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Summary
The spectrum of tumors that arise owing to the overexpression of c-Myc and loss of BLM is very similar. Hence, it was hypothesized

that the presence of BLM negatively regulates c-Myc functions. By using multiple isogenic cell lines, we observed that the decrease of
endogenous c-Myc levels that occurs in the presence of BLM is reversed when the cells are treated with proteasome inhibitors,
indicating that BLM enhances c-Myc turnover. Whereas the N-terminal region of BLM interacts with c-Myc, the rest of the helicase

interacts with the c-Myc E3 ligase Fbw7. The two BLM domains act as ‘clamp and/or adaptor’, enhancing the binding of c-Myc to
Fbw7. BLM promotes Fbw7-dependent K48-linked c-Myc ubiquitylation and its subsequent degradation in a helicase-independent
manner. A subset of BLM-regulated genes that are also targets of c-Myc were determined and validated at both RNA and protein levels.

To obtain an in vivo validation of the effect of BLM on c-Myc-mediated tumor initiation, isogenic cells from colon cancer cells that
either do or do not express BLM had been manipulated to block c-Myc expression in a controlled manner. By using these cell lines, the
metastatic potential and rate of initiation of tumors in nude mice were determined. The presence of BLM decreases c-Myc-mediated

invasiveness and delays tumor initiation in a mouse xenograft model. Consequently, in tumors that express BLM but not c-Myc, we
observed a decreased ratio of proliferation to apoptosis together with a suppressed expression of the angiogenesis marker CD31. Hence,
partly owing to its regulation of c-Myc stability, BLM acts as a ‘caretaker tumor suppressor’.
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Introduction
Bloom syndrome (BS) is caused by mutation in the RecQ helicase
family member, the helicase Bloom syndrome protein (BLM). The
disorder is characterized by a predisposition to a wide spectrum of
cancers (German, 1997). BS patients exhibit defects in DNA

replication and homologous recombination events, manifested by
an increased frequency of sister chromatid exchanges (SCEs)
(Chaganti et al., 1974). BLM regulates homologous recombination

by a number of mechanisms, such as disruption of RAD51
nucleofilaments (Bugreev et al., 2007; Tripathi et al., 2007),
prevention of chromosome breakage (Russell et al., 2011),

recruitment of p53 to carry out its own functions during
homologous recombination (Sengupta et al., 2003) and
enhancement of the interactions between 53BP1 and RAD51

(Tripathi et al., 2008; Tripathi et al., 2007). BLM is involved in the
recognition of the DNA damage by a K63-linked ubiquitin-
dependent mechanism (Tikoo et al., 2013), transmission of the
damage signal to the repair proteins and in repair of the DNA

damage during the effector phase (Tikoo and Sengupta, 2010).
Hence, it can be argued that the proposed ‘caretaker tumor
suppressor’ function of BLM (Hickson, 2003) is a culmination of

the multiple roles of the helicase.

The proto-oncogene MYC encodes a DNA-binding factor (c-
Myc) that can both activate and repress transcription (Dang et al.,

2006). At the post-translational level c-Myc expression is
controlled through sequential and reversible phosphorylation at
two highly conserved residues, threonine 58 (Thr58) and serine 62

(Ser62) (Dai et al., 2006; Hann, 2006). This doubly phosphorylated
c-Myc binds to its primary E3 ligase complex, which consists of
SKP1, CUL1 and F-box proteins (hereafter referred to as SCFFbw7)

both in vitro and in vivo (Welcker et al., 2004a; Welcker et al.,
2004b; Yada et al., 2004). Alternatively, dephosphorylated Ser62
and phosphorylated Thr58 in c-Myc can also serve as a dock to

recruit the SCFFbw7 complex, leading to c-Myc ubiquitylation and
proteasomal degradation (Yeh et al., 2004). Transcription of
human FBXW7 (hereafter referred to as FBW7) can yield three
different transcripts (FBW7a, FBWb and FBWc) that are

produced by alternative splicing (Welcker and Clurman, 2008).
The level of c-Myc is regulated by the nucleolar Fbw7c and
nucleoplasmic Fbw7a (Grim et al., 2008; Welcker et al., 2004a).

It is known that cells from BS patients have high levels of c-Myc
protein (Sullivan et al., 1989; West et al., 1995). The spectrum of
tumors associated with the overexpression of c-Myc (Nesbit et al.,
1999) and the loss of BLM (as in BS patients and BLM-knockout

mice) (Hickson, 2003) are also strikingly similar. Hence, we wanted
to test the hypothesis that BLM negatively regulates c-Myc functions.
Our results indicate that BLM, indeed, promotes the Fbw7-dependent

ubiquitylation and degradation of c-Myc, subsequently causing a
delay in c-Myc-dependent initiation of tumors.

Results
BLM regulates c-Myc stability via Fbw7

To determine whether BLM affects endogenous levels of
SCFFbw7 substrates, we compared the levels of five such
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substrates (c-Myc, cyclin E, c-Jun, B-MyB and KLF5) in three

isogenic pairs of cell lines that either do or do not express BLM.

Endogenous levels of c-Myc, cyclin E and c-Jun were higher in

BS, GM08505+GFP and HCT116 BLM2/2 cells when compared

with A-15 cells (Fig. 1A), GM08505 + GFP-BLM (Fig. 1B) and

wild-type HCT116 cells (Fig. 1C), respectively. However, we did

not detect any change in the levels of B-MyB and KLF5 in cells

that express and do not express BLM (our unpublished data),

indicating that the effect of BLM occurs only on a subset of

SCFFbw7 substrates. The increase in the levels of SCFFbw7

substrates was also not observed in cells obtained from patients

suffering from Werner syndrome or Rothmund-Thomson

Syndrome, disorders that are caused by gene mutations of two

other members of the RecQ helicase family, WRN and RECQL4,

respectively (supplementary material Fig. S1A,B).

To determine whether the role of BLM on the levels of

SCFFbw7 substrates was at the transcriptional level, northern

hybridization, reverse transcriptase (RT)-PCR and real-time PCR

analysis were carried out (supplementary material Fig. S1C–E).

All the above techniques indicated that the RNA levels of Myc

were not substantially altered in presence or absence of BLM.

Furthermore, similar levels of c-Myc, cyclin E and c-Jun in BS

and A-15 cells were observed after treatment with proteasomal

inhibitors, MG132 (Fig. 1D,E) or LLnL (supplementary material

Fig. S1F). The rate of turnover of endogenous c-Myc was also

found to be higher in cells that express BLM, which was

determined by treating the cells with protein synthesis inhibitor

cycloheximide (Fig. 1F) or by pulse labeling the cells

(supplementary material Fig. S1G). The half-life of c-Myc in

REF52 cells grown in presence of serum is ,90 minutes (Sears

et al., 1999). We found that the half-life of c-Myc increased from

96 minutes in A-15 cells to 310 minutes in BS cells (Fig. 1F,

right).

To determine whether the BLM and the three SCFFbw7

substrates c-Myc, cyclin E and c-Jun physically interact, GST

pull-down assays were carried out with wild-type BLM (1–1417)

(supplementary material Fig. S2A,B), using cyclin E, c-Jun or c-

Myc. In vitro interaction assays indicated that BLM interacted

Fig. 1. BLM decreases the stability of SCFFbw7

substrates. (A-C) Presence of BLM decreases the

level of c-Myc, c-Jun and cyclin E. The levels of

BLM, c-Myc, cyclin E, c-Jun were determined in

isogenic cell lines (A) BS, A-15; (B) GM08505 +

GFP, GM08505 + GFP-BLM; (C) HCT116

BLM2/2, HCT116. Whole-cell lysates were

prepared and blots probed as indicated with

antibodies against BLM (ab476), c-Myc (13-2500),

cyclin E, c-Jun, hsp90 and actin. (D-E) Decrease in

the levels of c-Myc, c-Jun and cyclin E is reversed

in the presence of the proteasomal inhibitor

MG132. Nuclear extracts prepared from A-15 and

BS cells were either left untreated or treated with

MG132. The blots are probed with antibodies

against c-Myc (13-2500), cyclin E, c-Jun and

hsp90. (F) Half-life of c-Myc is enhanced in the

absence of BLM. Whole-cell extracts were

prepared from BS and A-15 cells that were either

not treated with cycloheximide (CHX) (0 hours) or

treated with CHX for the indicated periods

(bottom, left). The nuclear extracts were

immunoprecipitated with antibody against c-Myc

(13-2500), probed with antibody against c-Myc

(#9402). IgG (heavy chain) acts as a control for the

amount of the antibody used during

immunoprecipitation (top, left). Quantification of

c-Myc levels at different intervals after

cycloheximide exposure (right). The graph shows

the percentage of c-Myc levels (mean 6 s.d.) of

three experiments.
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with all three tested SCFFbw7 substrates (Fig. 2A,B). Specifically

the N-terminal region of BLM interacted with the C-terminal

region of c-Jun, which contains the DNA-binding domain and

leucine zipper module (Fig. 2A, middle and bottom blot, and

supplementary material Fig. S2C). The N-terminal region of

BLM also interacted with c-Myc (Fig. 2B, right). The c-Myc–

BLM interaction was not diminished when c-Myc was mutated at

Thr58 and Ser62 (Fig. 2C). On the basis of the interaction studies

with the C-terminal fragments, it was deduced that amino acids

300–410 of c-Myc – which encompass the basic region and the

helix loop helix (HLH) – minimally interacts with BLM

(Fig. 2D,E; supplementary material Fig. S2D,E). However, due

to the inherent flaws that can happen due to fragment-based

analysis, two new c-Myc fragments were generated, namely c-Myc

Fig. 2. BLM interacts with c-Myc and colocalizes predominantly in the nucleolus. (A) BLM interacts with cyclin E and c-Jun. (Top) In vitro translated S35-

methionine radiolabeled cyclin E was incubated with equalized amounts of Glutathione S-Sepharose-bound GST-tagged BLM (1–1417) or GST. (Middle) In vitro

translated S35-methionine radiolabeled c-Jun was incubated with equalized amounts of Glutathione S-Sepharose-bound GST-tagged BLM (1–1417), BLM (1–212),

BLM (191–660), BLM (621–1041) and BLM (1001–1417). (Bottom) In vitro translated S35-methionine radiolabeled BLM was incubated with equalized amounts of

Glutathione S-Sepharose-bound GST-tagged c-Jun (1–214), c-Jun (1–313) and c-Jun (1–331). All the bound proteins were detected by autoradiography. (B-C) The N-

terminal region of BLM interacts with c-Myc. (B) In vitro translated S35-methionine radiolabeled c-Myc (1–454) was incubated with equalized amounts of

Glutathione S-Sepharose bound GST-tagged BLM (1–1417), BLM (1–212), BLM (191–660), BLM (621–1041), BLM (1001–1417) or GST alone. Bound c-Myc is

detected by autoradiography. (C) Same as B, except that GST-BLM (1–1417) or GST was incubated with S35-methionine radiolabeled c-Myc (WT) or c-Myc (T58A,

S62A). (D) C-terminal region of c-Myc interacts with BLM. Same as B, except S35-methionine radiolabeled BLM was used. Incubations were with Glutathione

S-Sepharose-bound GST-tagged c-Myc (1–439), c-Myc (1–203), c-Myc (1–237), c-Myc (238–439). (E) The region encompassing the NLS, basic region and helix-

loop-helix (HLH) region interact with BLM. Same as B, except that S35-methionine radiolabeled BLM was incubated with GST-c-Myc (238–410), c-Myc (238–368),

c-Myc (238–300), c-Myc (300–439), c-Myc (368–439), c-Myc (410–439) and c-Myc (238–439). (F) The minimal interacting region (amino acids 300–410) in

c-Myc interacts with BLM. Same as E, except that GST-c-Myc (1–439), GST-c-Myc (D300–439) and GST-c-Myc (300–439) were used. (G) Endogenous BLM and

c-Myc interact. Nuclear extracts from BS and A-15 cells were immunoprecipitated with antibody against c-Myc (13-2500) or BLM (ab476). The immunoprecipitates

were probed with the reciprocal antibodies [c-Myc (#9402), BLM (ab476)]. Anti-actin antibody was used as the loading control. (H-I) c-Myc and BLM colocalize.

(H) Localization of transfected FLAG-tagged c-Myc and EGFP-BLM was determined by immunofluorescence. EGFP fluorescence and staining experiments were

carried out using antibody against the FLAG tag. The nucleus was stained using DAPI. The number in the panels labeled ‘combined’ (merged images) panels

represents the percentage of colocalization of GFP-BLM and FLAG–c-Myc in the transfected cells. Two representative cells are shown. Scale bars: 5 mm. (I) Same as

H, except that endogenous c-Myc (stained by N-262) and BLM (stained by A300-120A) were visualized in BS and A-15 cells. The number in the panels labeled

‘combined’ (merged images) show the percentage of cells with BLM–c-Myc colocalization. Scale bars: 5 mm.
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(300–410) and Myc (D300–410) (supplementary material Fig.
S2D,E). We hoped that Myc (D300–410), which was generated on

the entire c-Myc, would not interact with BLM and, indeed, found

that Myc (300–410) but not Myc (D300–410), interacts with BLM
(Fig. 2F). Reciprocal immunoprecipitations by using either

antibodies against c-Myc or BLM (Fig. 2G) indicated that, in

vivo, the two endogenous proteins constitutively interact. Both

BLM and c-Myc have been separately reported to localize to the
nucleoli (Arabi et al., 2005; Yankiwski et al., 2000), the sub-

nuclear compartment implicated for c-Myc degradation (Arabi
et al., 2005; Welcker et al., 2004a). Immunofluorescence staining

with ice-cold methanol:acetone fixation indicated that
overexpressed Myc and BLM were present in both nucleoplasm

and nucleolus (identified by DAPI exclusion). BLM and c-Myc

colocalized extensively in the nucleolus and, to a limited extent, in
the nucleoplasm (Fig. 2H). Endogenous c-Myc and BLM in A-15

cells also colocalized in both nucleolus and nucleoplasm (Fig. 2I).
However, Myc-BLM colocalization was not observed in the PML

nuclear bodies, where BLM was also found. Compared with A-15
cells, the endogenous c-Myc in BS cells was substantially more

cytoplasmic (Fig. 2I). This might indicate a role of BLM in the
transport of c-Myc from the cytoplasm to the nucleus.

The ubiquitylation and subsequent degradation of c-Myc in
cells can occur either by phosphorylation-dependent or

independent mechanisms that are mediated by two different E3
ligases of c-Myc, namely Fbw7 and Skp2 (Kim et al., 2003; Yada

et al., 2004). Additionally, a conserved phosphodegron in c-Myc
consisting of a central phosphothreonine residue followed by a

cysteine and an additional priming phosphodegron by GSK3b in

the +4 position is required (Welcker and Clurman, 2008). So the
effect of BLM on c-Myc ubiquitylation and degradation could be

a reflection of the activity of GSK3b or the levels of the two E3
ligases that are known to be involved in c-Myc degradation.

Using two independent assay techniques, we found that the extent
of phosphorylation of GSK3b serine 9 (a marker for the
intracellular active GSK3b) is similar in cells expressing and
not expressing BLM (Fig. 3A). This indicated that differential

GSK3b signaling did not depend on the absence or presence of
the helicase. By using a validated antibody against Fbw7
(Fig. 3B), the endogenous levels of Fbw7 and Skp2 were found

to be similar in A-15 and BS cells (Fig. 3C). Interestingly, BLM
interacted specifically with Fbw7 but not Skp2 (Fig. 3D).

BLM enhanced the binding of Fbw7 with c-Myc

Since BLM affected c-Myc stability (Fig. 1) and also interacted
with c-Myc (Fig. 2), we hypothesized that BLM directly
modulates the interaction of c-Myc with its E3 ligase Fbw7. In

vitro interaction assays carried out with all the three isoforms of
Fbw7 (supplementary material Fig. S3A) indicated that the E3
ligase interacts with GST-tagged BLM (1–1417) but not to GST

alone (Fig. 4A). Ability of BLM to interact with Fbw7 (DN)
(Fig. 4A) indicates that BLM–Fbw7 interaction occurs through
the common C-terminal dimerization, F box and WD40 domains

of the Fbw7 isoforms. Since BLM is a nuclear protein, we were
interested in the interaction between BLM-Fbw7a and BLM-
Fbw7c. Hence, to determine the subnuclear location where BLM

could interact with Fbw7, we carried out immunofluorescence
staining following the overexpression of the tagged version of the
two proteins (because endogenous Fbw7 could not be detected by
any available antibody against Fbw7 in immunofluorescence

experiments). As known in literature (Yankiwski et al., 2000)
BLM was observed in both nucleus and nucleoplasm. In these

Fig. 3. BLM specifically utilizes Fbw7 to regulate the levels of c-Myc. (A) GSK3b is equally active in absence or presence of BLM. Whole-cell extracts from

HCT116 (WT)/HCT116 BLM2/2 or A-15 and BS cells were used to determine the activity of GSK3b either by western analysis with antibody against GSK3b

(pSer9) (left) or by using an activity assay kit (right). (B) Levels of Fbw7 are decreased following transfection of Fbw7 siRNA. Fbw7 siRNA or control siRNA

were transfected into A-15 cells. Nuclear extracts were probed with antibodies against Fbw7 and actin. (C) Levels of Fbw7 and Skp2 were unchanged in the

absence of BLM. Whole-cell extracts from asynchronously growing BS and A-15 cells were probed with antibodies against BLM (ab476), Fbw7, Skp2 and actin.

(D) BLM interacts with Fbw7a and not Skp2. In vitro translated S35-methionine radiolabeled Fbw7a or Skp2 has been incubated with equal amounts of

Glutathione S-Sepharose-bound GST-tagged BLM (1–1417) or GST. Bound Fbw7a was detected by digital autoradiography with a phosphoimager plate.

BLM enhances c-Myc degradation 3785
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two subnuclear compartments BLM colocalized with either

Fbw7a in the nucleoplasm or with Fbw7c in the nucleolus

(Fig. 4B).

The above results led to the hypothesis that BLM

simultaneously binds to both c-Myc and Fbw7. We found that,

except the N-terminal (1–212) amino acids, the rest of BLM

interacts with both Fbw7a and Fbw7c (Fig. 4C). The interaction

of BLM with Fbw7 was also observed using a BLM recombinant

protein that lacked the first 212 amino acids (our unpublished

observations), thereby verifying the authenticity of the

interaction. Since two distinct regions of BLM interacted with

c-Myc and Fbw7, we hypothesized that maybe BLM acts as a

‘clamp/adaptor’ protein, thereby enhancing c-Myc interaction

with Fbw7. To test this hypothesis, assays were carried for which

we used bacterially expressed differently tagged recombinant

proteins (Fig. 4D) or a combination of recombinant and in vitro

translated proteins (supplementary material Fig. S3B). In both the

assays, the addition of wild-type BLM (1–1417) enhanced the

Fig. 4. See next page for legend.
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interaction between c-Myc and Fbw7a (Fig. 4D; supplementary

material Fig. S3B top panel). The use of bacterially produced

purified proteins (Fig. 4D) also indicated that the interactions

observed when using in vitro translated proteins (Fig. 2;

supplementary material Fig. S3B) were authentic and not due

to the presence of additional cellular proteins that may have been

present in the rabbit reticulocyte system. In vivo, endogenous

BLM interacted with both Fbw7a and Fbw7c (Fig. 4E).

Furthermore, we observed increased levels of endogenous

Fbw7 isoforms that were able to form complexes with

endogenous c-Myc in A-15 cells; this was despite the presence

of more endogenous c-Myc in BS cells (Fig. 4F). Altogether

these results indicate that BLM enhanced the binding of c-Myc to

Fbw7.

Phosphorylation of c-Myc at Thr58/Ser62 is an important

parameter for its ubiquitylation-dependent degradation (Welcker

et al., 2004a; Welcker et al., 2004b; Yada et al., 2004) by Fbw7.

Hence, we wanted to determine whether the level of c-Myc

phosphorylated at Thr58 and Ser62 was altered in absence of

BLM. Using a validated antibody against phosphorylated c-Myc

(Thr58/Ser62) (supplementary material Fig. S3C), more Thr58/

Ser62 biphosphorylated c-Myc forms were observed in A-15

cells (supplementary material Fig. S3D), even though the levels

of total c-Myc was found to be higher in BS cells. However, the

presence of either GSK3b inhibitor or l phosphatase did not

abolish the effect of BLM on the interaction between c-Myc and

Fbw7 (supplementary material Fig. S3B, middle panel).
Moreover, wild-type BLM enhanced the physical interaction of

Fbw7 with wild-type and mutant (T58A, S62A) c-Myc to equal
extent (supplementary material Fig. S3E). Together, these results
(supplementary material Fig. S3B, middle panel and S3E)

indicate that BLM-mediated enhancement of Fbw7-Myc
interaction does not depend on the phosphorylation of c-Myc
residues Ser58 and Thr62.

BLM enhanced Fbw7-mediated K48-linked c-Myc
ubiquitylation

On the basis of the above results, we wanted to test whether
BLM has a stimulatory effect on Fbw7-dependent c-Myc
ubiquitylation. First, we verified that the Fbw7 that we used

can act as an E3 ligase for c-Myc over a variety of concentrations
(supplementary material Fig. S4A). The authenticity of the c-
Myc ubiquitylation by Fbw7 was also verified by using a F-box

deletion (Fbw7cDF) mutant. As expected, the Fbw7cDF mutant
showed loss of c-Myc ubiquitylation (supplementary material
Fig. S4B).

Next, we wanted to determine whether full-length recombinant
BLM has any effect on Fbw7-dependent c-Myc ubiquitylation.
For these assays we used Fbw7, which led to a minimal level of

c-Myc ubiquitylation, consequently allowing us to better
visualize the effect of BLM. The amount of in vitro translated
c-Myc used for the ubiquitylation reactions was the same in all
experiments (Fig. 5A, middle panel). BLM (1–1417) enhanced

Fbw7-mediated c-Myc ubiquitylation in vitro, as detected by
using antibody against c-Myc. The extent of enhancement was
the same for Fbw7c and Fbw7a (Fig. 5A, top panel). The blot

was subsequently probed with antibody against FK2, which
recognized both mono-and poly-ubiquitylated conjugates. BLM
enhanced both mono- and poly-ubiquitylation of c-Myc (Fig. 5A,

middle panel). A helicase-dead BLM (K695A) mutant also
stimulated ubiquitylation to the same extent as wild-type BLM
(Fig. 5B), indicating that the stimulatory function of BLM on c-
Myc ubiquitylation was not dependent on its DNA unwinding

activity.

Next we wanted to determine the effect of BLM on Fbw7-

mediated c-Myc ubiquitylation in context of its known
requirement for phosphorylation at Thr58 and Ser62 residues.
Interestingly, the effect of BLM on c-Myc ubiquitylation was less
for the c-Myc (T58A, S62A) mutant when compared with wild-

type c-Myc (supplementary material Fig. S4C). Moreover, BLM
could not stimulate Fbw7c-dependent c-Myc ubiquitylation in
presence of either GSK3b inhibitor (Fig. 5C) or l phosphatase

(supplementary material Fig. S4D). Together, these results
provide evidence that the GSK3b-dependent phosphorylation of
c-Myc at Ser58 and Thr62 residues is a prerequisite for BLM in

order to enhance c-Myc ubiquitylation.

To show that BLM, indeed, regulates c-Myc ubiquitylation in

vivo, reciprocal immunoprecipitations with either anti-K48-

linked ubiquitin (Fig. 5D) or c-Myc (Fig. 5E) were carried out.
Although more endogenous c-Myc was present in the BS cells,
K48-linked ubiquitylated forms of c-Myc were enhanced in A-15

cells (Fig. 5D,E). Hence, depletion of Fbw7 in A-15 cells through
corresponding small interfering RNA (siRNA) (validated by the
stabilization of c-Myc) (Fig. 5F, right) led to a huge decrease of

c-Myc ubiquiylation in A-15 cells (Fig. 5F, left), providing
evidence that the presence of BLM enhanced Fbw7-mediated c-
Myc degradation in vivo.

Fig. 4. BLM enhances the interaction of c-Myc with Fbw7. (A) BLM

interacts with Fbw7 isoforms. GST-tagged recombinant BLM or GST alone

(extreme right) is incubated with whole-cell extracts of 293T-cells expressing

FLAG-tagged Fbw7 isoforms or DN Fbw7a (middle). Post interaction, bound

Fbw7 isoforms are detected using antibody against the FLAG tag (left).

(B) Colocalization of BLM with Fbw7 isoforms. GFP-BLM and Fbw7

isoforms were transfected into U2OS cells. The overexpressed proteins were

detected through GFP fluorescence (for BLM) and by staining with antibody

against the FLAG tag (for Fbw7 isoforms). Nuclei were stained using DAPI.

The number in the panels labeled ‘combined’ (merged images) represent the

percentage of cells showing colocalization of GFP-BLM and Flag-Fbw7

isoforms. Scale bars: 5 mm. (C) The C-terminal region of BLM interacts with

Fbw7a and Fbw7c. In vitro translated, S35-methionine radiolabeled Fbw7a

(top) or Fbw7c (bottom) were incubated with equalized amounts of

Glutathione S-Sepharose-bound wild type BLM (1–1417), BLM (1–212),

BLM (191–660), BLM (621–1041) and BLM (1001–1417). GST protein was

used as negative control. Bound Fbw7a or Fbw7c was detected by

autoradiography. (D) BLM enhances the interaction of c-Myc with Fbw7a.

(Top) Recombinant GST-tagged BLM (1–1417), His-tagged Fbw7a and

pMAL-c-Myc were all generated in E. coli and checked for purity by

polyacrylamide gel electrophoresis stained with Coomassie Blue. (Bottom)

Incubation of amylose-resin-bound c-Myc (0.01 nM) with soluble His-tagged

Fbw7a (0.01 nM) in absence or in presence of soluble BLM (1–1417)

(0.01 nM) or GST (0.01 nM). Fbw7a bound to c-Myc was detected by

western blot analysis with antibody against the polyHistidine tag. The levels

of c-Myc and BLM have been verified using antibodies against BLM (A300-

110A) and c-Myc (13-2500). (E) Endogenous BLM interacts with Fbw7

isoforms. Immunoprecipitation of BLM (ab476) antibody with nuclear

extracts from BS and A-15 cells. The immunoprecipitates were probed with

antibodies against BLM (ab476) and Fbw7. IgG (heavy chain) was used as a

control for the amount of antibody. (F) Endogenous BLM enhances c-Myc-

Fbw7 interaction in vivo. Immunoprecipitations with antibody against c-Myc

(13-2500) were carried out with nuclear extracts from BS and A-15 cells. The

immunoprecipitates have been probed with anti-c-Myc (#9402) and anti-

Fbw7 antibodies (left). The levels of c-Myc and Fbw7 in the lysates from A-

15 and BS cells were determined by using the same antibodies (right).

BLM enhances c-Myc degradation 3787
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Fig. 5. BLM enhances Fbw7-mediated c-Myc ubiquitylation. (A) Full-length BLM enhances Fbw7a- and Fbw7c-mediated c-Myc ubiquitylation in vitro.

Ubiquitylation reactions of c-Myc (1-454) were carried out with either Fbw7a or Fbw7c as the E3 ligase, in absence or presence of wild-type BLM (30 ng for

Fbw7a and 30 ng and 60 ng for Fbw7c). Ubiquitylated forms of c-Myc were detected by probing with anti-c-Myc (#9402) antibody (top) and, subsequently, with

anti-FK2 antibody (middle). Equal amounts of Fbw7a and Fbw7c were used as determined by western blot analysis with anti-Flag antibody (bottom). (B) BLM

enhances Fbw7c-mediated c-Myc ubiquitylation in a helicase-independent manner. Ubiquitylation reactions have been carried out as in A. Equal amounts (30 ng)

of BLM (1–1417) or BLM (1–1417) K695A were used. Ubiquitylated c-Myc forms were detected by anti-c-Myc (#9402) antibody (top). The amount of in vitro

translated c-Myc utilized is represented (middle). The purity of the BLM proteins was assessed by polyacrylamide gel electrophoresis stained with Coomassie

Blue. (bottom). (C) Presence of GSK3b inhibitor prevents BLM-dependent enhancement of c-Myc ubiquitylation. Ubiquitylation reactions were carried out as in

A, except that the reactions were carried out in absence or presence of the preincubation with GSK3b inhibitor. Ubiquitylated c-Myc forms were detected by

anti-c-Myc (#9402) antibody (top). The amount of in vitro translated c-Myc utilized is represented (bottom). (D-E) BLM enhances K48-linked c-Myc

ubiquitylation in vivo. Nuclear extracts from BS and A-15 cells have been immunoprecipitated with either (D) anti-K48-linked polyubiquitin (Apu2.07) or (E) c-

Myc (13-2500) antibody. The immunoprecipitates have been probed with either anti-c-Myc (#9402) or anti-K48-linked polyubiquitin (Apu2.07) antibody. The

samples were boiled in SDS-PAGE loading buffer before the analysis. (F) Enhancement of K48-linked c-Myc ubiquitylation in vivo by BLM was dependent

on Fbw7. Same as D-E, except that the A-15 cells were transfected with either control siRNA or Fbw7 siRNA. The nuclear extracts were immunoprecipitated with

anti-K48 linked polyubiquitin (Apu2.07) antibody and probed with c-Myc antibody. Two separate exposures of the c-Myc blot are shown (left). The levels of

Fbw7 isoforms and c-Myc [detected with anti-Fbw7 and anti-c-Myc (#94102) antibodies] after Fbw7 siRNA or Control siRNA transfection are also depicted

(right).
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BLM regulates the expression of c-Myc target genes

We hypothesized that, by enhancing Fbw7-mediated c-Myc

ubiquitylation and subsequent degradation, BLM can also affect

the mRNA expression profiles of the c-Myc target genes. At first,

to determine the genes whose transcript expression profile

depend on BLM, we carried out microarray hybridization on

mRNA extracted from BS/A-15 cells. Altogether, 2332 genes

were differentially expressed due to the lack of BLM in BS cells;

a detailed analysis of which will be reported later. Next, we

wanted to determine the c-Myc target genes that are deregulated

in A-15 cells. However, it was not possible to obtain complete

depletion of endogenous c-Myc in A-15 cells and, thereby, we

were unable to carry out a subsequent microarray in A-15 cells

(with or without c-Myc). Hence, for the next stage the 2332

BLM-dependent genes were compared with the non-redundant

1672 genes listed in the c-Myc target database (www.myc-

cancer-gene.org/) (Zeller et al., 2003), and whose expression was

reported to be either activated or repressed by c-Myc.

Comparison of the two gene lists indicated that 131 c-Myc

target genes were differentially expressed in BS and A-15 cells

(supplementary material Table S1). These genes (7.8% of all c-

Myc target genes and 5.6% of all the genes differentially

regulated owing to the absence of BLM) qualified to be the c-

Myc targets whose expression was regulated by BLM. Out of the

131 genes, 64 genes were upregulated while 67 were down-

regulated to a variable extent in the absence of BLM (Fig. 6A,B;

supplementary material Table S1). Since only 131 out of 1672 c-

Myc target genes were regulated by BLM, other factors possibly

regulate the rest of the c-Myc target genes through parallel

regulatory processes.

To validate the above analysis, mRNA expression pattern of c-

Myc target genes differentially expressed in BS and A-15 cells

were verified at the RNA level either by RT-PCR (Fig. 6C;

supplementary material Table S2) or by real-time PCR

(supplementary material Table S2). mRNA transcript patterns

of the same set of genes were also checked in a second isogenic

pair of cell lines (HCT116 BLM and HCT116 BLM2/2) cells by

RT-PCR (supplementary material Table S2). Gene expression

Fig. 6. BLM regulates the expression of c-Myc target genes. (A) Summary of c-Myc target genes whose expressions are regulated by BLM. (B) Diagram

representing the percentage of distribution of c-Myc target genes whose transcription are either upregulated (n564) (left) or downregulated (n567) (right) in BS

cells. (C-D) RNA expression of a subset of c-Myc target genes depends on BLM status. A subset of the 131 c-Myc target genes has been validated for BLM

dependent transcript expression by RT-PCR using RNA isolated from (C) BS and A-15 cells and (D) HCT116 BLM2/2 and HCT116 cells. (E) Protein levels of a

subset of c-Myc target genes depend on BLM. A subset of the 131 c-Myc target genes has been validated for BLM dependent protein expression by western

analysis using the indicated antibodies on whole cell extracts obtained from BS and A-15 cells.

BLM enhances c-Myc degradation 3789
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patterns of 34 out of the 67 downregulated genes and 32 out of the
64 upregulated genes (66 out of the 131 genes i.e. 50.3% of the

total subset) were analysed cumulatively by using RT-PCR and
real-time PCR. By these analyses, 28 out of the 34 c-Myc target
genes (82.3%) whose expression was reported to be downregulated
by the expression of BLM were verified. Similarly, in 25 out of the

32 target genes (78.1%) expression was found to be upregulated by
the absence of BLM (supplementary material Table S2, yellow
shaded genes). Hence, gene expression analysis through multiple

procedures established that at least 53 out of the 131 c-Myc target
genes (40.4%) were regulated by BLM. Since the analysis had
been carried out for only 66 out of the original 131 genes, a further

increase in the number of BLM-regulated c-Myc target genes is
anticipated. Interestingly, expression patterns for 16 out of the
analyzed 66 c-Myc target genes (ten genes which were
downregulated and six genes which were upregulated,

cumulatively 24.2% of the total genes analyzed) were reversed
in absence of BLM (supplementary material Table S2, red shaded
genes). Validation of protein expression of a subset of these genes

was carried out in A-15 and BS cells (Fig. 6E; supplementary
material Table S2), and at both RNA and protein level by
transiently decreasing the expression of BLM in A-15 cells while

expressing its cognate siRNA (supplementary material Fig.
S4E,F). Hence, by enhancing c-Myc degradation, BLM also
regulates the expression of a subset of c-Myc target genes.

BLM inhibits c-Myc driven tumor initiation in a mouse
xenograft model

On the basis of the above results, it is possible that c-Myc

functions on proliferative pathways were altered by the presence
or absence of BLM. To test our hypothesis we generated a set of
isogenic stable cell lines with the genotypes BLM+ c-Myc+,

BLM+ c-Myc2, BLM2 c-Myc+ and BLM2 c-Myc2. We could
not use the A-15 and BS cell lines for this purpose because these
fibroblast derivatives do not have tumorigenic potential (our

unpublished data). Hence, two new cell lines, HCT116 sh-Myc
(Clone #9 and #7) and HCT116 BLM2/2 sh-Myc (Clone #5 and
#13), were generated by stably coexpressing the Tet repressor
(pcDNA6TR) and small hairpin RNA (shRNA) against c-Myc

(pTER c-myc) (van de Wetering et al., 2003) in HCT116 and
HCT116 BLM2/2 cells. These cells, which express tetracycline-
regulated sh-Myc, showed complete shutdown of c-Myc

expression following the addition of tetracycline
(supplementary material Fig. S5A). In a time course study, we
found that 1 mg/ml of tetracycline was sufficient to shut down c-

Myc expression for up to 24 hours (supplementary material Fig.
S5B). Titration with different concentrations of tetracycline
revealed that 0.5 mg/ml of the antibiotic led to an almost

complete shutdown of c-Myc protein expression within 12 hours
(supplementary material Fig. S5C).

Since the ability of the cells to penetrate through a barrier of
reconstituted basement membrane correlates with their invasive

potential, we carried out in vitro matrigel invasion assays with
HCT116 sh-Myc and HCT116 BLM2/2 sh-Myc cells in (see
Material and Methods) presence and absence of tetracycline.

Both the partial and total absence of c-Myc (obtained by using
two different concentrations of tetracycline) decreased the
invasive potential of the cells by almost half (compare the

normal BLM+ c-Myc+ genotype with BLM+ c-Myc2 conditions
under which Myc is decreased to a different extent). This
indicates that the percentage of invasive HCT116 cells is largely

due to c-Myc expression (Fig. 7A; supplementary material Fig.
S6). However, compared with the normal condition (BLM+ c-

Myc+ genotype), absence of BLM in presence of c-Myc (i.e.
BLM2 c-Myc+ genotype) statistically enhanced invasive
capability of the cells ,1.6 times, indicating that BLM is a
crucial component regulating the invasive potential of c-Myc

(Fig. 7A).

To conclusively link the increased invasive potential of cells
that express c-Myc but lack BLM (Fig. 7A) to the action of BLM

on Fbw7, in vitro matrigel invasion assays were carried out in
parallel in HCT116 (wild type) or HCT116 Fbw72/2 cells, in
which the expression of BLM was shut down by transfecting its

cognate siRNA (Fig. 7B. top). As expected, owing to their
respective tumor suppressive functions, ablation of BLM or Fbw7
alone mildly enhanced the invasion potential of the cells
(Fig. 7B, bottom). However, lack of both Fbw7 and BLM, i.e.

BLM2 Fbw72 genotype, which should also indicate the BLM2

c-Myc+ genotype, statistically enhanced the invasive potential
five- to sixfold (Fig. 7B, bottom). The invasive potential of

BLM2 Fbw72 cells was higher compared with BLM2 c-Myc+

cells (compare their respective invasion percentages in
Fig. 7A,B). The effect of BLM on the stability of other

SCFFbw7c substrates, such as cyclin E and c-Jun, might also
contribute during the invasion process.

Next, the above studies were extended to a xenograft model in
nude mice. The generated stable cell lines were subcutaneously

injected into nude mice. Feeding of tetracycline to 50% of the
animals led to the generation of four different genotypes within
the microenvironment of the injected cells. The absence of BLM

staining in HCT116 BLM2/2 derivatives and ablation of c-Myc
staining after tetracycline treatment were confirmed in the
respective tumor sections (supplementary material Fig. S7). In

accordance with the role of BLM as a tumor suppressor, its
absence alone mildly accelerated tumor initiation [compare
BLM+ c-Myc+ (9.1 days) with BLM2 c-Myc+ (5.4 days)]. Lack

of c-Myc delayed tumor initiation in presence of BLM [compare
BLM+ c-Myc+ (9.1 days) with BLM+ c-Myc2 (16.6 days)] and in
absence of BLM [compare BLM2 c-Myc+ (5.4 days) with BLM2

c-Myc2 (9.2 days)] (Fig. 7C). The delayed initiation of tumor

formation owing to BLM expression (,1.7 times) was
statistically significant (P50.044). Significantly, the initiation
of the tumor formation was most delayed when BLM expression

occured in the absence of c-Myc [compare BLM+ c-Myc2 (16.6
days) with any other genotype], thereby indicating that – apart
from its intrinsic function as a tumor suppressor – BLM can also

act on c-Myc, enhance its degradation and, thereby, delay tumor
initiation to the maximal extent.

The role of c-Myc in diverse functions led us to determine
the levels of proliferation and apoptosis in the tumor sections

derived from nude mice through Ki67 staining and TUNEL
assay (Fig. 7D; supplementary material Fig. S7). The net
proliferative capacity of the tumors (measured as the ratio of

proliferation versus apoptosis) was decreased by the loss of c-
Myc (compare BLM+ c-Myc+ with BLM+ c-Myc2) and increased
by the loss of BLM (compare BLM+ c-Myc+ with BLM2 c-

Myc+). Since the rate of proliferation is lower in BLM+c-Myc2,
the tumor initiates later in these cells within the mouse xenograft
model compared with BLM+c-Myc+ (Fig. 7C). Loss of BLM

together with the presence of c-Myc increased the net
proliferative capacity of the tumors (compare BLM2 c-Myc+

with any other genotypes). Expression of CD31 (a marker that
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Fig. 7. See next page for legend.
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indicates the extent of angiogenesis) was also highest in tumor
sections of mice with a BLM2 c-Myc+ genotype (Fig. 7E;

supplementary material Fig. S7). Together, these results indicate
that the negative regulation of c-Myc stability through BLM lead
to a delay in tumor initiation in nude mice (supplementary
material Fig. S8).

Discussion
Apart from predisposition to multiple forms of cancer in BS

patients (German, 1997), enhanced risk of colorectal cancer is
also apparent in individuals who are heterozygous for the
BLM Ash alleles (Gruber et al., 2002). Enhanced tumor formation

also occurs in mice that are heterozygous for Blm mutation (Goss
et al., 2002). These mutant mice develop twice the number of
intestinal tumors when crossed with mice that carry a mutation in
the Apc tumor suppressor. We now provide mechanistic evidence

how BLM may control the early stage of colorectal
tumorigenesis. Dissecting the role of BLM in relation to c-Myc
during neoplastic transformation was carried out using colon-

cancer-derived HCT116 derivatives (Fig. 7). Incidentally, Myc

has been identified as a target of the Apc pathway (He et al.,
1998). c-Myc is overexpressed at the RNA and protein levels at

both early and late stages of almost 70% of colorectal tumors
(Finley et al., 1989; Sikora et al., 1987), and in multiple colon
carcinoma cell lines, including HCT116 (He et al., 1998). On the
basis of the known functions of c-Myc, it is not surprising that the

decrease in c-Myc expression lowers the invasive capability of
the cells, delays the tumor initiation and decreases the ratio of
proliferation versus apoptosis (Fig. 7A,C,D, compare BLM+ c-

Myc+ with BLM+ c-Myc2 in each case). What is more significant
is that the loss of BLM increases the invasive potential of the c-
Myc-expressing cells, advances the time for tumor initiation in

the xenograft model, increases the ratio of proliferation versus
apoptosis and increases the expression of the angiogenesis
marker, CD31 (Fig. 7A,C,D, compare BLM+ c-Myc+ with

BLM2 c-Myc+ in each case). In combination with the
biochemical data and the evidence obtained using endogenous

proteins (Figs 1-5), the effect of BLM on c-Myc target genes
(Fig. 6; supplementary material S4E,F; Tables S1, S2), the results
from the xenograft mice model (Fig. 7) led us to believe that the
delay in tumor initiation is a reflection of the negative regulatory

effect of BLM on c-Myc stability and, subsequently, on the
subset of c-Myc target genes, whose expression is controlled by
the helicase.

Oncogenes such as Ras frequently synergize with Myc during
the transformation process (Pelengaris et al., 2002). In the genetic
model of colorectal tumorigenesis (Fearon and Vogelstein, 1990),

Ras mutations are thought to be the initiating event in a subset of
colorectal tumors. Adenomas with Ras mutations are more likely
to progress than adenomas without Ras mutations. HCT116 cells
also contain an activating Ras mutation. Tumors from HCT116

cells that lack the mutant Ras allele have been shown to be non-
tumorigenic (Shirasawa et al., 1993), indicating that Ras is the
dominant tumorigenic factor in these cells. Oncogenic Ras in

HCT116 carries out its function by upregulating c-Myc levels
(Ihle et al., 2009) by affecting the mRNA and the protein stability
(Lloyd et al., 1989; Sears et al., 1999). Hence, we hypothesize

that BLM – by deregulating c-Myc during tumor initiation – also
indirectly affects functions of activated Ras during the initiation
step of colorectal tumorigenesis.

A large body of literature exists that has detailed the role of

BLM as a helicase (Bachrati and Hickson, 2008). However,
evidence has accumulated that conclusively demonstrated the
role of BLM as a sensor of DNA lesion, acting in multiple steps

of the DNA-damage-response pathway (Tikoo and Sengupta,
2010). It is tempting to speculate that BLM, by acting as a sensor
of DNA damage, can also help stalling continuous rounds of cell

cycles by negatively regulating Myc expression levels and,
thereby, maintaining the genomic stability. Enhancement of c-
Myc degradation and, thereby, negative regulation of tumor

initiation provides further evidence for the helicase-independent
function of BLM. This function of BLM, together with its roles
during the multiple steps of the DNA-damage-signaling cascade
(Tikoo and Sengupta, 2010), account for the function of BLM as

a caretaker tumor suppressor.

It is known that Fbw7 binds to c-Myc after the latter is
phosphorylated through GSK3b within the phospho-degron motif

Cdc4 phospho-degron (CPD), thereby initiating the degradation
of c-Myc (Welcker and Clurman, 2008). However, parallel
mechanisms of c-Myc ubiquitylation and degradation also exist.

Skp2, another E3 ligase, is known to mediate phosphorylation
independent degradation of c-Myc as well as its transcriptional
activation (Kim et al., 2003; von der Lehr et al., 2003). We have
provided evidence that the effect of BLM is specifically on Fbw7

and not Skp2 (Fig. 3D). Furthermore, we have demonstrated that
the BLM-mediated enhancement in the c-Myc-Fbw7 interaction
is not dependent on a specific phosphorylation of c-Myc at Thr58

and Ser62 (supplementary material Fig. S3B,E). However,
phosphorylation within the CPD is an essential requirement for
BLM to subsequently enhance c-Myc ubiquitylation and, thereby,

causing its degradation (Fig. 5C; supplementary material S4B-
D). These results indicate that the effect of BLM in enhancing c-
Myc ubiquitylation through degradation acts in conjunction with

its known principal mechanism of turnover. Apart from GSK3b,
other kinases such as Pim1 and Pim2 are also known to be
involved in the degradation of c-Myc (Zhang et al., 2008).

Fig. 7. c-Myc dependent tumor initiation is regulated by BLM. (A) Loss

of BLM enhances c-Myc invasiveness. Graphical representation of the

invasion percentage of HCT116 BLM2/2 sh-Myc Clone#5 and HCT116 sh-

Myc Clone#9 grown in absence or presence of different concentrations of

tetracycline. (B) Loss of both BLM and Fbw7 enhances the invasiveness of

HCT116 cells. (Top) HCT116 (WT) or HCT Fbw72/2 cells have been

transiently transfected with either BLM siRNA or Control siRNA. Post-

transfection the whole cell lysates are made and ran on SDS-PAGE gels and

probed with antibodies against Fbw7, BLM (A300-110A), c-Myc (#9402) and

hsp90. (Bottom) Graphical representation of the invasion percentage of

HCT116 (WT) or HCT116 Fbw72/2 cells transfected with either Control

siRNA or BLM siRNA. (C) Initiation of tumor is advanced due to loss of

BLM in a c-Myc-dependent manner in mouse xenograft model. Graphical

representation of tumor initiation after HCT116 BLM2/2 sh-Myc Clone#5

and HCT116 sh-Myc Clone#9 clones have been subcutaneously injected into

nude mice. Half of the mice injected with each cell type are fed with

tetracycline and tumor initiation monitored for all mice. Comparison for the

mean day of tumor initiation is represented. The total number of mice in each

group is denoted by n. (D) Ratio of proliferation versus apoptosis in tumor

sections is enhanced due to loss of BLM in a c-Myc-dependent manner. Same

as C, except that tumors obtained from all mice at 18 days post-injection are

used. Graphical representation of the ratio of proliferation (stained with Ki67)

versus apoptosis (determined by TUNEL) observed in tumor sections for

different genotypes is represented. (E) CD31 positive cells in tumor sections

are enhanced due to loss of BLM in a c-Myc-dependent manner. Same as D,

except that graphical representation of the extent of CD31-positive cells

observed in tumor sections for different genotypes are represented.
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Indeed, Pim1 is one of the c-Myc target genes that is also
regulated by BLM (supplementary material Tables S1 and S2),

and is highly expressed in cells that express BLM at both the

RNA and protein level (see Pim1 transcript and protein levels in
Fig. 6C-E). Overall, the enhancement of Fbw7, mediated c-Myc

degradation through BLM falls under an expanding category of
additional regulatory circuitry that mediates c-Myc turnover.

Owing to its expression profile in diverse forms of cancer, c-
Myc and c-Myc-driven pathways remain very attractive targets

for anti-cancer therapy (Soucek et al., 2008). A variety of
strategies have been suggested (Albihn et al., 2010), some of

which are in the pre-clinical stage. It is interesting to note that,
despite being an attractive target, till now not a single c-Myc-

specific therapy is presently approved for clinical trials (http://
clinicaltrials.gov/). A therapy, on the basis of a decreased half-life

of c-Myc, that uses derivatives of BLM could be an attractive

option. Oncogene-induced replicative stress has already been
shown to be effective in killing c-Myc-driven tumors (Murga et al.,

2011). Efforts maybe directed to obtain BLM derivatives that can
increase c-Myc ubiquitylation and, hence, enhance its degradation.

Materials and Methods
Recombinants and siRNA

pGEX4T-1 BLM (1–1417) (Srivastava et al., 2009), pGEX4T-1 BLM (1–212),
pcDNA3 Flag BLM (gift from Ian Hickson), EGFP-C1 BLM (gift from Nathan
Ellis), pGEX4T-1 BLM (191–660), pGEX4T-1 BLM (621–1041), pGEX4T-1
BLM (1001–1417) (Tripathi et al., 2008). pSG5-Jun (gift from Bohdan Wasylyk).
pcDNA3 Cyclin E (Origene). pcDNA3 c-Myc (gift from Eric Huang and Izumi
Horikawa). pGEX4T-1 c-Jun (1–331), pGEX4T-1 c-Jun (1–313), pGEX4T-1 c-Jun
(1–241), pGEX4T-1 c-Myc (1–439), pGEX4T-1 c-Myc (1–203), pGEX4T-1 c-
Myc (1–237), pGEX4T-1 c-Myc (238–439), pGEX4T-1 c-Myc (238–410),
pGEX4T-1 c-Myc (238–368), pGEX4T-1 c-Myc (238–300), pGEX4T-1 c-Myc
(300–439), pGEX4T-1 c-Myc (368–439), pGEX4T-1 c-Myc (410–439) and
pGEX4T-1 c-Myc (300–410) were obtained by cloning the respective PCR
products into the EcoR1/XhoI sites of the vector. pGEX4T-1 c-Myc (D300–410)
was generated by a two-step cloning process. In the first step pGEX4T-1 c-Myc
(1–299) was generated by cloning the PCR fragment into the BamH1–EcoR1 site
of pGEX4T-1. In the second step c-Myc (411–439) was inserted in frame with c-
Myc (1–299) at EcoR1–XhoI sites to generate pGEX4T-1 c-Myc (D300–410).
pMAL Myc (1–451) was obtained by cloning the PCR fragment into the EcoR1–
HindIII sites of pMAL-p2X vector. 3pX-Flag-myc-CMV-24 Fbw7a, 3pX-Flag-
myc-CMV-24 Fbw7b, 3pX-Flag-myc-CMV-24 Fbw7c, 3pX-Flag-myc-CMV-24
Fbw7c, 3pX-Flag-myc-CMV-24 Fbw7c DN (which contains only the common
region of the three Fbw7 isoforms) and pFLAG-Fbw7c DF (gift from Markus
Welcker and Bruce Clurman). pET28b-Fbw7c was obtained by cloning the PCR
fragment into the EcoR1/NotI sites of pET28b vector. pcDNA6TR (Invitrogen).
pTER-c-Myc (gift from Marc van de Wetering). siRNA for Fbw7 (On target plus
Smart Pool) was purchased from Dharamacon. siRNA for BLM (custom synthesis
against the sequence 59-AGCAGCGAUGUGAUUUGCA-39) was purchased from
Dharamacon. ON-TARGET plus non-targeting siRNA #1 from Dharmacon (D-
001810-01-05) was used as the control siRNA. All transfections were carried out
using Lipofectamine 2000 (Invitrogen). All siRNA transfections were carried out
for 54 hours.

Antibodies

Anti-BLM: ab476 (Abcam), A300-110A (Bethyl), A300-120A (Bethyl),
HPA005689 (Sigma). Anti-c-Myc: 13-2500, Clone 9E10 (Invitrogen), #9402
(Cell Signaling), sc-764, N-262 (Santa Cruz Biotechnology), ab39688 (Abcam).
Anti-phosphorylated c-Myc (Thr58/Ser62): sc-8000-R (Santa Cruz
Biotechnology). Anti-WRN: NB100-140 (Novus Biologicals). Anti-RECQL4:
K6312 (De et al., 2012). Anti-Cyclin E: 551159 (BD Pharmingen). Anti-c-Jun:
ab31419 (Abcam). Anti-B MyB: ab12296 (Abcam). Anti-KLF5: ab24331
(Abcam). Anti-Actin: sc-8432 (Santa Cruz Biotechnology). Anti-Flag: F1804
(Sigma). Anti-Flag antibody beads: A2220 (Sigma). Anti-Fbw7: ab74054 Clone
3a9/1 (Abcam). Anti-polyHistidine: H1029 (Sigma). Anti-mono and poly
ubiquitylated conjugates (Clone FK2): PW8810 (Enzo Life Sciences). Anti-K48
polyubiquitin: Apu2.07 (gift from Vishva M. Dixit). Anti-NPM1: ab15440
(Abcam). Anti-RPL27: ab74731 (Abcam). Anti-MIF: ab7207 (Abcam). Anti-
MITF: ab12039 (Abcam). Anti-EGFR: ab2430. Anti-PIM1: ab66767 (Abcam).
Anti-p53R2: ab8105 (Abcam). Anti-CDH2: ab19348 (Abcam). Anti-hsp90: sc-
7947 (Santa Cruz Biotechnology). Anti-GSK3b (phospho S9) antibody: ab9769
(Abcam). Anti-CD31: ab28364 (Abcam). Anti-Ki67: ab166667 (Abcam).

Cell culture conditions, treatments and assays

hTERT-immortalized Bloom Syndrome fibroblasts from a Bloom Syndrome
patient GM03509 (referred as BS cells) and chromosome 15 mini-chromosome-
corrected BS fibroblasts GM03509 (referred as A-15 cells) were maintained as
described (Sengupta et al., 2003). Fibroblasts from another BS patient GM08505
were immortalized and complemented either with GFP + BLM (referred as
GM08505 + GFP-BLM cells) or with GFP alone (referred as GM08505 + GFP)
(gift from Nathan Ellis) (Hu et al., 2001). The colorectal carcinoma cell line
HCT116 and its isogenic counterpart in which BLM has been deleted through
homologous recombination are referred to as HCT116 BLM2/2 (gift from Bert
Vogelstein) (Rajagopalan et al., 2004). HCT116 and HCT116 Fbw72/2 (gift from
Jonathan Grim and Bruce Clurman) (Grim et al., 2008). 73-26hTERT and 73-
26hTERT-WRN (gift from Judith Campisi) (Yannone et al., 2001). AG05139,
AG03587, D8903644-K and B1865425K (De et al., 2012). LLnL (25 mM, Sigma)
or MG132 (25 mM, Calbiochem) treatments were carried out for the final 3 h of
the incubation. Cycloheximide (1 mM, Sigma) was added for either 2 hours or
6 hours, in cells grown in presence of serum. For pulse-chase experiments, cells
were treated with 700 mCi S35-methionine (Board of Radiation and Isotope
Technology, India) in serum-free, methionine-free medium for 30 minutes. The
cells were subsequently washed and were grown for the indicated times in normal
medium. The concentrations and amounts used for different treatments were:
GSK3b inhibitor VIII (Calbiochem): 25 mM, l phosphatase (New England
Biolabs): 100 units. GSK3b inhibitor VIII and l phosphatase were incubated with
c-Myc for 1 hour prior to the interaction or ubiquitylation at 30 C̊ or 37 C̊,
respectively. GSK3b activity was measured using an assay kit (CS0990, Sigma)
with c-32P-ATP according to the manufacturer’s protocol.

In vitro ubiquitylation

SCFFbw7a and SCFFbw7c were obtained by transfecting 3pX-Flag-myc-CMV-24
Fbw7a, 3pX-Flag-myc-CMV-24 Fbw7c or pFLAG-Fbw7 DF into 293T cells. The
SCFFbw7 E3 complexes or its non-functional Fbw7 DF mutant were purified from
the cells by immunoprecipitation (IP) using anti-Flag antibody beads, eluted out
using Flag peptide (Sigma), checked for purity, evaluated and used for
ubiquitylation assays. For ubiquitylation assays, 1 ml of in vitro translated c-
Myc (,30 ng of the protein) was incubated at 30 C̊ for 1 hour with 100 ng of
Uba1 (Calbiochem), 200 ng of UbcH5a (Calbiochem) and 6 mg of purified
ubiquitin (Boston Biochem) and 0.5–2 ml of the eluted E3 ligase (depending on its
activity). The reaction was carried out in a final volume of 20 ml in a ubiquitylation
buffer containing 4 mM HEPES-NaOH (pH 7.9), 6 mM potassium acetate,
0.2 mM DTT, 0.5 mM MgCl2, 0.05 mM EDTA, 1% glycerol and 0.15 mM
ATP. Soluble GST-tagged BLM (wild type or its derivatives), GSK3b inhibitor or
l phosphatase were included as indicated.

Northern analysis, reverse-transcriptase PCR, real-time PCR

Total RNA was isolated by Trizol reagent (Invitrogen). Northern analysis was
done using 20 mg of the total RNA using the entire c-Myc (1–439) open reading
frame as the probe. For reverse-transcriptase (RT)-PCR the primers used are listed
in supplementary material Table S3. Taqman gene expression assays for Myc and
Actb (b actin) were obtained from Applied Biosystems. Real-time PCR analysis for
the c-Myc target genes that were also regulated by BLM was carried out using
customized TaqMan array 96-well plates (Catalog number 4413256). All RT-PCR
and real-time PCR analyses were done at least thrice (each time in duplicates) in
ABI PRISM 7000 according to manufacturer’s instructions (Invitrogen).

Transfections, immunofluorescence, microscope image acquisition

Transfection for immunofluorescence experiments was carried out on coverslips
by using Lipofectamine 2000 (Invitrogen) according to manufacturer’s protocol.
Cytoplasmic and nuclear extracts from cells were made using NE-PER Nuclear
and Cytoplasmic Extraction Reagent (Pierce). For preparation of whole-cell
lysates, the cells were lysed in RIPA buffer. For immunofluorescence, the cells
were washed and fixed with ice-cold methanol:acetone (1:1) for 5 minutes before
immunostaining. For confocal microscopy, the slides were analyzed on a Zeiss 510
Meta system with 636/1.4 oil immersion objective. The laser lines used were
Argon 458/477/488/514 nm (for EGFP), DPSS 561 nm (for Texas Red) and a
Chameleon Ultra autotunable femtosecond laser with a tuning range of 690–
1050 nm (for DAPI). LSM5 software was used for image acquisition.
Quantification was carried out after visualization of 200 cells. Numbers indicate
the percentage of cells that show colocalization of the two proteins.

Microarray hybridization

Total RNA obtained from BS and A-15 cells was used for microarray gene
expression analysis. The Applied Biosystems human genome survey microarray
version 2.0 chip containing 32,878 oligonucleotide probes (60-mer) representing
29,098 individual human genes and more than 1000 control probes was used for
microarray profiling. Digoxigenin–UTP-labeled cRNA was generated and linearly
amplified from 1 mg of total RNA from each sample by using an Applied
Biosystems Chemiluminescent reverse-transcription in-vitro transcription
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(RT-IVT) labeling kit according to the manufacturer’s protocol. Duplicate
microarray hybridizations were carried out and the raw data values of intensities
were normalized using trimmed mean scale. Chemiluminescence detection and
image acquisition were performed according to the manufacturer’s protocol
(Applied Biosystems). Signals were quantified and corrected for background, and
final images and feature data were processed by using Applied Biosystems 1700
Chemiluminescent Microarray Analyzer software version 1.1. Obtained were lists
of genes that were differentially expressed in the absence of BLM (.twofold
change at 95% confidence with signal-to-noise ratio $3).

Generation of inducible stable lines
Stable cell lines HCT116 sh-Myc and HCT116 BLM2/2 sh-Myc were generated
using the tetracycline repressor, pcDNA6TR (Invitrogen) and a short hairpin RNA
against Myc cloned into pTER vector, pTER c-myc (van de Wetering et al., 2003).
The two plasmids were co-transfected into HCT116 BLM+/+ and HCT116
BLM2/2 cell lines at the ratio 10 mg:1 mg (pcDNA6TR:pTER c-myc) using
Lipofectamine 2000 (Invitrogen). After phenotypic expression the cells were
grown for 4 days in selective medium containing 15 mg/ml of blasticidin
(Invitrogen) and 450 mg/ml zeocin (Invitrogen) to obtain the respective clones.

Matrigel-invasion assays
Matrigel-invasion assays were carried out in 6-well BD Biocoat Matrigel Invasion
Chambers (BD Biosciences) according to the manufacturer’s protocol.
Tetracycline-inducible cell lines were grown in serum-free medium (in absence
or presence of tetracycline) for 12 hours before being used for the assay. Post-
invasion, the membranes were removed and observed at 406magnification after
staining with 1% Toluidiene Blue (Fluka) in 1% borax (Sigma) for 2 minutes. The
entire experiment was repeated in parallel with control inserts. Percentage invasion
was determined by the relative ratio of the mean number of cells invading through
the matrigel insert membrane versus the number of cells invading through the
control-insert membrane. The invasion assays were also carried out in parallel
using HCT116 and HCT116 Fbw72/2 cells after transfecting them with siRNA
BLM or siRNA control. Post-transfection the cells were either lysed to be checked
for western analysis or trypsinized for setting up the invasion assays. All
experiments were set up at least in triplicates and repeated independently three
times. The P-values were obtained by using two-tailed student’s t-test, unpaired
data with unequal variance. Values are mean 6 s.d.

Nude mice experiments
66106 cells in 100 ml medium were mixed with matrigel (1:1 ratio) and injected
subcutaneously into 6-weeks old female nude mice. For the entire duration of the
experiment 50% of the mice were made to drink 5% sucrose water, whereas the
rest drank 0.5 mg/ml tetracycline in 5% sucrose water. Mice were observed every
day for tumor initiation (i.e. detecting tumors of at least 2–3 mm3). The tumors
were manually measured with calipers and the size was estimated using the
ellipsoid formula of height6width6length60.5 (mm3). All work on nude mice has
been carried out in accordance with and approval of the National Institute of
Immunology Animal Ethics Committee.

Acknowledgements
The authors like to acknowledge Ian Hickson, Nathan Ellis, Eric
Huang, Izumi Horikawa, Markus Welcker, Bruce Clurman, Marc van
de Wetering and Bohdan Wasylyk for plasmids, Vishva M. Dixit for
antibodies, Nathan Ellis, Bert Vogelstein, Judith Campisi, Bruce
Clurman and Jonathan Grim for cells. The authors declare that they
do not have any conflicting commercial interest regarding the work
described in the manuscript.

Author contributions
S.C., R.P., V.M., S.T., M.H., R.M., P.M. and V.S. carried out the
experiments. S.S. analyzed the data and wrote the manuscript.

Funding
The authors acknowledge National Institute of Immunology core
funds, Department of Biotechnology (DBT), India (BT/PR11258/
BRB/10/645/2008), Department of Science and Technology (DST),
India (SR/SO/BB-08/2010), Indo-French Centre for the Promotion of
Advanced Research (IFCPAR) (IFC/4603-A/2011/1250) and
Council of Scientific and Industrial Research (CSIR), India
[37(1541)/12/EMR-II] for financial assistance.

Supplementary material available online at

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.124719/-/DC1

References
Albihn, A., Johnsen, J. I. and Henriksson, M. A. (2010). MYC in oncogenesis and as a

target for cancer therapies. Adv. Cancer Res. 107, 163-224.
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