephant signs across a c. 38,000-km? landscape in the Western Ghats of Karnataka,
India. We analyzed the resulting sign encounter data using a recently developed modeling
approach that explicitly addresses variable detectability across space and spatially
dependent non-closure of occupancy, across sampling replicates. We estimated overall
occupancy, a parameter useful to monitoring elephant populations, and examined key eco-
logical and anthropogenic drivers of elephant presence. Our results showed elephants
occupied 13,483 km? (SE = 847 km?) corresponding to 64% of the available 21,167 km? of
elephant habitat in the study landscape, a useful baseline to monitor future changes. Repli-
cate-level detection probability ranged between 0.56 and 0.88, and ignoring it would have
underestimated elephant distribution by 2116 km? or 16%. We found that anthropogenic
factors predominated over natural habitat attributes in determining elephant occupancy,
underscoring the conservation need to regulate them. Human disturbances affected ele-
phant habitat occupancy as well as site-level detectability. Rainfall is not an important limit-
ing factor in this relatively humid bioclimate. Finally, we discuss cost-effective monitoring of
Asian elephant populations and the specific spatial scales at which different population
parameters can be estimated. We emphasize the need to model the observation and sam-
pling processes that often obscure the ecological process of interest, in this case relation-
ship between elephants to their habitat.
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Introduction

The Asian elephant (Elephas maximus Linnaeus, 1758), despite being a species of immense cul-
tural, ecological and conservation value, continues to be threatened by the loss, fragmentation
and degradation of habitat, conflict with humans and poaching for ivory [1-3]. Even within
India--a country that harbors nearly 60% of the current global wild population--much of the
species’ former range has been lost to agricultural expansion, human settlements and develop-
mental projects in the past 2-3 centuries [2,4].Consequently, elephants in India persist today
in small, insular populations, restricted largely to protected areas [5,6] within fragmented land-
scapes. Therefore, understanding factors that underlie elephant spatial distribution patterns is
critical to prioritize habitat conservation, identify threats that limit elephant presence and to
inform management actions to secure these populations over time. Notwithstanding this need,
factors that drive distribution patterns and the actual area occupied by elephants in India are
poorly studied and largely unknown. In contrast, several studies have addressed the question of
what determines the distribution of African elephants (e.g. [7-29]). The understanding thus
gained on the ecology and conservation status of elephants in Africa has long informed their
intensive management [30].Not only are such data scarce in the case of Asian elephants (but
see[31-38]), what is known about their distribution patterns has been generated using varied
field methods (dung encounter rates, direct observation, telemetry-based locations) and diverse
analytical approaches (comparisons of summary statistics, correlations, multivariate analyses,
presence-only modeling), none of which accounts for observation processes such as sample
selection bias, imperfect and variable detectability[39-41]. Because detectability can vary with
habitat, ignoring it could seriously bias inferred occupancy-habitat relationships[41-45].A
recent study on Asian elephant occupancy that did account for detectability [46] found that
estimated detectability ranged from 0.08 to 0.83, depending on covariate values and intensity
of use by elephants, indicating that detection is both imperfect and highly variable. Moreover,
most surveys of Asian elephant distribution were not conducted at appropriate spatial scales,
given their wide-ranging behavior (see[47,48]for estimates of Asian elephant home ranges).

At the local scale, past efforts to monitor Asian elephant populations have focused on estima-
tion of population size and density. However, regional, national and range-wide estimates are
based on indefensible extrapolation of such local-scale (i.e. individual reserve) estimates that vary
widely in their reliability[4]. Blake and Hedges[4] justifiably worry that beyond locations and rel-
ative abundances of some of these elephant populations, we know very little. Not only have unre-
liable field and analytical methods been applied to estimate elephant numbers, there is also a
critical mismatch between the population parameter being estimated (i.e. abundance or density)
and the spatial scale of such estimation effort. While abundance and density can be reliably esti-
mated at smaller spatial scales (e.g. individual reserves) using appropriate methods[40,49],esti-
mates of abundance or density at larger scales tend to be unreliable (see[4]).

The appropriate metric for landscape level studies in wide-ranging species such as elephants
is the estimation of habitat occupancy: the probability (Pr) that a species is present within a site
(see[44,50]). Formal occupancy modeling explicitly accounts for imperfect detectability and
other observation processes, which, if ignored, could lead to biased inferences of occupancy,
habitat relationships and temporal changes in these. The approach also permits modeling of
ecological and anthropogenic effects on detection probabilities as well as habitat occupancy (or
both). This removes biases from heterogeneity among sites, in either detectability or occu-
pancy, as well the confounding of true patterns in occupancy with detectability and sampling
probability[41,44]. Consequently, rigorous occupancy modeling is rapidly emerging as a
method of choice. It has been successfully used on other wide-ranging species, such as the tiger
Panthera tigris [51].
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In this study, we used habitat occupancy sampling of Asian elephants over a large and
diverse landscape in the Western Ghats of Karnataka State in India. We employed a modeling
approach recently developed by Hines et al. [52] that relies on spatial rather than temporal rep-
lication and uses surveys of animal signs, which has been successfully used to investigate the
distribution of tigers [51] and dhole Cuon alpinus [53] based on the same survey effort. Our
estimates provide a useful baseline to monitor future changes in spatial distribution of the larg-
est wild population of Asian elephants. We also elucidate the role of key ecological and anthro-
pogenic covariates as determinants of elephant habitat occupancy. We demonstrate how this
approach can improve future management and monitoring of Asian elephants.

Materials and Methods

This study only involved non-invasive surveys of elephant signs, for which the Karnataka For-
est Department provided field research permits.

Study area

We conducted our surveys across a c. 38,000-km” landscape (Fig 1), with our sampling frame
defined by the presence of natural vegetation types including forest (evergreen, moist decid-
uous, dry deciduous, thorn scrub), tree plantations (e.g. Tectona grandis, Acacia auriculiformis,
Eucalyptus spp. Casuarina equisetifolia, among others), tree savanna, shrub savanna, grassland
(in our landscape, primarily montane grasslands) and uncultivated revenue department or pri-
vate lands. Thus, other than a few areas where small numbers of itinerant and conflict-prone
elephants subsist in heavily human-dominated areas (e.g. in Tumkur and Hassan districts) and
which have been identified for removal [54], our field surveys covered the entire distributional
range of elephants in the state of Karnataka. The surveyed areas encompassed the full gradients
in rainfall, land cover and intensity of human use.

The altitude in the study area peaks at 1927m, with the terrain abruptly rising from the
coastal plains and then descending from the ridge of the mountains eastwards, intergrading
into the Deccan Plateau. The mean annual rainfall declines from well over 5000 mm in the
coastal plains and crest of the Ghats to ~600 mm eastwards [55]. Western slopes of the Ghats
support wet evergreen rainforests and montane shola-grassland habitats; semi-evergreen and
moist and dry deciduous forest types dominate areas eastward, where rainfall declines progres-
sively. These blocks of natural forests are interspersed with or abut areas under varied forms of
agriculture, horticulture and plantations as well as human settlements. We defined elephant
habitat as comprising all the natural vegetation types described above, which together cover
21,167 km” of the study landscape [51], and support some of the largest populations of ele-
phants as well as other threatened large mammal species typical of the region [56,57].

The landscape includes 14 wildlife reserves that cover an area of 5,500 km* and lie in a
human-dominated matrix populated by >10.2 million people. The elephant habitats are sub-
ject to threats from illegal hunting, livestock grazing and forest biomass extraction as well as
pressures from developmental projects and industrial growth [51]. For detailed accounts of the
study area see [51,56,58,59].

Occupancy survey design

Our goal was to estimate the proportion of the available potential habitat occupied by ele-
phants. Thus defined, defined, ‘habitat occupancy’ corresponds to second-order habitat selec-
tion (selection of home ranges within the species’ distributional range) under the hierarchical
framework proposed by Johnson [60]. Our surveys were specifically designed for tigers [51]
therefore the study design, field survey protocols and analytical approach used were planned
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Fig 1. Map of our study landscape showing forest cover, protected areas and sampled grids. Inset shows location of the landscape within India.

doi:10.1371/journal.pone.0133233.g001

considering tiger biology. We carefully reviewed these elements of our study in the context of
surveying elephant occupancy to ensure that the modeling approach did indeed describe

our observation process (variably imperfect detection of signs on successive segments along
trails within specified grid cells) overlaid on the ecological process of interest (true elephant
distribution, determined by the values of one or more covariates). We also carefully reviewed
the literature on elephant home range size to confirm that the same survey design would be
appropriate for Asian elephants. Sukumar [33] estimated home ranges of two elephant families
at 105 km” and 115 km?, based on repeated observations of recognizable individuals. Further,
Fernando et al.[47] reviewed a large number of Asian elephant home ranges estimates and the
18 estimates of elephant home ranges in south India in their Table 1 average to 275.8 km?
(minimum: 105 km? [33]; maximum: 800 km? [61]). When considering that a) these studies
were conducted over periods ranging from nine months to nearly six years, and also b) what
is of relevance to our survey design is ranging patterns over the dry season (October-May)
each year, we are confident that our definition of sites as grid cells of size 188 km?each (Fig 1)
is appropriate. Because our grid cells are larger than expected mean elephant home range
sizes over the dry season, we are also confident that a) our estimates of ¥ pertain to true pr
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Table 1. Description of covariates used to model variation in detectability and g across sites.

Covariate

PropFOR

LVS

MeanRAIN

MeanNDVI

NDVI2

CV(NDVI)

Proportion of grid cell covered by
forest, computed prior to field
surveys from forest cover layers.

Proportion of 1-km replicates
containing livestock sign, as
measured during field surveys

Mean annual rainfall derived from
long term monthly averages at
1-km resolution from the
WorldClim database[55]. Annual
means computed by pixel and
averaged over each 188 km? grid
cell using ArcGIS 10.0. Scaled
prior to analysis by subtracting
minimum and multiplying by
0.001, to range from 0 to 5.25
Normalized Difference Vegetation
Index (NDVI) at 1-km resolution
from the MODIS database[97].
Image from dry season (18" Feb
2006) for maximum contrast
between vegetation types.
Averaged over forest area pixels
within each grid cell using the
Spatial Analyst extension in
ArcGIS 10.0.

Squared NDVI values for use in
models where elephant
occupancy is a nonlinear
(quadratic) function of NDVI

Coefficient of variation of NDVI
across pixels within forests within
each grid cell. Calculated using
the Spatial Analyst extension in
ArcGIS 10.0

doi:10.1371/journal.pone.0133233.t001

Expected effects on elephant
occupancy

Positive effect, as increasing forest
cover is expected to be correlated
with lower levels of various forms of
human disturbance.

Negative relationship, both directly
(through competition for forage in the
dry season) and as a surrogate for
other, correlated human
disturbances such as hunting,
biomass extraction and
fragmentation.

Positive effect, especially in the drier
parts of our landscape, by
influencing surface water availability
and indirectly by determining
vegetation type and productivity.

A measure of vegetation
productivity, expected to have a
strong positive effect in very dry to
dry habitats through increased
forage quantity. However, in our
study area, NDVI expected to have
an overall positive effect, but one
that declines at high levels of
vegetation productivity (see below).
Varies by vegetation type.

W expected to be highest at
intermediate values of NDVI,
corresponding to dry and moist
deciduous forests. Occupancy
expected to be low at low NDVI
values due to limited forage and
surface water (as in African
savannah elephants) and low also at
high NDVI values (evergreen
forests) where much of the biomass
tends to be in the canopy and where
plants invest in higher levels of
secondary compounds for the more
permanent foliage[80], thus reducing
available forage.

An index of vegetation heterogeneity
in forest areas within each grid cell.

Expected effects on elephant
detectability

Positive effect, as elephant
abundance is expected to be
lower at low forest cover due to
multiple human disturbances.

Negative effect by lowering
elephant abundance due to direct
competition for forage and
indirectly through other, correlated
human disturbances.

Overall positive effect by
increasing elephant abundance.

Supporting citation(s)

Asian: [33, 38, 46, 77];
African forest: [8, 11, 16];
African savannah:[10, 19,
27]

Asian: [33, 38, 46, 77];
African forest: [8, 11, 16];
African savannah:[10, 19,
27]

Asian:[32]; African
savannah:[9, 12, 15, 17—
22,24, 27-29]

Asian:[31, 33-35, 37, 38];
African forest: [11]; African
savannah: [7, 9, 12, 15,

17,19, 21, 23, 25, 26, 29]

Asian: [33]; African
savannah:[7, 9, 12, 21]

Asian: [36]; African
savannah:[13, 14, 18, 25]

(occupancy) rather than pr(use|occupancy) and that b) spatial autocorrelation in elephant
occupancy among grid cells is minimized to the extent possible. The grid cells also coincided
with graticules on the 1:50,000 topographic maps, facilitating planning of field surveys. Field
surveys were not carried out in grid cells with natural habitat fragments totaling <10km? since

elephants and other large-ranging mammals were unlikely to occupy these cells. Of the 232
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grid cells covering the overall landscape, we excluded 27 cells using this forest cover-based
exclusion criterion, yielding 205 cells (sites) to be surveyed.

Because of low elephant densities, low sighting probabilities and logistical factors, rather
than sightings, we chose to survey and detect elephant presence via signs, primarily fresh dung
[40]. Although direct sightings, tracks and other evidences were also recorded, we based our
analyses on fresh dung, since other signs have very different times of persistence (direct sight-
ings are instantaneous), affecting both detectability and occupancy. Because of logistical practi-
cality (see[51]) we chose spatial [62] over temporal replication, to estimate detectability of
elephant signs. To address the potential problem of spatially autocorrelated non-closure of
occupancy state along such spatial replicates, we used the recently developed occupancy model
of Hines et al. [52], as more fully described below.

The survey effort (distance walked) invested within each grid cell was set proportional to
the extent of elephant habitat within the cell. Elephant habitat was defined based on forest
cover, classified using a rule-based eco-climatic vegetation classification [56,63]. The sampling
effort was set at 40 km for cells with 100% forest cover (188 km?), and, decreased in proportion
to extent of available habitat. Field surveys ensured adequate spatial coverage of cells but sur-
veyors’ subjective route choice was constrained by dividing the grid cell into 16 sub-cells and
ensuring that the field teams traversed one sub-cell randomly selected prior to the surveys [51].

Field surveys

Prior to the surveys, 6 permanent staff and about 12 long-term volunteers were trained by one
of the authors (NSK). We conducted a pilot training survey to familiarize the teams with field
protocols. Four core teams, each led by a regional coordinator, covered different parts of the
landscape. Field research teams surveyed forest trails typically used by elephants during the dry
seasons (October-May) of 2005-2006 and 2006-2007. Dry season surveys ensured that dung
persistence was consistent, reducing heterogeneity in detection probability induced by rainfall
variation [64,65]. In addition to detection or non-detection of elephant dung, habitat covariate
information was also recorded. The data were collected for each trail segment of 100 m, but
were subsequently aggregated to 1-km spatial replicates (see [51]). To limit the number of
parameters to be estimated, covariates of detectability were estimated only at the site level. The
data were used to construct elephant sign detection histories for each cell, ‘1’ representing
detection and ‘0’ non-detection [44,50]. Thus detections along trails were used to assess ele-
phant occupancy at the site (= grid cell) level, and not at the level of each trail or trail segment.
The number of replicates surveyed per cell, which depended on the proportion of habitat in it,
ranged from 4-42 (also see[51]).

Modeling elephant occupancy

Accounting and testing for spatial dependence in our data. An important assumption
of the MacKenzie et al. [50] model is that occupancy status does not change among replicates
within each site. Our surveys, using spatial replication may not always have met this assumption,
because elephant presence in one part (or replicate) within a cell (site) did not necessarily mean
that other parts (or replicates) within that cell were also occupied. As shown by Kendall [66] and
MacKenzie et al. [44], if such within-site changes in occupancy were to occur completely ran-
domly, then replicate-level detectability is the product of the Pr(species is present in site and rep-
licate) and Pr(species is detected | species is present in site and replicate), while the interpretation
of Pr(site is occupied) changes to Pr(site is used). However, if between-replicate changes are non-
random (e.g. Markovian, as when replicates are sampled sequentially along a trail rather than
randomly from within a cell), detectability cannot be decomposed as above, and estimates of
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both detectability and occupancy will be biased. MacKenzie et al. [44] and Kendall & White [62]
recommend sampling of spatial replicates randomly with replacement to ensure changes in occu-
pancy within a cell are completely random. However, such an approach is logistically impractical
to implement in field surveys of elephants. For this reason our elephant sign survey data were
generated from sequential sampling of successive spatial replicates along trails walked by teams.
To fully account for this factor, we chose to model occupancy using a recent approach developed
by Hines et al. [52]. This model explicitly accounts for spatial dependence in elephant presence at
the replicate level as a first-order spatial Markov process. Parameters estimated from this model
are y = Pr(site is occupied by elephants), 8 = Pr(elephants present on replicate | site is occupied
and elephants absent on previous replicate), & = Pr(elephants present on replicate | site is occu-
pied and elephants present on previous replicate) and p = Pr(detection at a replicate | elephants
present both in the site and in the replicate). Because the first replicate could be located anywhere
within each cell, we calculated probability of replicate-level presence for the first replicate 6, as
the weighted (by ) average of 6 and €.

This practically useful occupancy modeling approach was earlier developed specifically for
surveys of tigers in our study area (see[51,52] for details). Because elephants do not use forest
roads and trails as intensively as tigers do, we were unsure if there was substantial spatial
dependence in elephant presence among successive replicates. Therefore, we initially tested for
possible existence of spatial dependence in replicate-level elephant presence by comparing the
fits of the standard MacKenzie et al. [50] model and the Hines et al. [52] model to our survey
data based on AIC values [67], and also by comparing the estimated values of f and &'. We did
not assess fit of the models to the data [68] as there is currently no way to assess fit under the
Hines et al. [52] modeling approach.

Modeling covariate effects on detectability and occupancy. Another major objective was
to assess the role of ecological and anthropogenic factors that possibly determined elephant
occupancy in our landscape. This involved realistically modeling variation in sign detectability
also, so that patterns in detectability were not wrongly attributed to patterns in occupancy.

The plausible covariates that influenced detectability and/or elephant occupancy included data
collected in the field surveys as well as remotely sensed data. Modeling of such covariates is
important to ensure there is no un-modeled variation in Pr[occupancy] or detectability among
cells [44,50]. More importantly, comparing likely covariate models enables examination of
methodological (what influenced detectability) as well as important ecological or conservation
questions (what determines elephant spatial distribution/occupancy). Based on our empirical
experience, and, previous studies of Asian and African elephants (Loxodonta cyclotis Matschie,
1900 and L. africana Blumenbach, 1797), we identified covariates that we expected to influence
probability of habitat occupancy or detectability, or both, for elephants in our study area
(Table 1). We note that some of these covariates were expected to potentially influence both y
as well as p. Influences on detectability included both direct (e.g. rainfall, which determines
dung persistence) as well as indirect effects (covariates that affect elephant abundance in the
site, which then affects species-level detectability). We first assessed collinearity between the
potential predictors using scatter plots and Pearson’s correlation coefficients. We did not
include in the same model covariates that were substantially correlated (Pearson’s |r|> 0.7;
[69]). To limit the number of models in our candidate set, we first assessed the role of four
potential covariates of p (see Table 1) while holding the covariate structure for y constant, fol-
lowing Karanth et al. [51] (see [70] for a discussion of such two-step analyses). Because we
effectively conditioned on the covariate structure for occupancy while assessing covariates for
detectability, we chose a moderately parameterized form for modeling occupancy in this step
(Table 2). Based on AIC values of the different models of detectability (Table 2), we then fixed
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Table 2. Model selection results: Covariate effects in determining detectability 5, on 1-km-long spatial replicates, based on the Hines et al. (2010)
modeling approach. No. of sites = 205. Please see Table 1 for descriptions of covariates.

Model AIC A AIC AIC weight Model likelihood No. parameters Deviance
psi(PropFor+NDVI+LVS),thta0,thta1,p(LVS+PropFor) 2890.8 0.00 0.4953 1 9 2872.8
psi(PropFor+NDVI+LVS),thta0,thtal,p(LVS+PropFor+AnnuRain) 2892.18 1.38 0.2485 0.5016 10 2872.18
psi(PropFor+NDVI+LVS),thta0,thtal,p(LVS+PropFor+NDVI) 2892.79 1.99 0.1831 0.3697 10 2872.79
psi(PropFor+NDVI+LVS),thta0,thtal,p(LVS) 2896.01 521 0.0366 0.0739 8 2880.01
psi(PropFor+NDVI+LVS),thta0,thtal,p(LVS+AnnuRain) 2897.11 6.31  0.0211 0.0426 9 2879.11
psi(PropFor+NDVI+LVS),thta0,thta1,p(LVS+NDVI) 2897.75 6.95 0.0153 0.031 9 2879.75
psi(PropFor+NDVI+LVS),thta0,thtat,p(.) 2032.15 4135 O 0 7 2918.15
psi(PropFor+NDVI+LVS),thta0,thta1,p(AnnRain) 2033.19 4239 O 0 8 2917.19
psi(PropFor+NDVI+LVS),thta0,thta1,p(NDVI) 293368 4288 O 0 8 2917.68
psi(PropFor+NDVI+LVS),thta0,thta1,p(AnnuRain+PropFor) 203428 4348 O 0 9 2916.28
psi(PropFor+NDVI+LVS),thta0,thtal,p(NDVI+PropFor) 2934.71  43.91 0 0 9 2916.71
psi(PropFor+NDVI+LVS),thta0,thtal,p(PropFor) 2938.83 48.03 O 0 8 2922.83

doi:10.1371/journal.pone.0133233.1002

the covariate structure for p and assessed the influence of our covariates on y, also based on
AIC values (Table 3).

In addition to additive effects of covariates on occupancy, we also included interactions
between some of the covariates where we expected the influence of one covariate on y to
depend on the value of another covariate. Pettorelli et al. [71,72] show that NDVI is an excel-
lent index of vegetation productivity and list several examples of the successful use of NDVI to
understand patterns of distribution and abundance of animals. We included a quadratic term
for vegetation productivity in some models because we expected probability of elephant occu-
pancy to exhibit a non-linear, peaked response from low (thorn scrub-tree savannah-dry decid-
uous) through medium (moist deciduous) to highly productive (wet evergreen) habitats. All
covariates were modeled using the logit link function[44,50]. Covariate values were scaled as
described in Table 1. We used the software program PRESENCE v 4.1 [73] to implement all
these occupancy models and to estimate relevant parameters.

Estimation of overall elephant occupancy in our landscape. Following Karanth et al.
[51], overall occupancy across the landscape was computed by weighting each site-specific
occupancy estimate by the area of forest cover in that site as a proportion of the entire 21,167
km? landscape, w; and summing over all 205 sites. Standard error of overall occupancy was
computed as

205 205 205

SE() = | Y _wivang,+> Y wwcov(y )
i=1 =1 j=1
j#i

The covariance between estimated site-specific occupancy estimates in the expression above
was estimated using a parametric bootstrap [74] where the untransformed  parameter esti-
mates and the associated variance-covariance matrix from the best model were used to gener-
ate 100 random deviates from a multivariate normal distribution using the R package
MSBVAR [75,76]. These simulated /3 values were then used to compute 100 site-specific occu-
pancy probabilities for each of the 205 sites using the inverse logit link function. For each pair
of site-specific occupancy estimates, covariance was then computed as shown below (please see
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Table 3. Model selection results: Covariate effects in determining probability of elephant occupancy in our study landscape, based on the Hines
et al. (2010) modeling approach. No. of sites = 205. Please see Table 1 for descriptions of covariates.

Model

psi(LVS*NDVI),thta0,thta1,p(LVS+PropFor)
psi(LVS+PropFor+AnnuRain),thta0,thta1,p(LVS+PropFor)
psi(LVS+AnnuRain),thta0,thta1,p(LVS+PropFor)
psi(LVS*AnnuRain),thta0,thtal,p(LVS+PropFor)
psi(LVS+NDVI),thta0,thta1,p(LVS+PropFor)
psi(NDVI+NDVISQ+LVS),thta0,thta1,p(LVS+PropFor)
psi(LVS+PropFor+NDVI),thta0,thtal,p(LVS+PropFor)
psi(PropFor*AnnuRain),thta0,thta1,p(LVS+PropFor)
si(PropFor+AnnuRain),thta0,thta1,p(LVS+PropFor)
LVS),thta0,thtal,p(LVS+PropFor)
LVS+CVNDVI),thta0,thta1,p(LVS+PropFor)
LVS+PropFor),thta0,thta1,p(LVS+PropFor)
LVS*PropFor),thta0,thtal,p(LVS+PropFor)
AnnuRain),thta0,thta1,p(LVS+PropFor)
NDVI+CVNDVI),thta0,thta1,p(LVS+PropFor)
NDVI+PropFor),thta0,thta1,p(LVS+PropFor)
NDVI+NDVISQ+PropFor),thta0,thtal1,p(LVS+PropFor)
NDVI*PropFor),thta0,thtal,p(LVS+PropFor)
NDVI),thta0,thta1,p(LVS+PropFor)
NDVI+NDVISQ),thta0,thta1,p(LVS+PropFor)
PropFor+CVNDVI),thta0,thta1,p(LVS+PropFor)
psi(.),thta0,thta1,p(LVS+PropFor)
psi(PropFor),thta0,thta1,p(LVS+PropFor)
psi(CVNDVI),thta0,thtal,p(LVS+PropFor)

doi:10.1371/journal.pone.0133233.t003
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Results
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2834.56
2836.63
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2871.85
2872.8

2881.57
2883.73
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2887.31
2887.45
2887.44
2892.13
2915.58
2915.71
2915.15
2915.53
2919.56
2919.19
2919.31
2923.92
2922.38
2922.92

We surveyed n = 205 sites, covering 21,167 km? of forests within our study landscape. In each
site, we surveyed 4-42 1-km long spatial replicates (mean effort per site = 20.36km) depending
on the amount of forest cover available in the site. A total walk effort of 4,172 km resulted in

2,712 detections of fresh elephant dung. In terms of frequencies, at least one elephant dung pile
was detected in 1,230 of the 4,172 1-km replicates (0.295) and in 110 of the 205 sites (naive
occupancy = 0.537).

Occupancy modeling

Spatial dependence in our data. A comparison of the MacKenzie et al.[50] and Hines
et al. [52] models clearly shows that replicate-level elephant presence was spatially correlated
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(A AIC = 641.7 for the MacKenzie et al. [50] model). Additionally, the probability of replicate-
level elephant presence estimated using the Hines et al.[52] model without covariates, differed
substantially depending on whether elephants were present or not present on the previous rep-

licate (é’[SE} =0.953 [0.008] and Q[SE] =0.084 [0.016], respectively). This finding indicates
strong Markovian dependence in replicate-level presence. We therefore used the Hines et al.
[52] modeling approach for all subsequent occupancy analyses. As expected, detectability was
negatively biased when the MacKenzie et al.[50] model was used (p [Sf:'] =0.511 [0.010]) com-
pared to the estimate from the Hines et al. [52] model (p, [SE] =0.737 [0.016]).

Effects of ecological and anthropogenic covariates on detectability and occupancy. Ini-
tial exploratory analysis revealed substantial collinearity between mean normalized difference
vegetation index (NDVI) values and mean annual rainfall (Pearson’s r = 0.81). Therefore, these
covariates were not included together in any model. As described above, we first explored
covariate effects on detectability while holding the covariate structure for occupancy con-
stant——in this step, logit occupancy was modeled as an additive function of proportion of forest
cover, NDVI and livestock presence. A model where logit detectability was an additive function
of livestock presence and proportion of forest cover received the most support from the data
(Table 2). There was evidence to suggest that logit detectability also varied as a function of (a)
livestock presence, proportion of forest cover and rainfall (AAIC = 1.38) and (b) livestock pres-
ence, proportion of forest cover and NDVI (AAIC = 1.99). Since our primary interest was in
modeling covariate effects on occupancy while accounting for heterogeneity in detectability,
we used the covariate structure for detectability as indicated by the minimum AIC model for
all subsequent analyses. We note that the covariate structure for occupancy used in this step
includes the covariates determined to be most important in determining elephant occupancy
(Table 3), with the exception of rainfall, which was highly correlated with NDVL

Based on the literature on Asian and African elephants (Table 1), we constructed a set of
24 a priori candidate models (Table 3) where ¥ was determined by one or more covariates.
These models included additive effects of two or more covariates (on the logit scale), interac-
tions between covariates and in the case of NDVI, a quadratic term for non-linear responses.
The model with y as a function of the interaction between livestock presence and NDVI
received the most support from the data, substantially more than the next best model (additive
effects of livestock presence, proportion of forest cover and annual rainfall; AAIC = 3.03). We
therefore did not use model averaging to derive our parameter estimates. Based on the top
model, probability of replicate-level presence given (a) presence on the previous replicate and

(b) absence on the previous replicate were 0’[SE] = 0.962(0.007) and 0[SE] = 0.082(0.015),

respectively. The probability of elephant presence on the first replicate was éo [SE] = 0.683
(0.035). Site-wise estimates of replicate-level detectability p, ranged from 0.56 to 0.88, depend-

ing on covariate values, while site-wise probability of occupancy W ranged from 0.19 to 0.98.

Akaike weights summed over all models containing each predictor ([67]) indicated that live-
stock presence was by far the most important predictor of elephant occupancy (summed
Akaike weight ~ 1), mean NDVI (0.662) received less support, and mean annual rainfall
(0.1922) and proportion of forest cover (0.1456) were far less important. Non-linear response
of occupancy to NDVI and the coefficient of variation of NDVT (as a measure of habitat hetero-
geneity) received practically no support from the data (summed Akaike weight ~ 0).

Estimated slope parameters from the four models with AAIC < 10 (Table 4) showed that
elephant occupancy was negatively associated with livestock presence and positively associated
with proportion of forest cover, as expected. Contrary to our expectations, the main effects for
mean NDVI and mean annual rainfall, as well as the interaction between livestock presence
and NDVT were all negative, while the interaction term between livestock and rainfall was
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Table 4. Estimated B8 parameter estimates for covariates determining elephant occupancy in our study landscape, from the 4 models with
AAIC < 10. Point estimates followed by standard error (SE) in parentheses. No. of sites = 205. Please see Table 1 for descriptions of covariates.

MOdeI ﬁO(SE) ﬁLVS(SE) ﬁf\'DVI(SE) ﬁLVSxA‘DVI(SE) ﬁFrapFOR(SE) ﬁAmmRAIN(SEA‘) ﬁLVSXAmmRAIN(SE)
psi(LVS*NDVI),thta0,thtal,p(LVS+ 5.582 -2.181 -3.417 -2.831 — = =

PropFor) (1.655) (1.014) (1.973) (0.467)

psi(LVS+PropFor+AnnuRain),thta0,thtal,p  6.479 -6.078 — — 1.338 -1.150 —
(LVS+PropFor) (1.311) (1.169) (0.930) (0.200)
psi(LVS+AnnuRain),thta0,thtal,p(LVS+ 7.291 -6.352 = = = -1.091 =

PropFor) (1.239) (1.178) (0.191)
psi(LVS*AnnuRain),thta0,thtal,p(LVS+ 7.354 -6.423 — — — -1.113 0.026 (0.786)
PropFor) (2.163) (2.347) (0.664)

doi:10.1371/journal.pone.0133233.t004

positive but small. The interaction term in the top model indicated that livestock presence—-a
collective surrogate for human disturbance in our study (see [51] for a discussion)—-had the
greatest negative effect on elephant occupancy in highly productive (i.e. rainforest) habitats.
Overall elephant occupancy in our landscape. Dividing the number of cells in which ele-
phants were detected by the total number of cells (205) yielded a naive (i.e. assuming detect-
ability = 1) occupancy estimate of 0.537. However, based on site-specific occupancy estimates

from the minimum AIC model, overall occupancy was estimated as y/ (SE) = 0.637 (0.04).
Thus of the 21,167km? of forest area within our study landscape, we estimated that 64% or
13,483 km? (SE = 847 km?) was actually occupied by elephants in the Western Ghats of Karna-
taka. In comparison, the naive occupancy estimate of 0.537, as derived using a traditional pres-
ence-absence analysis of our survey data, yields an estimated 11,367 km? occupied by
elephants, an underestimation of true occupancy by c. 16%.

Discussion
Overall occupancy and covariate effects on detectability and occupancy

Our estimate of overall occupancy (the proportion of area occupied by elephants) of 64%
(~13,500km”) is the first such estimate based on scientifically robust methodology for this
landscape. It provides a baseline against which future changes in elephant distribution can be
rigorously assessed. Our survey design and analytical approaches explicitly modeled the (a)
observation processes through which data were collected and (b) effects of biologically reason-
able covariates on both elephant habitat occupancy and detectability of their signs. We note
that although our estimates of detectability are fairly high (ranging from 0.56 to 0.88 depending
on covariate values), ignoring that they are less than perfect (i.e. <1.0) can seriously bias
inferred occupancy-habitat (and occupancy-disturbance) relationships by (a) yielding esti-
mated slope parameters with biased magnitude, sometimes with reversed direction and (b)
changing the inferred relative importance of covariates [42-44].

Our results indicate that human intrusion and disturbance in these forests, as measured by
frequency of livestock signs, is an overwhelmingly more important influence on elephant habi-
tat occupancy compared to ecological attributes we examined. This may indicate that elephant
occupancy is likely to be negatively influenced by competition for forage, particularly in the
dry season. However, in this landscape and forest management system, livestock presence is
also usually strongly correlated with other forms of human disturbance such as biomass extrac-
tion, habitat degradation, habitat fragmentation and hunting [51,77]. Clearly, it is not possible
to tease apart such confounding effects in a purely non-experimental study such as ours.
Nevertheless, our long-term empirical experience in this landscape suggests that the strong
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negative influence of livestock presence on elephant occupancy likely reflects the cumulative
effects of several forms of human disturbances. This is not surprising given the past distribu-
tion and recent extirpation of this generalist species from apparently suitable habitats in India
[6,78]. Sukumar et al. [33] and Rood et al. [38] observed a similar influence albeit using field
and analytical methods that ignored imperfect detectability. Recent studies of Asian and Afri-
can elephants that did account for imperfect and variable detectability also highlight the sensi-
tivity of elephants to human disturbance [16,46]. Further, our finding that detectability was
influenced by both human disturbance and proportion of forest cover in a cell suggest that in
addition to influencing occupancy, anthropogenic factors may also influence elephant abun-
dance (which can then determine detectability of the species). Although we did not use a
modeling approach which explicitly models abundance effects on speciespfxpbe2tfsrtrzsv([79]
because of some strong assumptions and stringent design requirements that were unlikely to
have been met in our surveys, we feel that this effect of disturbance on the species’ detectability
likely arises from effects on abundance, as we had expected a priori when selecting putative
predictors of detectability.

The less important effects of NDVI and rainfall were negative, contrary to results from stud-
ies in Africa. As pointed out by Borowik et al. [80] in the context of seasonal differences in for-
ests and grasslands, the ability of NDVT to reflect ground vegetation biomass is mediated by
leaf cover in shrub, lower and upper canopy layers. In evergreen forest areas, high NDVI values
(due to high canopy closure) may not reflect the low forage availability to elephants at lower
levels. Additionally, plants may invest in higher levels of secondary compounds [81] in the
more permanent foliage of evergreen forests. Deciduous forest canopies are almost completely
leafless at this time of the year (our image was from 18" February 2006), while the small pro-
portion of montane grasslands in our landscape is covered by coarse, dry grasses with low
nutrient and chlorophyll content and, therefore, low NDVI values. These results are consistent
with the general observation that Asian elephants occur in lower densities in primary rainfor-
ests than in dry and more open forests [2].

Unlike the African savannah, where rainfall is a strong determinant of elephant occupancy
(see Table 1), most areas in our landscape are well above the annual rainfall breakpoint
below which rainfall alone determines woody vegetation cover [82]. In the range of rainfall
(and correlated NDVI) values found in the African savannah, elephant distribution as well as
abundance has been shown to be strongly positively related to NDVI. In our landscape, the
minimum long-term average annual rainfall for a grid cell (averaged across all pixels within
that cell) was 630 mm, the mean was 2515 mm, and the maximum was 5883 mm. In such a wet
landscape, we found that elephant distribution was negatively related to both rainfall and
NDVI (strongly correlated to each other), and we believe that the preponderance of extremely
wet (and dense, evergreen-canopied) areas in our landscape masks the peak in pr(occupancy)
in deciduous forest areas with intermediate NDVI and rainfall values. This is supported by a
recent study carried out in a purely deciduous part within our study landscape [83], which
found that probability of habitat use by elephants was highest in areas which experienced the
least reduction in NDVT from the end of the wet to the dry season (i.e. moist deciduous forests).
However, we also believe that the strong, predictable correlation of elephant occupancy with
NDVI and rainfall evident in the African savannah is more complicated in our landscape,
potentially due to the overriding influence of anthropogenic disturbance.

Although our estimates of overall elephant occupancy are largely relevant and limited to
monitoring and conserving elephants in our landscape (which, nevertheless, supports the larg-
est population of Asian elephants globally), we suggest that our inferred elephant-habitat rela-
tionships are fairly generalizable across the Asian elephant’s geographical range. The evergreen
and deciduous forests that comprised a majority of our sampled area are found throughout the
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the species’ range in south and southeast Asia. Similarly, anthropogenic disturbances abound
across the elephant’s range in Asia [1]. We therefore do not expect Asian elephants elsewhere
to react very differently to forested habitats, rainfall regimes and, in particular, to anthropo-
genic pressures. While the specific types of disturbances may vary across the species’ range,
causing some differences in how elephant distributions respond to levels of human activities in
other landscapes compared to ours, we believe that these differences would be quantitative
rather than qualitative.

Elephants, either in Asia or in Africa, are megaherbivores, with similar physiological,
thermoregulatory, dietary, osmoregulatory and other requirements/constraints. This is particu-
larly true for the forest elephant in Africa that occurs in relatively similar habitats as the Asian
elephant. We therefore suggest that our findings likely have considerable relevance to patterns
of habitat selection by African forest (but possibly not African savannah) elephants. At the
very least, we feel that our results have the potential to inform the selection of putative predic-
tors of African forest elephant distribution in future studies.

Management and conservation implications

Our findings clearly show that elephant distribution is currently limited more strongly by
human disturbance compared to natural habitat characteristics we assessed. This result under-
scores the conservation value of limiting disturbances such as illegal hunting, cattle grazing,
forest product and biomass extraction as well as habitat fragmentation arising from local and
large scale economic development. Given that the landscape supports over 10.2 million people
and is undergoing rapid economic growth, there is urgent need to provide more strictly pro-
tected enclaves for elephants across their distributional range in this landscape. Our study
showed poor correspondence between elephant distribution and aridity of habitat types, even
during the dry season. Given the presence of numerous natural and artificial sources of water
in this habitat matrix, this is not surprising. Therefore, the utility of continually increasing sur-
face water availability through engineering interventions, a standard management practice cur-
rently, is questionable.

Our occupancy analyses are also extremely useful for identifying priority sites for focused
conservation of elephant populations and their habitats (Fig 2C). While this has been
attempted previously (e.g. [84]), such previous analyses did not account for confounding fac-
tors such as spatially uneven sampling effort, imperfect and variable detectability and spatial
dependence in detection of elephant signs, all of which can seriously affect inference and pre-
diction. A recent study by Madhusudan et al. [54] provides a comprehensive and useful assess-
ment of the species' distribution, relative abundance, conservation status and spatial patterns
in human-elephant conflict in Karnataka, using a variety of information sources, and examines
these with respect to protected area coverage, forest cover, human population density, type and
extent of agriculture and extent of interface between forest and human-dominated areas. How-
ever, their assessment of elephant distribution does not account for imperfect detectability and,
as also recognized by the authors, does not distinguish between occupancy and seasonal use
(especially in human-dominated areas). Our sampling and modeling explicitly accounted for
both these issues, and the resulting estimates and spatial predictions may therefore be consid-
ered extremely reliable. Furthermore, their assessment of relative abundance a) poorly accounts
for detectability of dung piles (since they use average perpendicular distance rather than data-
set-specific fitted detection functions (e.g. see Jathanna et al. [85]) to estimate dung pile den-
sity); b) is subject to biases from non-random sampling caused by the use of forest beats (area
range given as 0.6-1802 km?) as sampling units (see Table 1, Jathanna et al. in press for a dis-
cussion) and c) is confounded with spatial variation in dung decay rates (Table 1, Jathanna
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Fig 2. Elephant detections (a), estimated detectability (b) and estimated y (c) in our study landscape. Estimated site-specific detectabilities and y are
based on the minimum AIC model.

doi:10.1371/journal.pone.0133233.9002

et al. [85]), which we expect to be considerable, given the extremely wide range of annual pre-
cipitation across elephant habitats in Karnataka.

Monitoring of elephant populations in India

Our study demonstrates the practical utility of occupancy sampling to the monitoring of ele-
phant populations at larger landscape and regional spatial scales. Our approach explicitly
accounts for imperfect and variable detectability of elephant signs in surveys, variation in y
and spatial dependence of elephant presence on trail segments that are surveyed. We submit
that the use of a modeling approach that closely describes how the data could have been gener-
ated, designing and conducting field surveys so that they match the analytical framework used,
and careful modeling of observation as well as state processes (using the best available informa-
tion) are critical to making inferences that can reliably and substantively inform monitoring,
conservation and management of elephants as well as other wide-ranging, terrestrial vertebrate
species globally. Unfortunately, the country-wide Synchronised Elephant Census (SEC) cur-
rently carried out by the Indian government relies on very different methods that attempt to
directly estimate elephant population size: waterhole counts, block counts and ‘indirect’ esti-
mates of elephant densities derived from dung counts [86, 87]. These elephant ‘numbers’ /
‘densities’ obtained in specific areas are then used to produce state-, country- and range-wide
estimates of abundance through extrapolation, despite the complete lack of randomization and
inadequate replication. Blake and Hedges [4] argue that such “uncritical acceptance of poor-
quality data. . .impedes planning for effective elephant conservation.” Elephant numbers
obtained from the SEC lack scientific rigor, both because of the unreliability of the methods
used and the mismatch between the population parameters and the spatial scale at which they
are estimated.

As noted by the Elephant Task Force Report [87] the block and waterhole count methods
are not rooted in estimation theory, are subject to a number of biases, and are likely to produce
misleading elephant population numbers. Although the ‘indirect method’ can be used to esti-
mate elephant dung densities, reliably deriving elephant densities by applying dung decay and
defecation rates is challenged by factors that can introduce substantial biases [88].

Abundance and density are undoubtedly more useful parameters to inform conservation
and management than habitat occupancy, if and when these can be reliably estimated. At the
scale of individual sites or reserves (e.g. protected areas), approaches such as line transect sur-
veys [89] based on visual detections of elephants [90-92] or capture-recapture sampling [93]
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of elephants from individual identifications based on photographs or DNA [49,94-96] have
proven merit for abundance or density estimation.

However, at large spatial scales such as states, regions and countries, reliable estimation of
abundance or density is not just difficult, but impossible at the current time, given constraints
such as finite resources and human-power, sample size requirements for reliable estimation,
variable detectability (which precludes the use of indices), among other issues. Therefore, we
strongly recommend that the focus at such scales be moved away from estimation of abun-
dance or density. Rather than producing biased and dangerously misleading ‘estimates’ of
state- and country-wide elephant numbers (see [4] for a critique), the emphasis should be on
producing population parameters that are reliable, and useful for informing conservation at
these large spatial scales. As we show in this paper, the occupancy modeling approach is ideally
suited for monitoring elephants at these scales. Over time, such data can help assess changes in
available habitat as well as monitor rates of colonization and extinction of sub-populations. We
believe such reliable and rigorous monitoring is critical for effective long-term conservation of
the Asian elephant in the face of rapidly growing economies and accelerating land use changes.

Supporting Information

S1 File. Data used to model Asian elephant occupancy in our landscape. Separate work-
sheets contain a) detection—non-detection data and b) covariate data.
(XLSX)

Acknowledgments

The analysis and manuscript preparation were carried out while D] was visiting the Nicholas
School of the Environment, Duke University, and we are grateful to S. Pimm, W. Chameides
and P. Khasibatla for facilitating and supporting the visit. This work was partly supported by
the Vision Group on Science and Technology, Government of Karnataka, and the Department
of Biotechnology, Government of India. We thank the U.S. Geological Survey-Patuxent Wild-
life Research Center for helpful comments, and the Karnataka Forest Department and Centre
for Wildlife Studies for facilitating the field research. We are indebted to A. M. Gopalaswamy
for analytical advice, M. Gonzalez Roglich for his help with downloading and summarizing
remotely sensed data, K. Yadav for helping prepare the maps, and to V. Srinivas, Y. C. Krishna
and the many volunteers and field assistants who helped collect the field data. We also thank
the three anonymous reviewers and the two academic editors for their helpful comments,
which greatly improved this manuscript.

Author Contributions

Conceived and designed the experiments: KUK NSK. Performed the experiments: KUK NSK.
Analyzed the data: D] VRG. Contributed reagents/materials/analysis tools: KUK NSK DJ KKK.
Wrote the paper: D] KKK KUK VRG.

References

1. Leimgruber P, Gagnon JB, Wemmer C, Kelly DS, Songer MA, Selig ER. Fragmentation of Asia's
remaining wildlands: implications for Asian elephant conservation. Anim Conserv. 2003; 6: 347-359.
PMID: ISI:000186983400009.

2. Sukumar R. The living elephants: evolutionary ecology, behavior and conservation. New York: Oxford
University Press; 2003.

3. Menon V, Sukumar R, Kumar A. A god in distress: threats of poaching and the ivory trade to the Asian
elephantin India. Asian Elephant Conservation Centre: Indian Institute of Science; 1997.

PLOS ONE | DOI:10.1371/journal.pone.0133233 July 24,2015 15/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0133233.s001
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000186983400009

@’PLOS ‘ ONE

Determinants of Elephant Occupancy in the Western Ghats

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

Blake S, Hedges S. Sinking the flagship: the case of forest elephants in Asia and Africa. Conserv Biol.
2004; 18(5): 1191-1202. doi: 10.1111/j.1523-1739.2004.01860.x PMID: 1S1:000224071800005.

Bist S. Elephant conservation in India-an overview. Gajah. 2006; 25: 27-37.

Karanth KK, Nichols JD, Karanth KU, Hines JE, Christensen NL Jr. The shrinking ark: patterns of large
mammal extinctions in India. Proc R Soc B. 2010; 277: 1971-1979. doi: 10.1098/rspb.2010.0171

Leuthold W, Sale JB. Movements and patterns of habitat utilization of elephants in Tsavo National
Park, Kenya. AfrJ Ecol. 1973; 11: 369-384.

Barnes RFW, Douglas-Hamilton I. The numbers and distribution patterns of large mammals in the
Ruaha-Rungwa area of southern Tanzania. J Appl Ecol. 1982; 19:411-425.

Ottichilo W. Population estimates and distribution patterns of elephants in the Tsavo ecosystem,
Kenya, in 1980. Afr J Ecol. 1986; 24: 53-57.

Hoare RE, Du Toit JT. Coexistence between people and elephants in African savannas. Conserv Biol.
1999; 13:633-639. PMID: ISI:000080720400020.

Blake S. The ecology of forest elephant distribution and its implications for conservation. Ph.D. Thesis,
University of Edinburgh. 2003.

Redfern JV. Manipulating surface water availability to manage herbivore distributions in the Kruger
National Park, South Africa. Ph.D. Thesis, University of California, Berkeley. 2002.

Grainger M, van Aarde RJ, Whyte |. Landscape heterogeneity and the use of space by elephants in the
Kruger National Park, South Africa. Afr J Ecol. 2005; 43: 369—-375.

Murwira A, Skidmore AK. The response of elephants to the spatial heterogeneity of vegetation in a
Southern African agricultural landscape. Landsc Ecol. 2005; 20: 217-234.

Ntumi CP, van Aarde RJ, Fairall N, De Boer WF. Use of space and habitat by elephants (Loxodonta
africana) in the Maputo Elephant Reserve, Mozambique. S Afr J Wildl Res. 2005; 35: 139-146.

Buij R, McShea WJ, Campbell P, Lee ME, Dallmeier F, Guimondou S, et al. Patch-occupancy models
indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribu-
tion in an industrial corridor in Gabon. Biol Conserv. 2007; 135(2): 189—-201. PMID:
1S1:000245492600004.

Chamaille-dJammes S, Valeix M, Fritz H. Managing heterogeneity in elephant distribution: interactions
between elephant population density and surface-water availability. J Appl Ecol. 2007; 44: 625-633.

De Beer Y, van Aarde RJ. Do landscape heterogeneity and water distribution explain aspects of ele-
phant home range in southern Africa's arid savannas? J Arid Environ. 2008; 72: 2017—2025.

Harris GM, Russell GJ, van Aarde RI, Pimm SL. Rules of habitat use by elephants Loxodonta africana
in southern Africa: insights for regional management. Oryx. 2008: 66—75.

Thomas B, Holland JD, Minot EO. Elephant (Loxodonta africana) home ranges in Sabi Sand Reserve
and Kruger National Park: a five-year satellite tracking study. PLoS ONE. 2008: e3902. doi: 10.1371/
journal.pone.0003902 PMID: 19065264

Biru Y. Feeding preference and movement patterns of the African elephant (Loxodonta africana) and
vegetation parameters in Babile Elephant Sanctuary, Ethiopia. M.Sc. Thesis, Adis Ababa University.
2009.

Loarie SR, van Aarde RJ, Pimm SL. Fences and artificial water affect African savannah elephant move-
ment patterns. Biol Conserv. 2009; 142: 3086—-3098.

Loarie SR, van Aarde RJ, Pimm SL. Elephant seasonal vegetation preferences across dry and wet
savannas. Biol Conserv. 2009; 142: 3099-3107.

Shannon G, Matthews WS, Page BR, Parker GE, Smith RJ. The affects of artificial water availability on
large herbivore ranging patterns in savanna habitats: a new approach based on modelling elephant
path distributions. Divers Distrib. 2009; 15: 776-783.

Young KD, Ferreira SM, van Aarde RJ. Elephant spatial use in wet and dry savannas of southern
Africa. J Zool. 2009; 278: 189-205.

Young KD, Ferreira SM, van Aarde RJ. The influence of increasing population size and vegetation pro-
ductivity on elephant distribution in the Kruger National Park. Austral Ecol. 2009; 34: 329-342.

Hema EM, Barnes RFW, Guenda W. Distribution of savannah elephants (Loxodonta africana africana
Blumenbach 1797) within Nazinga game ranch, Southern Burkina Faso. AfrJ Ecol. 2011; 49: 141—
149.

Martin J, Chamaillé-James S, Nichols JD, Fritz H, Hines JE, Fonnesbeck CJ, et al. Simultaneous
modeling of habitat suitability, occupancy, and relative abundance: African elephants in Zimbabwe.
Ecol Appl. 2010; 20(4): 1173-1182. PMID: 20597299

PLOS ONE | DOI:10.1371/journal.pone.0133233 July 24,2015 16/19


http://dx.doi.org/10.1111/j.1523-1739.2004.01860.x
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000224071800005
http://dx.doi.org/10.1098/rspb.2010.0171
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000080720400020
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000245492600004
http://dx.doi.org/10.1371/journal.pone.0003902
http://dx.doi.org/10.1371/journal.pone.0003902
http://www.ncbi.nlm.nih.gov/pubmed/19065264
http://www.ncbi.nlm.nih.gov/pubmed/20597299

@’PLOS ‘ ONE

Determinants of Elephant Occupancy in the Western Ghats

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Mukeka JM. Analyzing the distribution of the African elephant (Loxodonta africana) in Tsavo, Kenya.
Miami University. 2010.

van Aarde RJ, Jackson TP. Megaparks for metapopulations: Addressing the causes of locally high ele-
phant numbers in southern Africa. Biol Conserv. 2007; 134:289-297.

Mueller-Dombois D. Crown distortion and elephant distribution in the woody vegetations of Ruhuna
National Park, Ceylon. Ecology. 1972; 53: 208—226.

Santiapillai C, Chambers M, Ishwaran N. Aspects of the ecology of the Asian elephant Elephas maxi-
mus L. in the Ruhuna National Park, Sri Lanka. Biol Conserv. 1984; 29: 47-61.

Sukumar R. The Asian elephant: ecology and management. Cambridge, UK: Cambridge University
Press; 1989.

Diemer N. Environmental Suitability Analysis for Asian Elephants. M.Sc. Thesis, International Institute
for Geo-information Science and Earth Observation, Enschede, Holland. 2003.

Varma S. Spatial distribution of Asian elephant (Elephas maximus) and its habitat usage pattern in Kala-
kad-Mundanthurai Tiger Reserve, Western Ghats, southern India. Current Science. 2008; 94: 501—
506.

Gaucherel C, Balasubramanian M, Karunakaran P, Ramesh B, Muthusankar G, Hély C, et al. At which
scales does landscape structure influence the spatial distribution of elephants in the Western Ghats
(India)? J Zool 2010; 280: 185-194.

Kumar MA, Mudappa D, Raman TS. Asian elephant Elephas maximus habitat use and ranging in frag-
mented rainforest and plantations in the Anamalai Hills, India. Trop Conserv Sci. 2010; 3: 143-158.

Rood E, Ganie AA, Nijman V. Using presence-only modelling to predict Asian elephant habitat use in a
tropical forest landscape: implications for conservation. Divers Distrib. 2010; 16: 975-984.

Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal populations. San Diego:
Academic Press; 2002.

Hedges S, editor.Monitoring elephant populations and assessing threats: a manual for researchers,
managers and conservationists. Hyderabad: Universities Press; 2012.

Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Grant EHC, et al. Presence-only modelling
using MAXENT: when can we trust the inferences? Methods Ecol Evol. 2013; 4: 236—243.

Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP. Improving precision and
reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl. 2003; 13: 1790-
1801.

Gu W, Swihart RK. Absent or undetected? Effects of non-detection of species occurrence on wildlife—
habitat models. Biol Conserv. 2004; 116: 195-203.

MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE. Occupancy estimation and
modeling: inferring patterns and dynamics of species occurrence. San Diego: Academic Press; 2006.

Rota CT, Fletcher RJ, Evans JM, Hutto RL. Does accounting for imperfect detection improve species
distribution models? Ecography. 2011; 34: 659-670.

Goswami VR, Sridhara S, Medhi K, Williams AC, Chellam R, Nichols JD, et al. Community-managed
forests and wildlife-friendly agriculture play a subsidiary but not substitutive role to protected areas for
the endangered Asian elephant. Biol Conserv. 2014; 177: 74-81.

Fernando P, Wikramanayake ED, Janaka H, Jayasinghe L, Gunawardena M, Kotagama SW, et al.
Ranging behavior of the Asian elephant in Sri Lanka. Mamm Biol. 2008; 73: 2—13.

Alfred R, Ahmad AH, Payne J, Williams C, Ambu LN, Kotagama SW, et al. Home range and ranging
behaviour of Bornean elephant (Elephas maximus borneensis) females. PLoS One. 2012; 7: e31400.
doi:31410.31371/journal.pone.0031400. doi: 10.1371/journal.pone.0031400 PMID: 22347469

Goswami VR, Madhusudan M, Karanth KU. Application of photographic capture—recapture modelling
to estimate demographic parameters for male Asian elephants. Anim Conserv. 2007; 10: 391-399.

MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA. Estimating site
occupancy rates when detection probabilities are less than one. Ecology. 2002; 83: 2248—-2255.

Karanth KU, Gopalaswamy AM, Kumar NS, Vaidyanathan S, Nichols JD, MacKenzie DI. Monitoring
carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. J Appl
Ecol. 2011; 48: 1048-1056.

Hines J, Nichols J, Royle J, MacKenzie D, Gopalaswamy A, Kumar NS, et al. Tigers on trails: occu-
pancy modeling for cluster sampling. Ecol Appl. 2010; 20: 1456—1466. PMID: 20666261

Srivathsa A, Karanth KK, Jathanna D, Kumar NS, Karanth KU. On a dhole trail: Examining ecological
and anthropogenic correlates of dhole habitat occupancy in the Western Ghats of India. PLoS One.
2014; 9:e98803. doi: 10.1371/journal.pone.0098803 PMID: 24893166

PLOS ONE | DOI:10.1371/journal.pone.0133233  July 24, 2015 17/19


http://dx.doi.org/10.1371/journal.pone.0031400
http://www.ncbi.nlm.nih.gov/pubmed/22347469
http://www.ncbi.nlm.nih.gov/pubmed/20666261
http://dx.doi.org/10.1371/journal.pone.0098803
http://www.ncbi.nlm.nih.gov/pubmed/24893166

@’PLOS ‘ ONE

Determinants of Elephant Occupancy in the Western Ghats

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Madhusudan MD, Sharma N, Raghunath R, Baskaran N, Bipin CM, Gubbi S, et al. Distribution, relative
abundance, and conservation status of Asian elephants in Karnataka, southern India. Biol Conserv.
2015; 187: 34-40.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate sur-
faces for global land areas. Int J Climatol. 2005; 25: 1965—-1978.

Das A, Krishnaswamy J, Bawa KS, Kiran M, Srinivas V, Kumar NS, et al. Prioritisation of conservation
areas in the Western Ghats, India. Biol Conserv. 2006; 133: 16-31.

Vidya T, Fernando P, Melnick D, Sukumar R. Population differentiation within and among Asian ele-
phant (Elephas maximus) populations in southern India. Heredity. 2004; 94:71-80.

Daniels R. National Biodiversity Strategy and Action Plan: Western Ghats Eco-region. Report submit-
ted to Ministry of Environment and Forests, Government of India; 2001.

Krishnaswamy J, Kiran MC, Davande S. Eco-climatic vegetation classification for the Western Ghats
using multi-season NDVI. Bangalore: Ashoka Trust for Research in Ecology and the Environment;
2003.

Johnson DH.The comparison of usage and availability measurements for evaluating resource prefer-
ence. Ecology. 1980; 61: 65-71.

Baskaran N, Balasubramanian M, Swaminathan S, Desai AJ (1993) Home range of elephants in the
Nilgiri Biosphere Reserve, South India. In: Daniel JC, Datye H, editors. A week with elephants: pro-
ceedings of the international seminar on Asian elephants. Bombay: Oxford University Press; 1993. pp.
298-313.

Kendall WL, White GC. A cautionary note on substituting spatial subunits for repeated temporal sam-
pling in studies of site occupancy. J Appl Ecol. 2009; 46: 1182—-1188.

Krishnaswamy J, Kiran MC, Ganeshaiah KN. Tree model based eco-climatic vegetation classification
and fuzzy mapping in diverse tropical deciduous ecosystems using multi-season NDVI. Int J Remote
Sens. 2004; 25: 1185-1205.

Barnes R, Asamoah-Boateng B, Naada Majam J, Agyei-Ohemeng J. Rainfall and the population
dynamics of elephant dung-piles in the forests of southern Ghana. Afr J. Ecol. 1997; 35: 39-52.
Barnes R, Dunn A. Estimating forest elephant density in Sapo National Park (Liberia) with a rainfall
model. AfrJ Ecol. 2002; 40: 159-163.

Kendall WL. Robustness of closed capture-recapture methods to violations of the closure assumption.
Ecology. 1999; 80: 2517-2525.

Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theo-
retic approach. New York: Springer; 2002.

MacKenzie DI, Bailey LL. Assessing the fit of site-occupancy models. J Agric Biol Environ Stat. 2004;
9: 300-318.

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, et al. Collinearity: a review of methods
to deal with it and a simulation study evaluating their performance. Ecography. 2013; 36: 027—-046.
Doherty PF, White GC, Burnham KP. Comparison of model building and selection strategies. J
Ornithol. 2012; 152: 317-323.

Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC. Using the satellite-derived
NDVI to assess ecological responses to environmental change. Trends Ecol Evol. 2005; 20: 503-510.
PMID: 16701427

Pettorelli N, Ryan SJ, Mueller T, Bunnefeld N, Jedrzejewsk B, Lima M, et al. The Normalized Difference
Vegetation Index (NDVI): unforeseen successes in animal ecology. Clim Res. 2011; 46: 15-27.

Hines JE. PRESENCE: Software to estimate patch occupancy and related parameters. Version 4.1.
USGS-PWRC. Available: http://www.mbr-pwrc.usgs.gov/softwarepresence.html; 2006.

Efron B. The jacknife, the bootstrap and other resampling plans. Philadelphia, PA: Society for Industrial
and Applied Mathematics; 1982).

R-Development-Core-Team. R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing; 2012.

Brandt PT, Appleby J. MSBVAR: Bayesian vector autoregression models, impulse responses and fore-
casting. R package version 03; 2007.

Kumar NS. Assessment of distribution and abundance of ungulate prey using spatial models in Nagara-
hole and Bandipur Tiger Reserves of India. PhD Thesis, Manipal University. 2011.

Karanth KK, Nichols JD, Hines JE, Karanth KU, Christensen NL. Patterns and determinants of mammal
species occurrence in India. J Appl Ecol. 2009; 46: 1189—1200.

PLOS ONE | DOI:10.1371/journal.pone.0133233 July 24,2015 18/19


http://www.ncbi.nlm.nih.gov/pubmed/16701427
http://www.mbr-pwrc.usgs.gov/software&#x2044;presence.html

@’PLOS ‘ ONE

Determinants of Elephant Occupancy in the Western Ghats

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Royle JA, Nichols JD. Estimating abundance from repeated presence-absence data or point counts.
Ecology. 2003; 84: 777-790.

Borowik T, Pettorelli N, Sénnichsen L, Jedrzejewska B. Normalized difference vegetation index (NDVI)
as a predictor of forage availability for ungulates in forest and field habitats. Eur J Wildlife Res. 2013;
59: 675-682.

Coley PD, Bryant JP, Chapin FS Ill. Resource availability and plant antiherbivore defense. Science.
1985; 230: 895-899. PMID: 17739203

Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, et al. Determinants of woody
cover in African savannas. Nature. 2005; 438: 846—849. PMID: 16341012

Lakshminarayanan N. Assessing dry season habitat use of the Asian elephant Elephas maximus in
Bandipur and Nagarahole National Parks, southwestern India, using occupancy modelling. MSc The-
sis, National Centre for Biological Sciences, TIFR. pp. 37.2014.

Sukumar R, Desai A, Lele S, Basappanavar CH, Bist SS, Kamath NR, et al. Report of the Karnataka
Elephant Task Force submitted to the Karnataka High Court. 2012.

Jathanna D, Karanth KU, Kumar NS, Goswami VR, Vasudev D, Karanth KK. Reliable monitoring of ele-
phant populations in the forests of India: analytical and practical considerations. Biol Conserv. 2015;
187:212-220.

Bist S. An overview of the methods for enumeration of wild elephants in India. Gajah. 2003; 22: 67—70.

Rangarajan M, Desai A, Sukumar R, Easa PS, Menon V, Vincent S, et al. Gajah: securing the future for
elephants in India. Report of the Elephant Task Force. New Delhi: Ministry of Environment & Forests,
India. 2010.

Hedges S. Estimating absolute density from dung pile density. In: Hedges S, editor. Monitoring ele-
phant populations and assessing threats. Hyderabad: Universities Press; 2012. pp. 61-111.

Buckland S, Anderson D, Burnham K, Laake J, Borchers D, Thomas L. Introduction to distance sam-
pling: estimating abundance of wildlife populations. Oxford: Oxford University Press; 2001.

Karanth KU, Sunquist ME. Population structure, density and biomass of large herbivores in the tropical
forests of Nagarahole, India. J Trop Ecol. 1992; 8: 21-35.

Varman KS, Sukumar R. The line transect method for estimating densities of large mammals in a tropi-
cal deciduous forest: An evaluation of models and field experiments. J Bioscience. 1995; 20: 273-287.

Baskaran N, Udhayan A, Desai AA. Status of the Asian elephant population in Mudumalai Wildlife
Sanctuary, southern India. Gajah. 2010; 32: 6—13.

Amstrup SC, McDonald TL, Manly BF. Handbook of capture-recapture analysis. Princeton, NJ: Prince-
ton University Press; 2005.

Morley R, Van Aarde RJ. Estimating abundance for a savanna elephant population using mark—resight
methods: a case study for the Tembe Elephant Park, South Africa. J Zool. 2007; 271: 418—-427.

de Silva S, Ranjeewa ADG, Weerakoon D. Demography of Asian elephants (Elephas maximus) at Uda
Walawe National Park, Sri Lanka based on identified individuals. Biol Conserv. 2011; 144: 1742—-1752.

Hedges S, Johnson A, Ahlering M, Tyson M, Eggert LS.Accuracy, precision and cost-effectiveness of
conventional dung density and fecal DNA based survey methods to estimate Asian elephant (Elephas
maximus) population size and structure. Biol Conserv. 2013; 159: 101—108.

Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira. Overview of the radiometric and biophysical
performance of the MODIS vegetation indices. Remote Sens Environ. 2002; 83: 195-213.

PLOS ONE | DOI:10.1371/journal.pone.0133233 July 24,2015 19/19


http://www.ncbi.nlm.nih.gov/pubmed/17739203
http://www.ncbi.nlm.nih.gov/pubmed/16341012

